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The search for dynamically screening the coupling between the scalar field and matter in high-density
environment is achievable with the symmetron model. The high-accuracy and short-range gravity
experiment is proposed to test the symmetron model. In this Letter, the data of the HUST-2020 torsion
pendulum experiment testing the inverse-square law at submillimeter range is analyzed to constrain the
symmetron model. The results show that the HUST-2020 experiment is uniquely sensitive to probe the
symmetron model with a mass scale of μ ¼ 7.2 × 10−3 eV, and the self-coupling parameter λ≲ 105 is
excluded at mass scale M ¼ 0.3 TeV. Especially, at the dark energy scale μ ¼ 2.4 × 10−3 eV, the
constraint atM ¼ 1.3 TeV is improved by about 10 times the previous constraints on the torsion pendulum
experiment.
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Overwhelming observational evidence has indicated that
the expansion of the Universe is accelerating [1–4]. One
possible explanation is the dark energy with negative
pressure uniformly distributed in the Universe [5,6].
Although the standard lambda cold dark matter model is
compatible with astronomical observation data, this model
has some difficulties in explaining, for example, the
cosmological constant problem [7] and the cosmic coinci-
dence problem [8]. Therefore, theorists urgently need to
find alternative models [6]. An intriguing extension is the
scalar field dark energy model coupled with matter [9].
Since the fifth force has not been found on the laboratory

and solar system scale, the coupled scalar field needs some
screening mechanism to suppress the fifth force generated
in the high-density region. Some screening mechanisms
have been proposed so far, such as the chameleon mecha-
nism [10–12], the Vainshtein mechanism [13–15], the
K-mouflage mechanism [16–18], and the symmetron
mechanism [19,20]. This Letter focuses on the symmetron
mechanism, in which the coupling between the scalar field
and matter is proportional to the vacuum expectation value
(VEV) of scalar field depending on the background matter
density. In the low-density region, the VEV becomes large
and the symmetry is broken spontaneously, indicating that
the field and matter are coupled at gravitational strength. In
contrast, the VEV becomes small and the coupling is
screened in the high-density region.
To further explore the properties of the dark energy

screening mechanism, the symmetron model has been
tested by atom interferometry experiments [21–23], gravity
resonance spectroscopy [24,25], and accurate measurement

experiments of the electron magnetic moment [26]. Also,
some forecast constraints have been performed with the
Casimir force experiment [27] and the next generation
CANNEX experiment [28]. The Eöt-Wash torsion pendu-
lum experiment [29], as a short-range gravity experiment,
provides a complementary constraint of the parameter
space [30].
In this Letter, we constrain the symmetron model with

the HUST-2020 torsion pendulum experiment [31]. Since
the regular flat-plate structures of the test and attraction
masses are employed in this experiment, it is conducive to
modeling the experimental geometry structure as a plate
model, which is convenient to solve the one-dimensional
symmetron field profile. We calculate the symmetron field
profile between the torsion pendulum and the attractor,
analyze the electrostatic shielding foil effect, and finally
constrain the parameters of the symmetron model with the
experimental data. We find that this experiment excludes a
wider region of parameter spaces.
The symmetron model contains a symmetry-breaking

potential VðϕÞ and a matter coupling AðϕÞ, and the
corresponding action can be written as [19,20]

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
−
ð∂ϕÞ2
2

− VðϕÞ
�
þ Sm½A2ðϕÞgμν�; ð1Þ

where ϕ is the symmetron scalar field, Sm½A2ðϕÞgμν� is the
coupling action of the scalar field and matter with gμv being
the Einstein-frame metric. The scaler field equation of
motion and the effective potential Veffðϕ; ρÞ of the symme-
tron model can be derived as [30]
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∇2ϕ ¼ Veffðϕ; ρÞ;ϕ; Veff ¼
1

2

�
ρ

M2
− μ2

�
ϕ2 þ λ

4!
ϕ4;

ð2Þ
where ρ is the background matter density, λ is the
dimensionless coupling parameter, and μ and M are the
mass scales. In the high-density region, namely ρ > μ2M2,
the symmetry is not destroyed, and the effective potential
has a minimum at ϕ ¼ 0 eV, indicating that the coupling
between the field and matter is nearly vanished.
Nevertheless, in the low-density region, such as in vacuum
ρ < μ2M2, the symmetry is spontaneously broken and two
local minima of the potential are generated, corresponding
to two nonzero ϕV ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðμ2 − ρ=M2Þ=λ

p
. Without loss of

generality, we take ϕV as positive. In this case, the field and
matter are coupled at gravitational strength, mediating a
large symmetron force. For the symmetron with different
mass scales μ, the HUST-2020 experiment can provide the
constraint of the symmetron model parameters M-λ.
The HUST-2020 experiment is described in detail in

