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We derive a universal, exact asymptotic form of the splitting probability for symmetric continuous
jump processes, which quantifies the probability π0;xðx0Þ that the process crosses x before 0 starting
from a given position x0 ∈ ½0; x� in the regime x0 ≪ x. This analysis provides in particular a fully
explicit determination of the transmission probability (x0 ¼ 0), in striking contrast with the trivial
prediction π0;xð0Þ ¼ 0 obtained by taking the continuous limit of the process, which reveals the

importance of the microscopic properties of the dynamics. These results are illustrated with paradigmatic
models of jump processes with applications to light scattering in heterogeneous media in realistic 3D
slab geometries. In this context, our explicit predictions of the transmission probability, which can be
directly measured experimentally, provide a quantitative characterization of the effective random process
describing light scattering in the medium.

DOI: 10.1103/PhysRevLett.129.140603

The splitting probability quantifies the likelihood of a
specific outcome out of several alternative possibilities for a
random process [1–4]. While these quantities can be
defined for general d-dimensional stochastic processes
and any number of possible outcomes [5,6], most examples
of applications concern one-dimensional processes with
two outcomes; one then defines π0;xðx0Þ as the probability
that the process crosses x [underlined subscript in π0;xðx0Þ]
before 0 starting from x0. A celebrated example is given by
the Gambler’s ruin problem [1], schematically quantified
by the splitting probability that a one-dimensional random
walker (figuring the gambler’s fortune) reaches 0 (complete
ruin) before a fixed given threshold; other examples are
given by the fixation probability of a mutant in the context
of population dynamics [7], or the melting probability of a
heteropolymer [8], which can be reexpressed in terms of
splitting probabilities. A key example, to which we will
refer through this Letter, is given by the transmission
probability of particles (e.g., photons or neutrons) through
a slab of a scattering medium, which has important
applications in various fields [9–13]; in this case the
transmission probability is nothing but the splitting prob-
ability for the particle to reach the exit side rather than
being backscattered (see Fig. 1).
There is to date no explicit determination of the

splitting probability for general jump processes
[2,14,15]. Jump processes are defined as follows for
d ¼ 1: at each discrete time step n, the walker performs
a jump of extension l ∈ R drawn according to a
distribution fðlÞ whose Fourier transform will be denoted
f̃ðkÞ ¼ R∞

−∞ eiklfðlÞdl. For jump processes, the splitting

probability [16] is known to satisfy the following integral
backward equation [2]:

π0;xðx0Þ ¼
Z

∞

x−x0
dx0 fðx0Þ þ

Z
x−x0

−x0
dx0 π0;xðx0 þ x0Þfðx0Þ;

ð1Þ

which results from a partition over the first jump. Note
that this equation for the splitting probability, because it
does not involve time, also holds for continuous time
extensions of jump processes, for which each jump takes
an arbitrary time tðlÞ; in particular the splitting proba-
bility of jump processes also applies to processes with
constant speed v [tðlÞ ¼ l=v]. Even if Eq. (1) is linear,
there is to date no available solution with the exception of
the exponential distribution fðlÞ ¼ e−jlj=γ=ð2γÞ; the main

(a) (b)

FIG. 1. (a) The one-dimensional jump process evolves in the
bounded interval ½0; x�. One is interested in the probability
π0;xðx0Þ of crossing x before 0 starting from x0, as shown in
the diagram. (b) The jump process is now evolving in a three-
dimensional space and is bound to stay between two hyperplanes
H1 and H2 distant of x. We now want to evaluate the probability
of crossing H2 before H1, starting from x0.
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difficulty lies in the finite integration range, which
prevents the use of classical integral transforms [17].
An important simplification of the problem is achieved

by taking a continuous limit (see definition below). For
symmetric jump processes, considered in what follows, the
small k expansion of f̃ðkÞ reads

f̃ðkÞ ¼
k→0

1 − ðaμjkjÞμ þ oðkμÞ; ð2Þ

where aμ defines the microscopic characteristic length scale
of the process. Two limit behaviors emerge [18,19]. For
μ ¼ 2 the variance of the jump distribution is finite and the
process is known to converge at large times to Brownian
motion; for 0 < μ < 2, the process converges instead to an
α-stable Levy process of parameter μ. Hence, there are three
independent length scales in the problem: x0, x, and aμ,
which can lead to two distinct asymptotic regimes. Taking
aμ ≪ x0 < x defines the continuous limit of the problem
(1) (we recall that time is irrelevant to determine the
splitting probability), whose solution can be obtained
and reads [20–22]:

