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Chiral edge states are highly sought after as paradigmatic topological states relevant to both quantum
information processing and dissipationless electron transport. Using superconducting transmon-based
quantum computers, we demonstrate chiral topological propagation that is induced by suitably designed
interactions, instead of flux or spin-orbit coupling. Also different from conventional 2D realizations, our
effective Chern lattice is implemented on a much smaller equivalent 1D spin chain, with sequences of
entangling gates encapsulating the required time-reversal breaking. By taking advantage of the quantum
nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in
present-day noisy intermediate-scale quantum era quantum computers, paving the way for the quantum
simulation of more sophisticated topological states on very rapidly developing quantum hardware.
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Introduction.—The discovery of the integer quantum
Hall effect in 2D electron gases revolutionized condensed-
matter physics [1,2]. To circumvent the requirement of a
strong external magnetic field, tight-binding lattices with
intrinsic time-reversal symmetry (TRS) breaking have been
devised, inspired by Haldane’s seminal Chern insulator [3].
Such lattice-based chiral topological phenomenon is known
as the “quantum anomalous Hall effect” and has been
demonstrated in ferromagnetic topological insulators [4–7],
magic-angle twisted bilayer graphene [8–11], and moiré
heterostructures [12–14]. Such is their academic and
potential technological impact that topological boundary
states have also been realized in photonic platforms
[15–23] and polariton [24–27], mechanical gyrotopic
[28–30], and acoustic [19,31–35] systems, as well as
topolectrical circuits [36–53].
In the above, the broken TRS required for chiral

topological propagation has been introduced through
magnetic dopants, orbital magnetism, or nonreciprocal
media. Tantalizing alternative routes, however, exist when
the chiral lattice is physically implemented on universal
quantum simulators, as in quantum circuits and quantum
computers [54–60]. In particular, such fully quantum
platforms have the innate propensity to realize the non-
trivial TRS-breaking topology via novel many-body effects
and interactions. In this Letter, we hence demonstrate how
chiral topological dynamics can be induced through engi-
neered interactions, rather than conventional single-body
mechanisms such as spin-orbit coupling.
As intrinsically quantum platforms, quantum computers

are, in principle, able to realize any quantum phenomenon,
including strong interaction effects beyond the reach of

classical topological metamaterials. Even in the current
noisy intermediate-scale quantum (NISQ) era, digital
quantum computers have shown incredible promise
[61–65] due to their versatility, complementing alternative
experimental platforms such as ultracold polar molecules
[66,67] and Rydberg atoms [68–70]. Programmable with
universal quantum gate sets that can simulate generic
unitaries, quantum computers are ideally poised as plat-
forms for observing various condensed-matter and topo-
logical phenomena, particularly those that require esoteric
or many-body coupling configurations. Existing bottle-
necks, such as low gate fidelity, decoherence, limited qubit
connectivity, and limited number of qubits [71], may be
significantly alleviated by error mitigation and circuit
optimization techniques [72–76].
To date, simulating two-dimensional systems such as

Chern lattices has been inherently challenging given the
aforementioned hardware constraints. Physical simulations
on digital quantum computers have largely been restricted
to 1D spin or fermionic chains and small 2D systems
[77–83]. Indeed, due to the numerous lattice sites (≳102)
necessary for cleanly observing chiral mode propagation,
these paradigmatic topological states have been missing
from quantum computer demonstrations.
In this Letter, we propagate a chiral topological mode on

a quantum computer, demonstrating a versatile quantum
simulation setup that complements existing experimental
realizations of Chern topology. By designing logical two-
body interactions, the Chern lattice is mapped exactly onto
a 1D chain with two interacting excitations [84], which is
well within the capabilities of NISQ quantum computers.
Our remapping relied on the fact that Chern topological
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states are fundamentally single-body phenomena and can
thus be “compressed” into a smaller physical system
already hosting an exponentially large quantum many-
body Hilbert space. We employed IBM transmon-based
superconducting quantum computers, which have been
utilized in various applications [88,89], including quantum
chemistry [90,91] and spin lattice problems [79,92].
Compared to existing quantum computer simulations of
other topological systems [55–57], ours is performed in
physical, not synthetic, space with a significantly more
complex Hamiltonian, allowing for the observation of
topological boundary chiral dynamics in an intrinsically
2D setting.
Chern lattice as an interacting model.—A Chern lattice

is a system with an integer C number of robust chiral
boundary modes, where C is the Chern topological invari-
ant [93]. This invariant is defined as the index of the
mapping T2 → Γ, where Γ is the state space where
eigenstates live. For two-band models, Γ takes the familiar
form of the Bloch sphere, and C measures how many times
the torus T2 wraps around the sphere.
Although the torus is commonly taken to represent 2D

