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Coalescence and breakup of drops are classic problems in fluid physics that often involve self-similarity
and singularity formation. While the coalescence of suspended drops is axisymmetric, the coalescence of
drops on a substrate is inherently three-dimensional. Yet, studies so far have only considered this problem
in two dimensions. In this Letter, we use interferometry to reveal the three-dimensional shape of the
interface as two drops coalescence on a substrate. We unify the known scaling laws in this problem within
the thin-film approximation and find a three-dimensional self-similarity that enables us to describe the
anisotropic shape of the dynamic interface with a universal curve.
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Whether it is the merging of raindrops on a windshield or
morning dew drops on leaves, coalescence is a common
phenomenon that occurs all around us and has been the
subject of numerous scientific studies [1–4]. On a wetting
substrate, two drops of the same liquid placed near one
another can spread, make contact, and coalesce, which
consists of rearrangement of fluid and topological changes
of the fluid-air interface. Some of the previous investiga-
tions on coalescence of sessile drops have explored the
effects of substrate wettability [5–7], droplet geometry
[8,9], asymmetry of shape [10] and of surface tension
[11–14] and the influence of surfactants [15].
Unlike the axisymmetric case of coalescence of sus-

pended drops [16,17], the coalescence of sessile drops is
fundamentally a three-dimensional (3D) phenomenon, i.e.,
anisotropic, where the symmetry is broken by the presence
of the substrate and the resulting contact line. Thus, the
shape of the meniscus bridge that connects the two sessile
drops involves two dynamic length scales: the half-width of
the meniscus bridge, which scales as rm ∝ t1=2 [5], and the
height of the bridge, which scales as h ∝ t in the lubrication
regime [10], h ∝ t2=3 for intermediate contact angles in the
inertial regime, and h ∝ t1=2 when the contact angle of the
drop is 90° in the inertial regime [8]. Despite the three-
dimensional nature of the coalescence of sessile drops, all
of the studies so far have only considered this problem in
two dimensions (2D).
In this Letter, we explore the 3D shape of the interface

using interferometry as two viscous drops coalesce on a
wetting substrate (Fig. 1). We find that the shape of the
interface in the direction of the growing meniscus bridge
can be understood geometrically and that the 3D shape of
the interface at early times near the coalescence point has a
self-similar structure that can be mapped onto a universal
curve. We propose a similarity ansatz as a function of one

similarity variable to capture the 3D profile. The numerical
solution of the self-similar profile is in good agreement
with the experimental results. Our results unify the known
scaling laws in the viscous regime and provide experi-
mental evidence that supports the assumptions that are
commonly made in this problem.
In experiments, two silicone oil drops (density ρ ¼

960 kg=m3) were placed next to each other on a glass
microscope slide [Fig. 1(a)]. We explored eight different
combinations varying theviscosity μ¼½51.5;102;540�mPas
and the volume of the drop V¼½0.22�0.07; 0.45�0.04;
2.5�0.2; 6.3�0.3; 11.7�0.3� μl. Each experiment was
repeated two or three times. The interfacial tensions with
air of the three different silicone oils with the given viscosity
values were γ¼½22.7�5.4;20.9�1.3;21.1�1.7�mN=m,
respectively. In all of the experiments performed, the height
and the base radius of the drops just before coalescence
was approximately H0 ¼ Oð0.1Þ mm and R0 ¼ Oð1Þ mm,
respectively, corresponding to Bond numbers of about
Bo ¼ ρgR0H0=γ ¼ Oð10−2Þ, suggesting that gravitational
effects can be neglected.
The microscope slides used for the experiments were

cleaned by sequentially immersing and sonicating them for
15 min each in a surfactant solution, deionized water,
ethanol, and acetone bath. The static advancing contact
angle θ of the drops with the substrate at the moment of
coalescence, hereafter referred to as the effective contact
angle, was within 2° to 4° (0.035 to 0.07 rad), allowing the
imaging of the coalescence event using interferometry.
The drops are dispensed successively through a needle and
are placed far enough apart to spread and reach the small
angles before contact. The angles of the drops are measured
a posteriori from the interferometry images to confirm
symmetric coalescence. Our setup consisted of a camera
and a helium-neon laser of wavelength λ ¼ 633 nm that
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illuminated the interface near the coalescence point, as
schematically shown in Fig. 1(a). The interference pattern
created by the reflected light from the air-liquid interface
and the air-substrate interface was used to measure the
height profile. Typical interferometry images during coa-
lescence are shown in Fig. 1(b) and a side view of the drops
are shown in Fig. 1(c). The reconstructed shape plotted in
Fig. 1(d) shows the anisotropic 3D shape of the interface
during coalescence and resembles the shape of a saddle.
Here, the part of the saddle that is curved upward is formed
by the sides of the two merging drops and the part that is
curved downward is the meniscus bridge, which slopes
down to a height of zero at the outward-moving contact
line. The origin of the axes and the time t ¼ 0 correspond to
the location and the time when the drops first make contact.
As the drops make contact, a meniscus bridge forms and