[31]. A brief review is provided here, and the structural
diagram can refer to Fig. 1. The I-shaped pendulum,
including 14.6 × 0.2 × 12.0 mm3 tungsten test masses
Wt and 14.6 × 0.3 × 12.0 mm3 tungsten gravitational com-
pensation masses Wtc, is symmetrical on both sides and
directly opposite to the attractor. The attractor is eightfold
symmetric, and comprises eight 17.6 × 0.2 × 11.4 mm3

tungsten attraction masses Ws, attached to the surface of
the equal-area glass masses Wglass, and eight 17.6 × 0.4 ×
11.4 mm3 glass masses, attached to the surface of the
equal-area tungsten gravitational compensation masses
Wsc. The attractor is rotated around the horizontal z axis
to produce the density modulation. A 30-μm-thick electro-
static shielding foil is inserted between the test mass and the
attraction mass to prevent electrostatic disturbance. The
densities of the glass plate, tungsten plates, and foil are
ρb ¼ 2.5 g=cm3, ρw ¼ 18.9 g=cm3, and ρs ¼ 8.4 g=cm3

respectively. The entire experimental system is placed in a
vacuum chamber with a pressure of about 10−5 Pa. In
particular, the compensation masses added in this

experiment can effectively offset the Newtonian torque,
realizing a “null” measurement. The violating torque is
measured at different test-attraction mass separations as
d0 ¼ 210 μm and 295 μm, in which the separation between
the test mass and the foil is 90 μm, and the experimental
resolution of the torque at 1σ level is 1.0 × 10−17 N · m.
Because of the density modulation adopted in the HUST-

2020 experiment, there mainly exist two experimental
configurations: the tungsten test mass and the tungsten
(or glass) attraction mass are placed on both sides of the
foil. This sandwich like structure can be easily modeled as a
three-plate model. To analyze the constraint of the HUST-
2020 experiment on the symmetron model, it is important
to calculate the symmetron torque difference in the three-
plate model. However, considering that it is very compli-
cated to directly solve the symmetron field profile as well as
torque difference in the three-plate model, we convert it
into calculating the symmetron torque difference in the
two-plate model of test mass and attraction mass, and
further analyzing the influence of the electrostatic shielding
foil, which is considered as a correction on the symmetron
torque difference.
The two-plate model mainly involves two configura-

tions: the tungsten test mass facing the tungsten or the glass
attraction mass. These correspond to two different symme-
tron field profiles, illustrated in Fig. 2(a). The red dashed
line represents the symmetric field profile for the tungsten-
to-tungsten plate, and the red solid line represents the
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FIG. 1. Diagram of the HUST-2020 torsion pendulum
experiment [31].

(a)

(b)

FIG. 2. Sketch of symmetron field profiles for the two-plate
model (a) and the three-plate model (b). The densities of the
tungsten, glass, foil, and vacuum regions are expressed as ρw, ρb,
ρs, and ρv, respectively.
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asymmetric field profile for the tungsten-to-glass plate. As
symmetric field profile is a special case of asymmetric field
profile, we take the asymmetric field profile as an example
to analyze. Based on the plate model, Eq. (2) can be
rewritten as a one-dimensional form [32,33]:�
dϕ
dz

�
2
����
zi

−
�
dϕ
dz

�
2
����
zj

¼ 2Veffðϕi; ρÞ − 2Veffðϕj; ρÞ; ð3Þ

where ϕi ≡ ϕðziÞ and ϕj ≡ ϕðzjÞ, respectively, represent
the symmetron field values at zi and zj. ϕm and ϕL1

represent the local minimum of the symmetron field inside
the test mass and the surface field value on the test mass,
respectively. ϕg1 represents the local maximum of the field
between both plates. From Eq. (3), both of the equations of
motion in the plate interval ½ϕm;ϕL1� and vacuum inte-
rval ½ϕL1;ϕg1� can be obtained, and further ϕg1 can be
derived as