lattice momentum space, it can also refer to the joint
configuration momentum space of two particles, whose
interactions correspond to effective hoppings that shape the
mapping T2 → Γ. This alternative representation takes
advantage of the much larger many-body Hilbert space
intrinsically accessible on a quantum computer: unlike in
classical systems, just N qubits can index up to 2N possible
configurations, thereby easily accommodating the OðN2Þ-
dimensional basis of T2. As such, by rewriting certain
hoppings in terms of interaction terms, we can achieve
drasticallymore compact simulations of higher-dimensional
lattices. Such a mapping makes Chern boundary modes,
which usually require Oð102Þ lattice sites [94] to properly
resolve, readily observable on current-generation quantum
computers with Oð101Þ high-quality interconnected qubits.
In addition to allowing for the compact simulation of

physical lattices, a digital quantum computer realization is
greatly versatile in accommodating couplings of differing
ranges and types. For concreteness, we discuss in the
context of the topological Hamiltonian that we imple-
mented; but this versatility applies to lattice Hamiltonians
in general. We used a modified version of the checkerboard
lattice model well known for flat band properties and
strongly correlated states [95–97], H ¼ P

k HðkÞc†kck,
where HðkÞ ¼ dðkÞ · σ ¼
�

−4v2 sin k− sin kþ 2v1ðcos k− þ cos kþe2iϕÞ
2v1ðcos k− þ cos kþe−2iϕÞ 4v2 sin k− sin kþ

�
;

ð1Þ
for k� ¼ k1 � k2 written in its original 2D momentum
space. Above, dðkÞ denotes the Bloch vector (see Sec. S1
of Supplemental Material [98]) and σ are Pauli matrices.

The lattice-space representation of our Hamiltonian,
obtained by a Fourier transform of Eq. (1), is exactly
depicted in Fig. 1(a), consisting of two square lattices
interlocked in a checkerboard fashion. This lattice contains
intersublattice couplings v1 in the directions Δr ¼ ð1;�1Þ
and ð−1;�1Þ. Vertical and horizontal v2 hoppings take
alternate signs in adjacent checkers [Fig. 1(a)]. Importantly,
the requisite TRS breaking for Chern topology enters
through the alternating phase factors e�2iϕ along the
diagonal Δr ∝ ð1; 1Þ, in the couplings between the
upper-lower and lower-upper sublattices. While realizing
these phase factors can be challenging in conventional
topological media [35,121–125], they are readily achiev-
able on a digital quantum computer.
As the next step, we rewrite these hoppings via

c†x1;x2 → μ†x1ν
†
x2 , where μ† and ν† create hard-core bosons

of two different species in 1D, such that the (1þ 1)-body
sector of this new system H1D corresponds to the original
2D Hamiltonian H with

(a)

(d)

(b)

(c)

FIG. 1. Chiral topological propagation from interactions.
(a) Chern topology arises from a checkerboard lattice with
nonreciprocal couplings carrying effective flux (thick and thin
orange arrows). Implemented as a 1D interacting chain, vertical,
horizontal, and diagonal couplings become single-boson (red,
blue) and two-boson hoppings (pink, orange), respectively. An
on-site repulsive interaction is imposed to yield a virtual boundary
along the lattice diagonal, along which chiral propagation occurs
in the form of oppositely moving two-particle wave packets (black
arrows). (b) The Berry curvature F and (c) its corresponding
dðkÞ-vector skyrmionic texture of our model for v1 ¼ v2 ¼ 1 and
ϕ ¼ π=6. The total number of chiral edge modes is the Chern
number

R
Fd2k=2π ¼ 2. (d) The Wannier polarization represent-

ing the center-of-mass translation of a maximally localized wave
packet as we thread a flux kþ → kþ þ Ay. It is pumped C ¼ 2

upon a complete cycle and moves with almost perfect uniformity
for most values of the ratios v2=v1.
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H1D ¼ v1
X

x1;x2 even

ðμ†x1þ1e
2iϕ þ μ†x1−1Þν†x2þ1μx1νx2

þ v1
X

x1;x2 odd

ðμ†x1þ1e
−2iϕ þ μ†x1−1Þν

†
x2þ1μx1νx2

þ v2
X
x

ð−1Þxðμ†xþ2μx − ν†xþ2νxÞ þ H:c: ð2Þ

In this formulation, the v2 hoppings, which were originally
vertical or horizontal, remain single-body, albeit over next
nearest neighbors. However, the diagonal v1 hoppings
become simultaneous two-body hopping interactions, some
containing phase rotations e�2iϕ. Further, the impenetra-
bility of the hard-core μ, ν bosons (see Sec. S1 of
Supplemental Material [98]) enforces a virtual boundary
that prohibits double-site occupancy along x1 ¼ x2, i.e., the
diagonal line perpendicular to k−. The interference of the
phase rotations collude to give rise to chiral topological
transport along this boundary. This is apparent upon
referring to the polarization