spreads outward on the substrate in the y direction. The
half-width rmðtÞ of the meniscus bridge [see Fig. 1(b)] on a
completely wetting substrate follows the scaling rmðtÞ ≈
H3=2

0 =R0ðγt=μÞ1=2 at early times. Most of the fluid flow
driving the growth of this bridge is in the x direction [5].
This one-dimensional (1D) flow assumption holds at early
times when the width of the meniscus bridge is much
smaller than the contact radii of the spreading drops. Thus,
the major component of the fluid velocity field in the drops
will be in the x direction locally near the coalescence point.
The 1D flow assumption was used to show the self-

similarity of the interface profile along the y ¼ 0 plane
[10]; see Fig. 2(a) for a schematic. The shape of the
interface along this symmetry plane was found to be
governed by the height at the initial coalescence point,
h0ðtÞ ¼ vt, which scales linearly with time. Assuming that
the effective contact angle θ of the drops during coales-
cence is small, the vertical velocity of the interface can be
identified as v ¼ Aðγ=3μÞθ4 from the thin-film equation.
Here, A is a numerical prefactor. Rescaling both hðx; y ¼
0; tÞ and x with h0ðtÞ in the 2D thin-film equation, a

similarity solution in terms of the variable ξ ¼ θx=h0ðtÞ,
with no fitting parameters, can be obtained that describes
the shape of the interface locally near the coalescence point
at early times [10].
Our 3D reconstruction of the meniscus allows us to test

whether the self-similarity along the y ¼ 0 plane also holds

(a) (b)

(c) (d)

FIG. 2. The height profile in the xz plane at any arbitrary y
location is self-similar. (a) Schematic of the height profile along
this plane at y ¼ y0, where hy0ðtÞ is the height at the coalescence
point in that plane. (b) Data from an experiment using silicone
oil drops with μ ¼ 102 mPa s and V ¼ 2.53 μl showing the
time evolution of the height profile along the xz plane with
y0 ¼ 168 μm. The lines connecting the markers are just guides
for the eyes. (c) The height profile rescaled with the height at the
initial coalescence point h0ðtÞ ¼ vt. (d) The height profile
rescaled with the height at the coalescence point in this specific
plane, hy0ðtÞ, shows agreement with the similarity solution (black
line [10]). The red dot in the inset is a schematic representation of
the location of hy0 .

(a) (b) (c)

(d)

FIG. 1. Three-dimensional reconstruction of the shape of the interface using interferometry. (a) Schematic showing the drop geometry
and the interferometry setup used in the experiments. The base radius R0, height H0, and the radius of the spherical cap R that describes
the shape of the drop at the time of coalescence are labeled. (b) Interferometry images showing two silicone oil drops (μ ¼ 102 mPa s,
V ¼ 2.53 μl) at t ≈ 0, 4, and 6 s after coalescence. Dashed yellow lines are guides for the eyes and show the macroscopic contact line of
the drops. The half-width of the meniscus bridge is labeled rmðtÞ. Scale bar represents 100 μm. (c) Side view image of the drops near the
time of contact. Scale bar represents 1 mm. (d) Reconstructed 3D shape of the interface at t ≈ 5 s.
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for y ≠ 0. Note that the relevant length scale for any off-
center plane would be the height at the coalescence
point in that specific plane: hy0ðtÞ≡ hðx ¼ 0; y ¼ y0; tÞ.
Figure 2(b) shows the temporal evolution of the height
profile along an xz plane at y0 ¼ 168 μm. Rescaling the
height profile of this off-center plane with the height at the
initial coalescence point h0ðtÞ does not collapse the data
[see Fig. 2(c)], whereas rescaling with hy0ðtÞ does collapse
the data and shows agreement with the similarity solution
(black line), as shown in Fig. 2(d). This collapse indi-
cates that the underlying 1D flow assumption holds even
for y ≠ 0.
Thus, we have a glimpse of two important attributes of