ϕg1

¼
"
ϕ2
V−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ4
V−

12

λ

�
ρw−ρv
M2

ϕ2
L1−

ρw−μ2M2

M2
ϕ2
m

�
þϕ4

m

s #1=2

≡ϕmax½ϕm;ϕL1;ρw�: ð4Þ

Conversely, the field value ϕL1 can be obtained with
ϕL1 ≡ ϕmid½ϕm;ϕg1; ρw�. From Eq. (3), the equation of
motion in the vacuum interval ½ϕ;ϕg1� can be given.
Integrating the field value from ϕ to ϕg1, one can obtain
Δz as [30]

Δz ¼ 1

μvac

�
1 −

ϕ2
g1

2ϕ2
V

�−1=2�
F

�
π

2
; k

�
− F

�
sin−1

ϕ

ϕg1
; k

��

≡ Δz½ϕ;ϕg1�; ð5Þ

where μ2vac ≡ μ2 − ρv=M2, k≡ ϕ2
g1=ð2ϕ2

V − ϕ2
g1Þ, and

Fðθ; mÞ ¼ R
θ
0 ð1 −m sin θ2Þ−1=2dθ is the elliptic integral.

The asymmetric field profile can be solved by the
dichotomy algorithm. Guess an arbitrary field value ϕL1,
based on Eqs. (4) and (5), the field value ϕg1 and the
distance d1 from ϕL1 to ϕg1 can be determined, respec-
tively. Since the distance d2 ¼ d0 − d1 ¼ Δz½ϕR1;ϕg1�, one
can obtain the field value ϕR1 and the slope ϕ0

R1. Then, we
deduce the slope ϕ̃0

R1 with a guess field value ϕ̃R1 on the
surface of the attraction mass. If the iteration conditi-
ons jϕR1 − ϕ̃R1j < 10−21 eV and jϕ0

R1 − ϕ̃0
R1j < 10−21 eV ·

cm−1 are satisfied, the correct value of ϕL1 is found, as well
as the entire symmetron field profile. A similar analysis can
be performed to solve the symmetric symmetron field
profile between the two plates with same density.
According to the mass blocks used in this experiment
being a regular flat-plate structure, the symmetron force per
unit area in the z direction can be expressed as [32]

Fϕ ¼ −c2
ρw
2M2

½ϕ2ðdþDÞ − ϕ2ðdÞ�: ð6Þ
Here, ρw is the density of the test mass, and D is the
thickness of the test mass plate. ϕðdþDÞ and ϕðdÞ,
respectively, denote the symmetron field values on the left
and right surfaces of the test mass plate. Based on the
density modulation adopted in this experiment, the sym-
metron torque difference between the two configurations in
the two-plate model can be expressed as

δτ ¼ c2
Slρw
2M2

ðϕ2
L1 − ϕ2

LÞ: ð7Þ
Here, S is the area of the test mass, l is the arm length, and
ϕL1ðϕLÞ represents the field value on the right surface of
the test mass plate for the tungsten plate facing the glass
(tungsten) plate.
When a foil is inserted between the test mass and the

attraction mass, the experimental structure should be
modeled as a three-plate model. Compared with the case
of the two-plate model, the symmetron field profile is
different, illustrated in Fig. 2(b). The blue dashed line
represents the field profile of the case that the test mass and
attraction mass are tungsten to tungsten. The field values of
the critical points are denoted as ϕBL, ϕ0B, ϕeL, ϕem, ϕeR,
ϕ0A, and ϕAR. ϕBL and ϕAR, respectively, and represent the
surface field values on the test and attraction masses. ϕ0B
(ϕ0A) represents the local maximum of the field between
the test (attraction) mass and foil. ϕeL and ϕeR represent the
surface field values on the foil, and ϕem represents the local
minimum of the field inside the foil. The blue solid line
represents the field profile of the case that the test and
attraction masses are tungsten to glass. The difference of
the two field profiles corresponding to both configurations
is weak in the areas far from the attraction mass. The
symmetron torque difference between both configurations
is δτfoil. Similarly, for the two-plate model, the torque
difference denotes as δτno-foil. Therefore, the influence of
the foil on torque difference defines as f ≡ δτfoil=δτno-foil.
In the HUST-2020 experiment, when the attractor is

rotated from tungsten to glass, the reduction of the
attraction-mass density is ρw − ρb. To present an approxi-
mate analytical calculation, we regard the reduced amount
of the attraction-mass density as a small amount δρρw, and
the field profile in this case changes slightly compared with
the case of the three-plate configuration of the tungsten test
mass, the foil and the tungsten attraction mass. Thus, the
field values of the critical points are