PðpþÞ ¼
1

4π

Z
pþ

−π

Z
π

−π
F ðkþ; k−Þdk−dkþ; ð3Þ

which changes by C ¼ 2 sites upon a complete cycle of
flux threading [Fig. 1(d)], implying nontrivial topological
pumping. Here, F ¼ −ih∂x1ψ j∂x2ψi þ H:c: is the Berry
curvature [126], computed from the Jacobian determinant
of the dðkÞ mapping [Figs. 1(c) and 1(d)]. Physically, P
reflects the spectral flow propagation of Wannier centers
[127–130] upon flux threading and, for this model, can be
optimized to be as uniform as possible to facilitate uniform
chiral boundary propagation (see Sec. S1 of Supplemental
Material [98]). In terms of the μ, ν bosons, this pumping is
manifested as the motion of correlated particle pairs
occupying adjacent sites, which is robustly protected by
the flux asymmetry caused by the dissimilar effects of the
phases ϕ on the left and the right of each boson. Along the
virtual boundary, where the two bosons are next to each
other, this asymmetry leads to a correlated pumping of their
center of mass, i.e., chiral propagation.
Realization on a quantum computer.—To simulate chiral

propagation, we implement H1D on IBM transmon-based
quantum computers [131–133]. The quantum nature of this
platform allows many-body systems to be directly simu-
lated; in the present context ofH1D, we represent each unit
cell of the Chern lattice model with 2 qubits, for a total of
16 qubits representing an L ¼ 8 lattice. This is a consid-
erable reduction from the 82 ¼ 64 qubits otherwise needed,
without the dimensional reduction into a 1D system. We
use 27-qubit quantum devices in our simulation runs (see
Sec. S2 of Supplemental Material [98]).
We map the fj00i; j01i; j10ig computational basis states

of each pair of qubits to unoccupied, occupied by a μ
boson, and occupied by a ν boson states of the model. The
hard-core bosonic constraint is enforced by an appropriate

representation of μ, ν operators satisfying the canonical
mixed-commutation relations. An initial state jψ0i evolves
over time as jψðtÞi ¼ UðtÞjψ0i, with propagator UðtÞ ¼
e−iH1Dt. To study state dynamics on the quantum computer,
it is necessary to implement UðtÞ as a quantum circuit; a
standard method is to decompose H1D ¼ P

γ Aγσ
γ in the

spin-1=2 basis, for generically noncommuting Pauli strings
σγ and Aγ ∈ R, and employ Trotterization [134,135]. In the
first-order scheme, we split e−iH1Dt ¼ ðe−iH1DΔtÞn into n
steps, each of which is approximated as

Q
γ e

−iAγσ
γΔt. Here,

it is convenient to separate H1D ¼ h1 þ h2, such that h1
contains the single-boson hoppings, and h2 contains the
two-boson interactions. Then the Trotterized circuit can be
constructed from unitaries u1 and u2, respectively, imple-
menting evolution by h1 and h2, as shown in Fig. 2(b). See
Sec. S2 of Supplemental Material [98] for further details.
Although the physical couplings between the hardware

qubits are only between nearest neighbors, long-ranged
entangling gates corresponding to distant couplings in u1
and u2 can be effected with the application of SWAP gates.

(a)

(b)

(c) (d)

FIG. 2. Quantum circuit implementation schematics. (a) Sche-
matic of quantum circuit for time evolving an initial state jψ0i
according to our Hamiltonian H1D, with readout error mitigation
(RO) and postselection (PS) applied on the final measurements.
(b) In-principle first-order Trotterization of the e−iH1Dt propagator
and the breakdown of a Trotter step in terms of unitaries u1 and
u2, as further elaborated in Sec. S2 of Supplemental Material
[98]. Pairs of qubits (drawn as double lines) represent each site of
the logical Chern lattice. (c) Circuit ansatz for recompilation,
comprising layers of entangling CXs and single-qubit rotations,
stacked in brickwork pattern. (d) Non-nearest-neighbor CX gates
can be implemented using SWAPs, which themselves decompose
into nearest-neighbor CXs.
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For instance, at the basic level, non-nearest-neighbor CX
gates can be effected by chaining CXs on adjacent qubits
[Fig. 2(d)]. The single-particle hoppings and two-particle
quartic interactions are treated on equal footing in the
quantum circuit implementation, and the simulation is
digital in nature, compared to the aforementioned analog
classical platforms [15–17,19,28–39,45,136,137].
We note, however, that in this form, the Trotterized

