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We exploit the properties of chain mapping transformations of bosonic environments to identify a finite
collection of modes able to capture the characteristic features, or fingerprint, of the environment. Moreover
we show that the countable infinity of residual bath modes can be replaced by a universal Markovian

closure, namely, a small collection of damped modes undergoing a Lindblad-type dynamics whose
parametrization is independent of the spectral density under consideration. We show that the Markovian
closure provides a quadratic speedup with respect to standard chain mapping techniques and makes the

memory requirement independent of the simulation time, while preserving all the information on the
fingerprint modes. We illustrate the application of the Markovian closure to the computation of linear
spectra but also to nonlinear spectral response, a relevant experimentally accessible many body coherence

witness for which efficient numerically exact calculations in realistic environments are currently lacking.
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Much theoretical research in recent decades has focused
on the study of open quantum systems (OQSs) interacting
with structured non-Markovian environments [1-4].
Analytical results are hard to obtain except for very specific
models, and numerical simulations are typically very chal-
lenging unless severe approximations are made. Despite
these challenges, the interaction of an OQS with the
surrounding environment is not only unavoidable in
practice, but there are important instances where non-
Markovianity may be instrumental for different manifes-
tations of the presence of quantum coherence or quantum
correlations to persist for significant timescales [5-9] or
even in the thermodynamical limit [10-12].

For thermal bosonic environments, numerical methods
developed for a general treatment of non-Markovian
problems include, e.g., hierarchical equations of motion
(HEOM) [13,14], quasiadiabatic path integrals (QUAPI)
[15,16], nonequilibrium Green’s function (NEGF) tech-
niques [17,18], non-Markovian quantum state diffusion
(NMQSD) and similar stochastic methods [19-21] and the
time-evolving density operator with orthogonal polyno-
mials algorithm (TEDOPA) [5,22-27]. Recently, powerful
hybrid methods have been developed including the time-
evolving matrix product operators (TEMPO) [28], merging
path integral and tensor network methods, the dissipation-
assisted matrix product factorization (DAMPF) [29,30],
combining tensor networks and local Markovian dissipa-
tors and methodologies that utilize tensor networks in
combination with quantum state diffusion [31]. In this
work we will develop an exact hybrid scheme that
combines the intuition behind strategies aimed at redefining
the system-environment boundary by means, for instance,
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of introducing a reaction coordinate [32] or utilizing
surrogate oscillator modes [33] with chain mapping trans-
formations as those implemented by TEDOPA [22].
TEDOPA is a certifiable and numerically exact
method to efficiently treat OQS dynamics. It first maps
the continuum of bath modes unitarily onto a one-
dimensional chain of harmonic oscillators, and then it
exploits time-dependent density matrix renormalization
group (TDMRG) [34] to efficiently simulate the dynamics
of the resulting configuration. Besides providing an optimal
discretization of the bath [35], TEDOPA treats the OQS and
the bath degrees of freedom on the same footing, thus
leaving the possibility of inspecting the evolution of both.
Moreover, unlike some of the methods mentioned in the
previous paragraph, TEDOPA is not restricted to thermal or
Gaussian initial states of the environment. However, despite
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FIG. 1. Schematics of our procedure: (a) The system (S) inter-
acting with a bosonic environment (E), as described by Eqgs. (1)—
(4). (b) After the chain-mapping, the system interacts with the
primary environment, which interacts in turn with the residual
environment. (c¢) The residual environment is replaced by a finite
set of interacting damped modes, i.e., the Markovian closure.
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its usefulness TEDOPA, as all methods mentioned earlier,
remains computationally intensive. In order to address
more challenging questions, such as the determination of
multidimensional spectra [36,37], further efficiency gains
are required.