the problem that will be amplified in the rest of this Letter.
First, the evolution of the 3D interface is more gene-
rally governed by the height along the meniscus bridge
hðx ¼ 0; y; tÞ rather than simply the height at the initial
coalescence point h0ðtÞ. Second, as a direct consequence of
the first, the scaling parameter for the similarity solution
that describes the 3D shape of the interface must have a
y dependence, implying a 3D self-similarity. We now reveal
the height profile along the liquid meniscus bridge and
provide a more general similarity ansatz that can predict the
dynamic shape of the anisotropic interface.
Along the yz plane, the coalescence point h0ðtÞ is the

highest point on the interface and the height of the interface
vanishes as we approach the edge of the meniscus bridge
[see Fig. 3(a)]. Interferometry data showing the evolution
of the interface in the yz plane are presented in Fig. 3(b).
Given that the flow is mainly in the x direction, we expect
the interface profile in the y direction to be set by surface
tension forces rather than viscous forces. The geometric
shape that minimizes surface energy and is often invoked
for studying sessile drops is a spherical cap [18]. We find
that the interface profile along the yz plane is a circular
segment, a cross section of the spherical cap, and can be
modeled as hðx ¼ 0; y; tÞ ¼ ða2 − y2Þ1=2 − ½a − h0ðtÞ�,
where a is the radius of a circle, as shown in Fig. 3(a).
Approximating the equation for the circular segment for
y=a ≪ 1 and rearranging gives

hðx ¼ 0; y; tÞ
h0ðtÞ

¼ 1 −
1

2

�
yffiffiffiffiffiffiffiffiffiffiffiffiffi

ah0ðtÞ
p

�
2

; ð1Þ

which shows the natural way to rescale the variables and is
plotted along with the rescaled experimental data in
Fig. 3(c). All of the data that we could resolve with
interferometry seem to agree with the predicted geometric
shape of the interface although we would expect the height
profile to deviate at the molecular scales owing to the
presence of a precursor film [19–21].
The dynamic shape of the interface in the yz plane is part

of a circle of constant radius a. For the viscously dominated
motion resulting from coalescence, we can expect the
length scale a to be at most a function of the effective

contact angle at the time of coalescence and the volume of
the drop: a ¼ fðθÞV1=3. If we assume the shape of the
interface in the yz plane as the intersection between two
overlapping (static) spherical cap-shaped drops, then a is
approximately the radius R of the spherical cap in the limit
θ ≪ 1 (see Supplemental Material [22], Sec. I). Given the
volume V and effective contact angle θ of the drops, the
radius R of the spherical cap is R ¼ ½3V=ð2π − 3π cos θþ
πcos3θÞ�1=3. We find that the length scale a follows the
same scaling with θ and V as R in the θ ≪ 1 limit,
a ∝ θ−4=3V1=3, as shown in Fig. 3(d). This length scale
therefore captures the effect of geometry and size of the
drops on the coalescence dynamics in the y direction.
The predicted shape of the interface in the yz plane is

also in agreement with the previously established scaling
for the width of the meniscus bridge. Letting h ¼ 0 in
Eq. (1), the half-width of the meniscus bridge becomes
rmðtÞ ≈ a1=2θ2ðγt=μÞ1=2. For small angles, we have θ ≈
H0=R0 and a ≈ R2

0=H0, which recovers the known scaling
[5]. Thus, we now know the temporal scaling in both
the x direction, θx=vt, and the y direction, y=ðavtÞ1=2.
Figure 4(a) shows the temporal evolution of the 3D shape
of the interface, where the surfaces formed by the markers
of various shades of blue correspond to the shape of the
interface at different times. Rescaling the axes with the
corresponding scales collapses all of the surfaces onto a
single surface, as shown in Fig. 4(b).

(a) (b)

(c) (d)

FIG. 3. The height profile along the meniscus bridge in the yz
plane is a self-similar parabola. (a) Schematic of the height
profile, which resembles a circular segment of radius a. (b) Data
from an experiment using silicone oil drops with μ ¼ 102 mPa s
and V ¼ 2.53 μl showing the time evolution of the height profile.
The lines connecting the markers are just guides for the eyes.
(c) Rescaled height profile collapses the data and agrees with the
proposed model [Eq. (1)]. (d) The value of the length scale a used
to collapse all of the experimental data plotted against V=θ4

follows a 1=3 power law (black line). The fitted slope was 0.29.
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Since we know the shape of the interface along the liquid
meniscus bridge, namely hðx ¼ 0; y; tÞ ¼ vt − y2=2a, it is
possible to further map all of the 3D interface shapes onto a
universal curve using one similarity variable. Within the
lubrication approximation, the evolution of the interface
profile hðx; y; tÞ is governed by