circuits for H1D are infeasibly deep for current NISQ-era
devices. Present benchmarks indicateOð102Þ CX layers are
achievable with state-of-the-art techniques and hardware,
likely yet smaller for quantitatively accurate simulations; the
numerous Trotter steps required for acceptable truncation
error easily exceeds this limit. We thus employ an imple-
mentation strategy known as circuit recompilation [59,138–
140] to compress circuit depth. A circuit ansatz [Fig. 2(c)]
comprising layers of single-qubit rotations and CX entan-
gling gates, laid in a brickwork pattern, is iteratively
optimized through tensor network-aided quantum simula-
tion [141] to approach the intended unitary. Specifically, we
collect the rotation angles ϑ ¼ ðθ;ϕ; λÞ and numerically
treat the optimization problem argmaxϑjhψ0jV†

ϑUjψ0ij2 for
circuit unitary Vϑ. Additionally, we note H1D is number
conserving in both the μ and ν species and also conserves the
parity of x1 þ x2. As our focus is in states jψ0iwith definite
μ, ν-particle numbers and x1 þ x2 parity (corresponding to

the single-particle sector on the checkerboard lattice), we
need only perform calculations over the symmetry-restricted
sector, significantly alleviating costs. This sector-specific
recompilation technique hugely reduces circuit depth
(to ≤ 12 CX layers) and is critical in our realization of
the H1D model on present hardware. See Sec. S2 of
Supplemental Material [98] for technical details.
To suppress the effects of hardware noise, we employ

readout error mitigation [72–74], postselection [79,142],
and averaging across qubit chains and machines. In
particular, we run calibration circuits alongside each experi-
ment and approximately correct measurement bit-flip errors
via linear inversion; to feasibly accommodate 16 qubits, we
use an approximate tensored scheme [59]. Finally, results
that violate the μ, ν-particle number and x1 þ x2 parity
symmetries of H1D are nonphysical, enabling a postselec-
tion policy at no additional circuit depth or measure-
ment costs.
Measured results.—We directly measured interaction-

induced topological chiral propagation (Fig. 3) along a
diagonal virtual boundary x1 ¼ x2 in configuration space.
We simulate the time evolution of an initial state localized
at position ðx1; x2Þ ¼ ð2; 4Þ adjacent to the diagonal; an
analogous set of results for ðx1; x2Þ ¼ ð7; 5Þ on the opposite
side of the diagonal is given in Sec. S3 of Supplemental
Material [98]. In both, the site-resolved occupancy

(a)

ED
erawdraH

2

1

⟨
1
+

2
⟩

⟨
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−

2
⟩= 0

= 2.25

1

2

(b) (c)

FIG. 3. Demonstration of chiral topological propagation on a quantum computer. (a) Evolution of occupancy densities ρðx1; x2Þ ¼
hμ†x1μx1ν†x2νx2i as time progresses, with good agreement between exact diagonalization (top row) and hardware data (bottom row), for an
initial wave packet at ðx1; x2Þ ¼ ð2; 4Þ. We have normalized the peak of ρðx1; x2Þ for visual clarity. Hatch-shaded squares indicate the
x1 ¼ x2 virtual boundary. (b) 3D visualization of the same chiral propagation, which clearly reveals the peak translating parallel to the
x1 ¼ x2 virtual boundary. The sequence of snapshots of measured ρðx1; x2Þ at t ¼ 0, 0.75, 1.50, and 2.25 are superimposed (lightest to
darkest). (c) Left: monotonic evolution of the center of mass hx1 þ x2i, with localized peak positions (crosses) shifting together with the
density profile (blue) and centroid hx1 þ x2i ¼