π0;xðx0Þ ¼
ΓðμÞ
Γ2ðμ

2
Þ
Z

x0=x

0

½uð1 − uÞ�μ=2−1du: ð3Þ

The regime x0 ≪ x is of particular interest and has received
marked attention [22]. One obtains from (3) that this regime
is given by [23]:

π0;xðx0Þ ∼
aμ≪x0≪x

2ΓðμÞ
μΓ2ðμ

2
Þ
�
x0
x

�
μ=2

: ð4Þ

As explained above, a key application of splitting proba-
bilities is the determination of the transmission probabi-
lity of particles through a slab, that can be defined as
π0;xðx0 ¼ 0Þ. The blunt use of the continuous limit (4)
yields π0;xðx0 ¼ 0Þ ¼ 0, in clear contradiction with the
expected result for a jump process with finite microscopic
length scale aμ, for which π0;xðx0¼0Þ>R

∞
x dx0fðx0Þ>0.

The determination of the transmission probability thus
requires one to consider the second, distinct regime
x0 ≪ aμ and to go beyond the continuous limit (4); this
is the main purpose of this Letter.
Jump processes with finite microscopic length scale aμ

have proved to be relevant in various contexts [24]. They
provide emblematic models of transport of photons or
neutrons in scattering media [9]. More recently, they have
gained renewed interest in the context of self-propelled
particles, be they artificial or living, such as active colloids,
cells, or larger scale animals [14,25–28]. In what follows,
we derive a universal form for the splitting probability for
continuous jump processes of finite length scale aμ in the
regime x0 ≪ aμ ≪ x, which provides in particular an
explicit determination of the transmission probability

(x0 ¼ 0), and reveals the importance of the microscopic
properties of the process. These results are illustrated with
paradigmatic models of jump processes with applications
to light scattering in heterogeneous media.
General results.—We first derive an asymptotic expres-

sion of the splitting probability π0;xðx0Þ for general 1D
continuous [29] symmetric jump processes of characteristic
microscopic length scale aμ as defined above in the limit
x → ∞. Denoting F0;xðnjx0Þ the probability that the
process starting from x0 ∈ ½0; x� crosses 0 before x > 0
for the first time after exactly n steps, and making a
partition over the crossing time yields

1 − π0;xðx0Þ≡ π0;xðx0Þ ¼
X∞
n¼1

F0;xðnjx0Þ: ð5Þ

This exact equation expresses the splitting probability in
terms of two targets first-passage time distributions
F0;xðnjx0Þ, for which no explicit solutions are available
for general jump processes. Adapting the approach intro-
duced for scale invariant processes in 1D [22] and then
extended to d-dimensional compact cases [30], we next
show that in the asymptotic limit x → ∞, the splitting
probability of jump processes can in fact be re-expressed in
terms of one target first-passage time distributions. We first
note that in (5) the right hand side involves trajectories that
cross 0 before x; most of these events thus occur within the
typical number of steps ntyp needed to cross x. In the regime
x ≫ aμ; x0, we argue that ntyp is simply the timescale to
cover a distance x [18] and thus satisfies ntyp ∼ αxμ where α
is a process dependent constant (independent of x0). We
next remark that for timescales n < ntyp, the target at x is
irrelevant so that F0;xðnjx0Þ ≃ F0;∞ðnjx0Þ, which leads to

π0;xðx0Þ ∼
Xntyp
n¼1

F0;∞ðnjx0Þ≡ 1 − qðx0; ntypÞ; ð6Þ

where qðx0; nÞ ¼
P∞

k¼nþ1 F0;∞ðkjx0Þ is the survival prob-
ability, i.e., the probability that the process never crosses 0
during its n first steps, and F0;∞ðkjx0Þ is the probability of
crossing 0 on the kth step exactly. We next make use of the
asymptotic behavior of qðx0; nÞ obtained in [31], which
yields for 1 ≪ ðx0=aμÞμ ≪ n:

qðx0; nÞ ∼
1ffiffiffi
n

p a−μ=2μffiffiffi
π

p
Γð1þ μ

2
Þ x

μ=2
0 : ð7Þ

Combining (4) and (7) finally yields the coefficient α ∼
ntyp=xμ defined above, and thus the following determina-
tion of ntyp, valid for any x0 ≪ x:

ntyp ∼
�
2μ−1Γ

�
1þ μ

2

��
−2
�
x
aμ

�
μ

: ð8Þ
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In order to determine the dependence on x0 of the splitting
probability, we use next the large n behavior of the survival
probability given by [31]:

qðx0; nÞ ∼
n→∞

1ffiffiffi
n

p
�
1ffiffiffi
π

p þ Vðx0Þ
�
; ð9Þ

where Vðx0Þ is defined by its Laplace transform:

LVðλÞ ¼
Z

∞

0

Vðx0Þe−λx0dx0

¼ 1

λ
ffiffiffi
π

p
�
exp

�
−
λ

π

Z
∞

0

dk
λ2 þ k2

ln½1 − f̃ðkÞ�
�
− 1

�
;

ð10Þ

and f̃ðkÞ is the Fourier transformed jump distribution
defined above.
Using Eq. (6) and the above given asymptotic behavior

of ntyp (8), we finally obtain the following general explicit
asymptotic determination of the splitting probability of
jump processes:

lim
x→∞

�
π0;xðx0Þ
AμðxÞ

�
¼ 1ffiffiffi

π
p þ Vðx0Þ; ð11Þ

where

AμðxÞ ¼
�
aμ
x

�
μ=2

2μ−1Γ
�
1þ μ

2

�
: ð12Þ

This holds for any fixed x0, including the regime x0 ≲ aμ
that we intended to determine. This result thus elucidates
the dependence of the splitting probability on x (in the
regime x ≫ x0; aμ), and, up to Laplace inversion, on x0. In
particular, the asymptotic behavior for x0 ≪ aμ can be
derived explicitly and yields

Vðx0Þ ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

−
h
π−

3
2

R∞
0 dk log½1 − f̃ðkÞ�

i
x0 þ oðx0Þ

if f̃ðkÞ ¼
k→∞

oðk−1Þ
β

2
ffiffi
π

p
Γð1þνÞ cosðπν=2Þ x

ν
0 þ oðxν0Þ

if f̃ðkÞ ∼
k→∞

βk−ν with ν < 1

− β
π3=2

x0 lnðx0Þ þ o½x0 lnðx0Þ�
if f̃ðkÞ ∼

k→∞
βk−1:

ð13Þ

Of note, the linear dependence of the auxiliary function
Vðx0Þ on x0 obtained for f̃ðkÞ ¼

k→∞
oðk−1Þ in (13) was given

in [31]. Interestingly, we find that the scaling of the splitting
probability with x0 ≪ aμ is not universal and can be
sublinear depending solely on the small scale behavior

of the jump distribution fðlÞ; in particular it is independent
of the large scale behavior of fðlÞ, and thus of μ.
Remarkably, although Vðx0Þ and thus π0;xðx0Þ [see

Eq. (11)] generically depend on the jump process through
the full jump distribution fðlÞ, the asymptotic transmission
probability π0;xð0Þ in fact depends on the jump distribution
only through μ and aμ and takes the simple, explicit form

π0;xð0Þ ∼
x→∞

2μ−1ffiffiffi
π

p Γ
�
1þ μ

2

��
aμ
x

�
μ=2

: ð14Þ

Even though the above derivation involves the asymptotics
(6) that we motivate physically but do not prove rigorously,
we claim that our main results (11) and (14) are exact;
below we confirm these results either analytically or
numerically on representative examples of jump processes.
Jump processes with finite second moment.—We start by

considering continuous jump processes with a finite second
moment, corresponding to the case μ ¼ 2 in (2), which we
illustrate by the class of gamma jump processes of order
n > −1, whose jump distributions read

fðlÞ ¼ 1

2γnþ1Γðnþ 1Þ jlj
ne−jlj=γ; ð15Þ

so that a2 ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þðnþ 2Þ=2p

. For n ¼ 0, this corre-
sponds to the classical exponential jump distribution
fðlÞ ¼ e−jlj=γ=ð2γÞ, for which, as mentioned above, the
splitting probability is known exactly for all values of
parameters [2], and satisfies in the regime x0; a2 ≪ x:

π0;xðx0Þ ∼
x→∞

γ

x

�
1þ x0

γ

�
: ð16Þ

Calculating Vðx0Þ from (10), one verifies explicitly the
agreement of this exact result with (11). Note that in this
example f̃ðkÞ ¼

k→∞
oðk−1Þ, so that one verifies in the x0 ≪ a2

regime the linear dependence on x0 predicted by (13) [with
the correct prefactor, see SupplementalMaterial (SM) [32] ].
For n ¼ 1, one obtains the so-called gamma jump

process defined by the jump distribution fðlÞ ¼
ð1=2γ2Þjlje−jlj=γ. To the best of our knowledge the splitting
probability for this jump process is not known; it can be
obtained explicitly for all values of parameters as we
proceed to show. Denoting D the differential operator
and applying the operator ðD2 − γ−2Þ2 to the variable x0
in Eq. (1) yields the following ordinary differential equa-
tion (see SM [32]):

D4π0;xðx0Þ −
3

γ2
D2π0;xðx0Þ ¼ 0: ð17Þ

The splitting probability is then obtained as

π0;xðx0Þ ¼ Ae−ð
ffiffi
3

p
=γx0Þ þ Beþð ffiffi

3
p

=γx0Þ þ Cx0 þ E; ð18Þ
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where A, B, C, and E are determined by using (1). This
provides finally an explicit, exact determination of the
splitting probability (see SM [32] for explicit expressions)
for all values of the parameters for the gamma jump
process. Calculating Vðx0Þ from (10), one verifies explic-
itly the agreement of this exact result for all x0 ≪ x with
(11) (see SM [32]). In particular, in the x0 ≪ a2 ≪ x
regime, the splitting probability satisfies

π0;xðx0Þ ∼
x→∞

1

x
½

ffiffiffi
3

p
γ þ ð2

ffiffiffi
3

p
− 3Þx0 þ oðx0Þ�: ð19Þ

This linear scaling with x0 is in agreement with Eq. (13)
(with the correct prefactor), as expected since
f̃ðkÞ ¼

k→∞
oðk−1Þ.

Finally, these two examples for n ¼ 0, 1 provide
analytical validations supporting the exactness of our
results (11) and (14). Additionally, we show in SM [32]
that the asymptotic splitting probability for higher or lower
order gamma jump processes can be derived explicitly, and
is confirmed by numerical simulations for n ¼ 2 and n ¼
−1=2 in Fig. 2.
Levy flights.—For jump processes with infinite second

moment, i.e., μ < 2 in (2)—called Levy flights
[18,19,35,36], no exact results for the splitting probability
are available for generic aμ, x0. We thus resort to numerical
simulations to validate predictions (11) to (14) (see Fig. 3).
First, the prediction (14) of the transmission probability is
confirmed and in particular fully captures the dependence
on x (including the prefactor) that is controlled by the large
scale behavior of fðlÞ, parametrized by μ and aμ only. In
turn, (11) captures the dependence on x0, which can lead to
different scalings depending on the l → 0 behavior of the
jump distribution fðlÞ. The linear dependence on x0 is
illustrated by the α-stable jump distribution of parameter μ
defined by f̃ðkÞ ¼ e−ðaμjkjÞμ, which verifies f̃ðkÞ ¼

k→∞
oðk−1Þ;

an example of sublinear scaling with x0 is provided by the

jump distribution fðlÞ ∝ ½1= ffiffiffiffiffiffijljp ð1þ jljÞ�, which corre-
sponds to ν ¼ 1=2 in (13) and has an infinite second
moment (μ ¼ 1=2). Our results are thus also validated in
the case of jump processes with infinite second moment.
Application to effective 1D problems.—In this section we

show how our formalism applies to higher dimensional
jump processes evolving between two parallel hyperplanes
H1 and H2; coming back to our initial example of the
transmission of particles (e.g., photons or neutrons) through
a slab of a scattering medium, the case d ¼ 3 is of particular
interest. The trajectory is then naturally described as a 3D
jump process, where at each step, the direction of the jump
is drawn uniformly on the unit sphere and its length r is
drawn according to a distribution pðrÞ; typically experi-
ments show that exponential or Levy distributions pðrÞ are
observed, and provide as readout the transmission proba-
bility through the exit plane H2 rather than H1. Even if the
problem is three dimensional, the determination of the
transmission probability amounts to solving for the split-
ting probability of a one-dimensional problem, with the
effective jump distribution fðlÞ ¼ 1

2

R∞
jlj½pðrÞ=r�dr [28].