∂h
∂t

þ γ

3μ
∇ · ðh3∇∇2hÞ ¼ 0: ð2Þ

Consistent with the above results, we pose the following
ansatz:

hðx; y; tÞ ¼
�
vt −

y2

2a

�
SðζÞ; ð3aÞ

ζ ¼ θx

vt − y2

2a

; ð3bÞ

where vt − ðy2=2aÞ ≥ 0, which accounts for the time that
the spreading meniscus takes to reach a specific y location
from the initial coalescence point. At early times, the
gradients in the y direction are much smaller than those
in the x direction, i.e., ∂=∂y ≪ ∂=∂x, indicating that we can
neglect terms of order ½hðx ¼ 0; y; tÞ=a�2, ðy=aÞ2 and
smaller. Substituting the similarity ansatz into Eq. (2) and
neglecting the small terms gives an ordinary differential
equation for the self-similar shape of the 3D interface,

S − ζ
dS
dζ

þ 1

A
d
dζ

�
S3

d3S
dζ3

�
¼ 0; ð4Þ

whereA is an unknown numerical prefactor from the vertical
velocity of the interface v ¼ Aðγ=3μÞθ4. Equation (4),
which captures the dynamics of the 3D interface, is the

same one that governs the self-similar height profile of the
y ¼ 0 plane [10]. The fourth order ordinary differential
equation is subject to five boundary conditions since the
value of A is also an unknown:

Sð0Þ ¼ 1;
dS
dζ

ð0Þ ¼ 0;
d3S
dζ3

ð0Þ ¼ 0; ð5aÞ

dS
dζ

ð∞Þ ¼ 1;
d2S
dζ2

ð∞Þ ¼ 0: ð5bÞ

The boundary conditions enforce symmetry along the liquid
meniscus bridge and a constant slope far away. We numeri-
cally solve Eqs. (4) and (5) and find a unique solution for
SðζÞ and the prefactor A ≈ 0.819.
The similarity solution SðζÞ represents the universal

shape of the 3D interface near the coalescence point. The
rescaled experimental data from different experiments
varying the viscosity and the volume of the drop, including
more than 100 different rescaled interface profiles at
different times, are shown in Fig. 4(c). The numerical
solution (black line) for SðζÞ is plotted on top of the
experimental data and shows good agreement.
Our results provide a unified framework for under-

standing the coalescence of sessile and viscous drops
within the thin-film approximation. Consistent with the
assumptions commonly made in this problem, we provide a
more general form of the similarity solution that captures
the dynamics of the three-dimensional interface near the
coalescence point, and that correctly reproduces and ties
together the previously known scaling laws. Although
interferometry constrains us to study very small effective
contact angles in our experiments, we expect our results to
be valid well above that range yet within the thin-film
approximation that serves as the basis for our model.

(a) (b) (c)

FIG. 4. The dynamic 3D interface can be mapped onto a universal curve. (a) The 3D shape of the interface at four different times
during coalescence, t ¼ 4.8, 7.0, 13.7, 19.6 s, with the lighter shade of blue corresponding to later times. (b) The 3D shapes of the
interface collapse onto a single surface when the axes are rescaled as shown. Data are from an experiment using silicone oil drops with
μ ¼ 102 mPa s, V ¼ 2.53 μl, and a ¼ 0.01 m. (c) Rescaling as shown in Eq. (3) gives the universal shape of the 3D interface. The
experimental data are from eight experiments varying viscosity and volume of the drops as shown in the legend. The darker colored
markers correspond to early times and the lighter colors markers correspond to later times during coalescence for a given experiment.
For each experiment, interface profiles at four or five different times each are shown at three different y locations between 0 and 200 μm,
represented by circle, square, and diamond markers. The black line is the numerical solution to Eqs. (4) and (5).
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Previous works have successfully used thin-film models for
angles even up to 45° in some cases [10,23,24].
The comprehensive approach that we provide may be

useful even beyond the thin-film limit. It will be interesting
to examine the 3D self-similarity of the interface during
coalescence of low-viscosity drops [8], where geometry is
known to play an important role, and during asymmetric
coalescence where one might expect a skewed saddle-
shaped interface [10,11]. Insight into the three-dimensional
shape of the interface will be valuable for the vast variety of
applications involving drops and coalescence such as ink-
jet printing, surface coating, and condensation [25–27].
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