P
x1;x2

ðx1 þ x2Þρðx1; x2Þ4 (dashed). Exact diagonalization (ED) results agree closely
with data from the quantum hardware. Right: the state remains close to the diagonal virtual boundary, as indicated by constant
hx1 − x2i ¼ 2 over time. Parameters are v1 ¼ v2 ¼ 1 and ϕ ¼ π=6.
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densities ρðx1; x2Þ measured on hardware very closely
match exact diagonalization results. The chiral nature of
the boundary-localized propagating modes are more
saliently presented in Figs. 3(b)–3(d), where unidirectional
propagation along the diagonal, in opposite directions for
the two initial states, is clearly observed, as indeed
expected. The unidirectionality of transport is apparent
from the movement of the wave packet peak, which closely
tracks hx1 þ x2i and monotonously increases; localization
along the virtual boundary is maintained throughout trans-
port, as verified by an almost constant hx1 − x2i.
While the presently studied model is interesting as it hosts

chiral modes under periodic boundary conditions without
physical edges, we demonstrate chiral propagation also
under more traditional open boundary conditions (see
Sec. S3 of Supplemental Material [98]). On such a lattice,
boundary-localized wave packets unidirectionally propa-
gate along the virtual boundary of the diagonal, bend at the
corner and travel along the physical edges, and loop back
onto the diagonal. In both cases, we successfully demon-
strate quantum anomalous Hall-type topological transport
on a fully programmable quantum platform, despite the
inherent limitations of current-day NISQ-era devices.
Discussion.—In this Letter, we successfully demon-

strated chiral propagating modes on a quantum computer.
While observing such Chern propagation typically requires
implementing 2D quantum anomalous Hall lattices, we
instead employed a checkerboard model that maps into a
1D interacting chain with Pauli-like repulsive interactions.
Through a combination of remapping the lattice to a spin
chain and the use of appropriately designed many-body
interactions [44,143], we were able to circumvent circuit
breadth limitations on present-day NISQ-era quantum
computers.
Indeed, quantum computers provide a versatile platform

for investigating new condensed-matter phenomena, includ-
ing those involving long-ranged or exotic many-body
couplings. With a Hilbert space that harbors exponentially
many degrees of freedom, they can accommodate various
phenomena such as many-body scars, quantum phase
transitions, and time crystals, even when the requisite
interactions are challenging to realize on other platforms.
While the full advantage of digital quantum simulation can
only be realized with quantum error correction and fault-
tolerant quantum computing, recent progress, including the
present study, demonstrate already encouraging capabilities
on rapidly advancing NISQ-era hardware. As a final remark,
we point out that, while we have focused on the quantum
simulation of a 2D Chern insulator, our mapping method is
general to arbitrary d-dimensional, n-band one-body sys-
tems (see Sec. S1 of Supplemental Material [98]) and is
readily applicable to study more sophisticated topological
phenomena [77,78,144–151].

J. M. K. and T. T. thank Wei En Ng and Yong Han Phee
of the National University of Singapore for discussions

on the quantum simulation implementation. This work is
supported by the Singapore National Research Foundation
Grant No. NRF2021-QEP2-02-P09. The authors acknowl-
edge the use of IBM Quantum services for this work. The
views expressed are those of the authors and do not reflect
the official policy or position of IBM or the IBM
Quantum team.

*phylch@nus.edu.sg
[1] B. I. Halperin, Quantized Hall conductance, current-

carrying edge states, and the existence of extended states
in a two-dimensional disordered potential, Phys. Rev. B
25, 2185 (1982).

[2] A. H. MacDonald and P. Středa, Quantized Hall effect and
edge currents, Phys. Rev. B 29, 1616 (1984).

[3] F. D. M. Haldane, Model for a Quantum Hall Effect
without Landau Levels: Condensed-Matter Realization
of the “Parity Anomaly,” Phys. Rev. Lett. 61, 2015 (1988).

[4] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,
Quantum Anomalous Hall Effect in hg1−ymnyTe Quantum
Wells, Phys. Rev. Lett. 101, 146802 (2008).

[5] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z.
Fang, Quantized anomalous Hall effect in magnetic topo-
logical insulators, Science 329, 61 (2010).

[6] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M.
Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang et al., Experimental
observation of the quantum anomalous Hall effect in a
magnetic topological insulator, Science 340, 167 (2013).

[7] Y.-F. Zhao, R. Zhang, R. Mei, L.-J. Zhou, H. Yi, Y.-Q.
Zhang, J. Yu, R. Xiao, K. Wang, N. Samarth et al., Tuning
the Chern number in quantum anomalous Hall insulators,
Nature (London) 588, 419 (2020).

[8] F. R. Geisenhof, F. Winterer, A. M. Seiler, J. Lenz, T. Xu,
F. Zhang, and R. T. Weitz, Quantum anomalous Hall octet
driven by orbital magnetism in bilayer graphene, Nature
(London) 598, 53 (2021).

[9] C. Tschirhart, M. Serlin, H. Polshyn, A. Shragai, Z. Xia, J.
Zhu, Y. Zhang, K. Watanabe, T. Taniguchi, M. Huber et al.,
Imaging orbital ferromagnetism in a moiré Chern insulator,
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