We will exploit the properties of the TEDOPA mapping
to show that the main features, or fingerprint, of the
environment are captured by a primary bath comprising
a finite, and typically small, number of modes directly
interacting with the OQS. Moreover, we show that the
remaining environmental modes form a universal residual
bath and that such a residual bath can be replaced by a finite
number of damped harmonic modes undergoing a
Lindblad-type dynamics (See Fig. 1). We provide an
explicit construction of this universal Markovian closure
and illustrate that the ensuing reduction of the computa-
tional resources renders the calculation of 2D nonlinear
electronic spectra [36,37] accessible to this method.

TEDOPA mapping.—We consider a system interacting
with a bosonic environment. The complete Hamiltonian
reads

H=Hg+Hg+H, (1)
Hp = /da)coaz,aw (2)
H, - / do h(w)(Ala, + Agab). (3)

(h=1) where Hg 1is the (arbitrary) free system
Hamiltonian, Hy describes the free evolution of the
bosonic environmental degrees of freedom, and H; is
the bilinear system-environment interaction Hamiltonian
[38]. Moreover we assume that i(w) has finite support
[@mins @max)s  @min < @max» and introduce the spectral
density

J(o) = 7h*(w). (4)

As shown in [5,22,39] the Hamiltonian (1) can be unitarily
mapped to an equivalent one describing a countably infinite
set of modes with operators bg) satisfying the bosonic

commutation relations [b,,, by,] = 8, yielding
H® =Hg+ Hf + H,
Hf = KO(A§b1 JrASbD’

HE =" w,bhb, + K, (b} by + bibyir),  (5)

n=1

where the coefficients w, and «,, are determined either
analytically [22] or numerically [40,41].

For the following, the joint initial state of system
and environment is assumed to factorize, i.e., 05z(0) =

05(0) ® ¢£(0), with ¢£(0) a thermal state. Following [26],
it is possible to replace ¢g(0) with the factorized pure
vacuum state when performing at the same time a suitable
transformation of the spectral density.

Bath fingerprint and universal closure.—As shown in
[22,39], the asymptotic values of the chain mode frequen-
cies w, and coupling constants k,, are

@Omin + Wmax def

w, — =Q,
n—o00 2
Wmax — Omin def
K, max min éK (6)
n—0o00 4

Given the spectral density J(w), for any M > 0 we define
the Hamiltonian of the residual bath as

Hp=Q ) buby+K Y (bybu+ bubu).

m=M+1 m=M+1
(7)

where Hp, is obtained from H¢ by disregarding the first M
modes and replacing the chain coefficients w,,/k,,
with their asymptotic values. For a given value of M the
original system-environment Hamiltonian (5) is approxi-
mated by

H = Hg + HS + Hpg; + Ky (byybyy +Hee) + Hp.  (8)

M M-1
Hpp = anbj;bn + ZKn(bj;an + bnbiﬂ)' ©)
n=1 n=1

Of course, equality 4 = HC holds only in the M — oo
limit: for finite values of M only the chain coefficients
associated with the first M chain sites are exact, while the
remaining ones are only approximated. Such an approxi-
mation is, however, under full control: the exact coeffi-
cients are known and the effects of small variations of the
spectral density on the system dynamics can be bounded
analytically [42]. In what follows we denote with M(¢) the
smallest M such that |(w, —Q)/Q|, |(x, — K)/K| <&,
Y m > M; we moreover chose ¢ = 1073 and denote this
case as € converged, but other choices can be used.