ϕBLδ ¼ ϕBLð1þ δ1Þ; ϕ0Bδ ¼ ϕ0Bð1þ δ2Þ;
ϕeLδ ¼ ϕeLð1þ δ3Þ; ϕemδ ¼ ϕemð1þ δÞ;
ϕeRδ ¼ ϕeRð1þ δ4Þ; ϕ0Aδ ¼ ϕ0Að1þ δ5Þ;

ϕARδ ¼ ϕARð1þ δ6Þ; ð8Þ
with δ ∼ δ6 representing the relative increment of the field
values for the three-plate model, where the test and
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attraction masses are with the same density. The notation
is introduced as ki ≡ δi=δði ¼ 1; 2.::6; ρÞ. Making a first-
order Taylor expansion of ϕBLδ ¼ ϕmid½0;ϕ0Bδ; ρw� at
ϕBL ¼ ϕmid½0;ϕ0B; ρw�, one gets the relationship

k1 ¼
∂ϕmid½0;ϕ0B; ρw�

∂ϕ0B

ϕ0B

ϕBL
k2: ð9Þ

Similarly, we determine the relationship between k2 and k3.
Since the distance dB between the test mass and the foil is a
fixed value dB ¼ Δz½ϕBLδ;ϕ0Bδ� þ Δz½ϕeLδ;ϕ0Bδ� can be
described as a Taylor expansion at dB ¼ Δz½ϕBL;ϕ0B�þ
Δz½ϕeL;ϕ0B�, and the relationship of k1, k2, and k3 are then
derived. Further, k3 can be determined and is related to the
field values of the three-plate model with the test and
attraction masses with the same density. Similarly, the
dependent relationships of k4, k5, k6, and kρ on k3 can be
derived. Thus, δτfoil expresses as

δτfoil ¼ c2
Slρw
2M2

2ϕ2
BLk1

kρρw
: ð10Þ

For the two-plate model, when the attraction-mass density
reduces by δρρw, the field values of critical points ϕL, ϕg,
and ϕR also change, as well as the relative increments δ01, δ

0,
and δ02. ϕL and ϕR represent the surface field values on the
test and attraction masses, respectively. ϕg is the local
maximum of the symmetron field in vacuum. A similar
analytical calculation can be performed to solve δτno-foil.
Finally, the influence of the foil on the torque difference can
be obtained as

f ¼ ϕ2
BL

ϕ2
L

k1k0ρ
kρk01

; ð11Þ

with k0ρ ≡ δρ=δ0 and k01 ≡ δ01=δ
0. Besides the above ana-

lytical calculations, the numerical method, which has been
presented in detail in [34] to analyze the constraints of the
chameleon model with the short-range gravity experiment,
should be adopted to solve the symmetron field profile with
the test and attraction masses with the same density. We
denote the calculation method of foil influence as a kind of
“semianalytical” method. The detailed calculation of the
foil influence is in the Supplemental Material [35].
Based on the semianalytical results in Eq. (11), the foil

influences at μ ¼ 7.2 × 10−3 eV for different distances d0
are shown in Fig. 3. The results show that when the
dimensionless value of m0 × e0 is close to zero, the foil is
equivalent to a sufficiently thin plate, which has an
extremely weak influence on the symmetron torque differ-
ence, and the foil influence is f ≈ 1; as m0 × e0 increases
gradually, about in the interval 0 < m0 × e0 < 4.5, the foil
influence satisfies f > 1, and its maximum value is
approximate to 6. The rationality of this interesting
phenomenon will be analyzed in detail in the following

paragraph; whenm0 × e0 increases to a large enough value,
the foil is equivalent to a thick plate, indicating a strong
screening effect on the torque difference, and the foil
influence satisfies f ≪ 1. In addition, the numerical
method is also adopted to calculate the foil influence,
and the results agree well with the semianalytical method,
shown in Fig. 3. Similarly, one can calculate the foil
influence of other mass scales μ, and can obtain similar
properties of foil influence f.
To analyze the rationality on the enhancement effect of