The above formalism is thus directly applicable and
provides explicit determinations of the asymptotic splitting
probability and in particular of the transmission probability
(see SM [32]). In the case of an exponential jump
distribution pðrÞ ¼ ð1=γÞe−r=γ, relevant to classical diffu-
sive media [9], we obtain fðlÞ ¼ ð1=2γÞΓ½0; ðjlj=γÞ�,
where Γðx; yÞ stands for the incomplete gamma function,
yielding f̃ðkÞ ¼ ½arctanðkγÞ=kγ� after Fourier transform.
Equation (11) then provides—up to Laplace inversion—the
asymptotic expression (for x → ∞) of the splitting prob-
ability for any x0. In particular (11) and (13) yield for
x0 ≪ a2 ≡ γ=

ffiffiffi
3

p
:

π0;xðx0Þ ∼
x→∞

1ffiffiffi
3

p
x

�
γ −

x0 lnðx0Þ
2

þ o½x0 lnðx0Þ�
�
: ð20Þ

(a) (b)

FIG. 2. (a) Transmission probability for examples of gamma
jump processes. After rescaling according to (14), the trans-
mission probabilities collapse. (b) Small x0 behavior of the
splitting probability with x fixed to 103, as predicted by (11)
and (13): for n ¼ −1=2, one has ν ¼ 1=2 and a sublinear
dependence on x0, while for n ¼ 2, one has a linear dependence
on x0. Theoretical predictions (dashed lines) are obtained by
numerical inverse Laplace transform of (10), while simulations
(squares) are averaged over 106 trials.

(a) (b)

FIG. 3. (a) Transmission probability for a jump process with
distribution fðlÞ ¼ ½2π ffiffiffiffiffiffijljp ð1þ lÞ�−1 (denoted F process),
yielding μ ¼ 1=2 and ν ¼ 1=2 and a Levy flight with μ ¼ 1
and aμ ¼ 2. The transmission probabilities (including prefactors)
are accurately predicted. (b) Small x0 behavior of the splitting
probability. For the F process, x is fixed to 104 and the behavior is
sublinear. For the Levy flight, x is fixed to 2 × 105 and one finds a
linear behavior. Theoretical predictions (dashed lines) are ob-
tained by numerical inverse Laplace transform of (10), while
simulations (squares) are averaged over 106 trials.
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In the case of α-stable jump distributions, which have been
shown recently to be relevant to photon scattering in hot
atomic vapors [12,13], we obtain f̃ðkÞ ¼ f½Γðμ−1Þ −
Γðμ−1; ðaμkÞμÞ�=aμμkg (see SM [32]). As above, this
provides the asymptotic expression (for x → ∞) of the
splitting probability for any x0 thanks to (11), and making
use of (13) one obtains for x0 ≪ aμ:

π0;xðx0Þ ∼
x→∞

Γð1þμ
2
Þ2μ−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ μÞp

�
aμ
x

�
μ=2

×

�
1ffiffiffi
π

p −
Γðμ−1Þ
aμμπ3=2

x0 lnðx0Þ½1þ oð1Þ�
�
: ð21Þ

Agreement with simulations in both cases is displayed
in Fig. 4.
Conclusion.—We have derived a universal exact asymp-

totic form for the splitting probability for continuous
symmetric jump processes characterized by a finite length
scale aμ, which have proved to be relevant in various
contexts, such as transport of photons or neutrons in
scattering media. This analysis covers the regime x0 ≪
aμ ≪ x and provides in particular a fully explicit determi-
nation of the transmission probability (x0 ¼ 0), in striking
contrast with the trivial prediction π0;xðx0Þ ¼ 0 obtained by
taking the continuous limit of the process. This reveals the
importance of the microscopic properties of the dynamics.
Our approach is general and can be further extended to
cover examples of biased (asymmetric) jump processes, as
discussed in SM [32].
These results are illustrated with paradigmatic models of

jump processes with applications to light scattering in
heterogeneous media in realistic 3D slab geometries. In this
context, our explicit asymptotic predictions of the trans-
mission probability (21), which can be directly measured
experimentally, provides in principle a quantitative deter-
mination of not only the Levy exponent μ, as already

proposed and measured in [12,13], but also of the micro-
scopic length scale aμ. This significantly refines the
characterization of the effective random process describing
light scattering in the medium.
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