The exact part of the chain, comprising the first M
modes, plays the role of primary environment (PE),
capturing the specific features, or fingerprint, of the
spectral density (see Fig. 1). This is exemplified in
Fig. 2 where we consider an environmental spectral density
J(®) = Jar(w) +>73_, J (@) of a photosynthetic pig-
ment-protein complex, water-soluble chlorophyll-binding
protein (WSCP) from cauliflower [43]. Here Jr (@) is a
broad phonon spectrum originating from protein motions
[43] while three narrow Lorentzian peaks J; () describe
intrapigment vibrational modes [44] with vibrational
frequencies (Q;,Q,,Q3) = (181,221,240) cm™! and an
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FIG. 2. Coefficients, fingerprint, and closure: (a) The TEDOPA chain oscillator frequencies w, (blue triangles) and couplings «,
(green circles) obtained for the WSCP spectral density J(w) described in the main text. In the inset the relative errors between the exact
and asymptotic coefficients. (b) The effective spectral density J'(@) of the TEDOPA chain truncated after 400 sites (red line) and the
effective spectral density J}, (@) with the asymptotic values /K replacing the exact coefficients w, /, for n > M = 80 (dashed green
line). In the inset, the effective spectral densities J'(w), Jg,(@), J)o(w) (vertically shifted for improved visibility). (c) The residual
spectral density (10) for [@pin, ®max] = [—1, 1] and the approximation provided by the TSO with N = 6, 8, 10 auxiliary modes; inset: the

relative error |J (@) — J50(w)]/J o (@) for w € [-1,1].

energy damping rate on the picosecond timescale
(see the Supplemental Material (SM) [45] for more details).
The domain [@pin, Omax] = [0, 1000] cm™ of J(w) is
chosen such that the discarded weight W (@) =
J da J(a)/ [§° do' J(@') < 107°. As Fig. 2(a) shows,
the chain coefficients w,, k, are &= 1073-converged
for M ~ 10°. In order to better illustrate the meaning of
the fingerprinting modes, it is appropriate to truncate the
TEDOPA chain after a finite number of sites, thus compar-
ing discrete spectral densities to discrete spectral densities.
In Fig. 2(b), the effective spectral density J'(w) corre-
sponding to a chain truncated after 400 sites is shown in
red. Figure 2(b) also shows the effective spectral density
J (@) obtained by replacing the exact coefficients ,/x,
of the truncated TEDOPA chain with their asymptotic
values Q/K forn > M. It is clear that J),(w) is in excellent
agreement with the exact J'(w) for M Z 80: the three
narrow Lorentzian peaks of the WSCP spectral density in
the region @ € [150,300] cm™' are well resolved for
M = 80, while for M = 40 the fine structure is lost, as
shown in the inset of Fig. 2(b) (see also the SM [45]). The
fingerprint of the WSCP spectral density is therefore
provided by a PE consisting of a finite number M of sites;
a suitable value of M can be determined by means of the &-
convergence criterion, which in turn determines the number
of sites after which the exact semi-infinite chain, compris-
ing the modes with n > M, is practically indistinguishable
from an approximating residual environment governed by
Hy [see Eq. (7)].

Markovian closure.—The spectral density of the residual
environment reads [22,39]

_ \/(a) - a)min)(wmax B a))
= K? 5 ,

oo (@) (10)

also known as the Winger semicircle [59,60]. Since J (@)
does not depend on the specific spectral density that we
started with, but only on @,/ max, the residual environ-
ment is universal. Because of the translational invariance of
the residual environment, an excitation entering the semi-
infinite homogeneous part of the chain propagates ballis-
tically away from the PE [27] at a speed proportional to K.
On the one hand, this observation makes it clear that to
avoid finite-size effects on the dynamics of the system, or
of the PE, the truncation of the (semi-infinite) chain, which
is required to enable simulations, must be suitably chosen:
for a given simulation time 7 the length of truncated chain
must be proportional to K7. Longtime simulations can
therefore become computationally highly demanding, since
a very large number of chain oscillators must be consid-
ered. On the other hand, the same ballistic propagation
provides a suggestive picture of the irreversibility of the
interaction of the extended system with the residual
environment, with the latter “absorbing” all the excitations
coming from the primary environment. Our findings show
that such an absorption mechanism can be realized by
means of a finite environment made up of a small collection
of harmonic oscillators governed by the nearest-neighbor
coupling Hamiltonian