the foil influence in the interval about 0 < m0 × e0 < 4.5,
the limit case is constructed by making the value of
m0 × e0 close to zero. We choose μ ¼ 7.2 × 10−3 eV,
M ¼ 1=4 TeV, λ ¼ 1, and the experimental distance
d0 ¼ 210 μm. The semianalytical method is adopted to
calculate the foil influence for the foil thickness e0 in the
interval 10−12 cm ∼ 10−10 cm, and the result can be
approximately fitted as f ≈ expð14m0e0=5Þ. For e0 → 0,
one can obtain the foil influence f > 1 and the slope
f0 > 0, demonstrating that it does have an enhancement
effect. In addition, one can understand this phenomenon
from a more intuitive perspective. Generally, when a thin
foil is inserted between the two plates, the foil will screen
the symmetron field profile. However, due to the density
modulation adopted in the HUST-2020 experiment, we
need to consider the influence of the foil on the symmetron
torque difference. Considering the two cases that the test
mass and the attraction mass are tungsten to tungsten and
tungsten to glass, the foil is inserted between the two plates
in these two cases. In the interval about 0 < m0 × e0 < 4.5,
we note that the screening effect of the foil in the tungsten-
to-glass case is weaker than that of the tungsten-to-tungsten
case. This, to some extent, explains why the foil influence
is f > 1 in this interval. The more detailed analysis on the
enhancement effect of the foil influence is given in the
Supplemental Material [35].

FIG. 3. The influence of the foil on symmetron torque differ-
ence. The dots and lines represent the results of numerical and
semianalytical calculations, respectively. Here, the self-coupling
λ ¼ 1, and m2

0 ¼ ρs=M2 − μ2.
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Based on the above analysis, the symmetron torque
in the HUST-2020 experiment can be calculated as
δτtot ¼ δτ × f, and one can constrain the symmetron model
with the experimental data. Generally, the study of the
symmetron field profile between two plates is limited by a
minimum distance Δzmin. When the experimental distance
d between these two plates is less than the minimum
distance Δzmin, the symmetron field is near zero every-
where, and the experiment will fail to constrain the
symmetron model [30]. Δzmin can be determined by taking
ϕ ¼ ϕL and the limit ϕg → 0 in Eq. (5), approximately

expressed by Δzmin ≈ π=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ρv=M2

p
. Therefore, for

some certain mass scale μ, d > Δzmin is satisfied at all
M of interest; while for μ with little values, d > Δzmin is
only satisfied at a certain range of M. This leads to the
curves of the constraint being “truncated.” In this Letter, we
adopt the experiment performed at d0 ¼ 210 μm, 295 μm
to analyze the constraint of the symmetron model.
Combined with the resolution level of the torque, the
constraints of the HUST-2020 experiment on symmetron
model are shown in Fig. 4. The current strongest constraint
on μ ¼ 7.2 × 10−3 eV is obtained by analyzing the exper-
imental data with d0 ¼ 210 μm, finding that the self-
coupling parameter λ≲ 105 is excluded for the mass scale
M ¼ 0.3 TeV. Combining the experimental data with d0 ¼
295 μm, at the dark energy scale μ ¼ 2.4 × 10−3 eV, the
self-coupling parameter λ≲ 112 is excluded for
M ¼ 1.3 TeV, which is improved by about 10 times from
that of the Eöt-Wash experiment [30]. Because of the
truncation phenomenon, this experiment can only constrain
the symmetron model at a certain range of M. Moreover, a
combined analysis of the experiments with d0 ¼ 210 μm

and d0 ¼ 295 μm has been performed to constrain the
symmetron model of the mass scale μ ¼ 4.8 × 10−3 eV.
The symmetron model is one of the most successful

screening mechanism models, which helps with under-
standing the accelerating expansion of the Universe.
Therefore, it is extremely significant to place constraints
on the symmetron model. We constrain the symmetron
model with different mass scales μ by combining with the
HUST-2020 experimental data. As the special design of
density modulation is adopted in the HUST-2020 experi-
ment, we found an interesting phenomenon that the
symmetron torque signal in this experiment is enhanced
in some certain interval of m0 × e0. This is unique and
useful for designing the test of the symmetron model in the
future. In addition, we are currently running a new experi-
ment of the HUST torsion pendulum in the submillimeter
range [36] that may further provide meaningful constraints
on the symmetron dark energy model.
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