N N—-1
Hypy = Z; Q,djd, + ; gu(dldy + did, ) (11)

and subject to the local Lindblad dissipator

Dle) = 31 (deds - Jdldna}). (12
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where ¢ is a statistical operator living on the Hilbert space
of the surrogate oscillators providing a Markovian closure
(MC) of the chain (see Fig. 1). For given N, the coefficients
I, Q,, g, are determined by means of the Transformation
to Surrogate Oscillators (TSOs) procedure [33,61]. It is
important to stress here that the universality of the residual
spectral density J, implies that the derivation of the TSO
coefficients must be done only once. Figure 2(c) shows the
spectral density of the auxiliary system provided by the
TSOs for the choices N =6, 8, 10, and allows one to
appreciate the accuracy of the approximation of J,. Full
detail on the TSO derivation and the values of the TSO
parameters for different closure sizes are provided in the
SM [45]. The use of MC is most effective when longtime
dynamics is considered. In this case, in fact, standard
TEDOPA would require the use of very long chains as not
to produce finite-size effects affecting the system and the
extended system, comprising the system and the PE,
dynamics. In what follows we describe a relevant appli-
cation of the MC.

Application: longtime system dynamics.—To demon-
strate that our construction allows for numerically exact
longtime simulations, we investigate optical responses of a
model molecular complex, WSCP, an aggregate for which a
comprehensive spectral charaterization is available [43].
The dimeric system consists of two interacting pigments,
with each pigment coupled to a local phonon environment
characterized by J(w). Motivated by the actual parameters
of WSCP, we model each pigment as a two-level system
with an identical energy gap between electronic ground and
excited states (~15198 cm™!) and consider an electronic
coupling 69 cm™! between pigments (see the SM [45]). As
to make most of the details of the spectra clearly visible, we
consider a phonon bath at zero temperature and parallel
transition dipoles of pigments. In this setting the relevant
state space is spanned by a low-energy optically dark
electronic eigenstate (or exciton) |E,), and a bright high-
energy exciton state |E,), which dominates the optical
responses. As shown in Fig. 3(a), the (numerically exact)
absorption spectrum computed by the MC cannot be
reproduced by a line shape theory based on second order
cumulant expansion [62-64], which has been widely used
to simulate optical responses of photosynthetic systems.
The absorption spectrum can be better reproduced by a
reduced vibronic model where the three narrow peaks
Jr«(®) in the spectral density are included in the system
Hamiltonian in addition to electronic states, and the
remaining broad environmental spectrum Jag (@) is con-
sidered a source of Markovian noise [65,66]. However, the
low-energy part of the absorption spectrum cannot be
reproduced. The numerically exact absorption spectrum
can be well reproduced only when multiple narrow
Lorentzian functions are fitted to the spectral density
Jar(w) and each Lorentzian is considered a damped
harmonic oscillator coupled to electronic states [61].
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FIG. 3. Linear and 2DES optical spectra of WSCP, computa-
tional cost: (a) Absorption spectra computed by TEDOPA with
Markovian closure (MC), cumulant expansion (CE), reduced
vibronic models with Markovian and non-Markovian effects of a
broad environmental spectrum J g (). 2D electronic spectra at
t, = 500 fs computed by (b) MC, and reduced vibronic models
with (c) Markovian and (d) non-Markovian effects of the broad
noise spectrum. The time (e) and memory scaling (f) as functions

of the simulation time f,,,,.

Such a non-Markovian treatment of the broad environmen-
tal spectrum J oz (@) enables one to successfully reproduce
a numerically exact absorption line shape, as shown in
Fig. 3(a). For more details of the reduced models and the
origin of absorption peaks, see the SM [45].

The non-Markovian treatment of the broad environmen-
tal spectrum becomes more important when longtime
system dynamics is considered. As an example, we con-
sider two-dimensional electronic spectroscopy (2DES)
[36,37], which is a time-resolved optical technique for
measuring electronic and vibrational dynamics [65,67-70].
In 2DES, a sample is perturbed by three laser pulses with
controlled time delays, enabling one to investigate molecu-
lar dynamics as a function of excitation @, and detection
energies m; for each time delay #, between the second and
the third pulse. Figure 3(b) shows a numerically exact
stimulated emission component of rephasing 2D spectra at
a waiting time t, =500 fs (see the SM [45]), where
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multiple 2D peaks are present for w; < ;. These results
cannot be reproduced by a reduced vibronic model when
the broad phonon spectrum J g (@) is considered a source
of the Markovian noise, as shown in Fig. 3(c). In order to
better reproduce the numerically exact nonlinear optical
responses, it is necessary to include the non-Markovian
effects of the broad noise spectrum in the reduced model
[see Fig. 3(d)]. These non-Markovian features in 2DES
originate from multiphonon transitions where initial bright
exciton state |E,,0) is vibronically mixed with lower-
energy dark exciton states |E,, 1;) while creating a single
vibrational excitation in the jth mode, and then goes back
to the bright exciton states |Ej, 1;, 1) while creating an
additional vibrational excitation in the kth mode. As the
single-phonon transitions result in optically dark states
|E;, 1;), the multiphonon transitions can dominate 2D line
shape when the system has enough time to evolve from the
initial vibrational ground state |E,,0) to the final doubly
excited vibrational states |E, 1 js 1), as is the case of
the long waiting time #, = 500 fs considered here. These
results could be most relevant in the interpretation of
optical responses of charge-separating systems, such as
reaction centers in photosynthetic systems [68,69] and
organic solar cells [71], where light-absorbing bright
excitons relax to optically dark charge-transfer states where
electrons and holes are spatially separated while creating
vibrational excitations.

Performance.—In order to allow for a comparison with
the results obtained by a standard TEDOPA implementa-
tion, we limited our investigation to waiting time
t, = 500 fs, resulting in an overall simulation time of up
to 2.5 ps. For such evolution times, converged TEDOPA
simulations required about N = 240 chain sites to avoid
any finite size effects, whereas with the MC only M 4 6 =
86 sites were needed for e = 1073 convergence of the chain
coefficients. This translates into a significant reduction of
the computational cost: the computation time is reduced
from ~190 min to ~#30 min (using 12 Intel Xeon Cascade
Lake cores) while the memory consumption is reduced
from =5 GB to =300 MB. Most importantly, the MC
allows for a quadratic speedup of TEDOPA simulations
for given simulated physical time. As a matter of fact, for
standard TEDOPA the length of the chain increases linearly
with the simulation time 7,,,,, resulting in a CPU time cost
O(f2,,), whereas for the MC this cost is reduced to
O(tnax)- For the same reason, the memory required by
TEDOPA simulations scales linearly with 7,,,, while the
MC the memory requirement is constant, as shown in
Figs. 3(e) and 3(f).

Conclusion and outlook.—Besides providing a clear
computational advantage when longtime evolution is con-
sidered, the MC preserves the possibility offered by
TEDOPA to treat the system and the (primary) environment
on the same footing. The information on the relevant
environmental degrees of freedom, the fingerprint, is

therefore fully available for inspection. In this sense, the
MC is complementary to standard TEDOPA and provides
us with a most powerful tool for the study of unitary
equilibration processes in fundamental systems such as the
single-impurity Anderson model [60,72-74] and in the
context of quantum thermodynamics [75,76]. Moreover,
we expect the MC to be able to significantly reduce the
computational overhead in situations characterized by
long-range correlations between different environments,
as in 1D transport models [25,77], and electron scattering
problems where the populations of the electron wave
packets propagating through semi-infinite electrodes after
scattering events are evaluated [78]. The definition of the
environmental fingerprint can also be exploited in other
simulation techniques, such as HEOM, to simplify the
fitting procedure [66,76]. In future work we will exploit the
MC for the determination of higher order multiphonon
transitions and the computation of the nonlinear spectral
response of aggregates of biological relevance as well as for
the study of energy and charge transfer in general many
body systems and specifically light harvesting aggregates
of both natural and artificial nature.
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support by the state of Baden-Wiirttemberg through bwHPC
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