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The Jaynes-Cummings-Hubbard (JCH) model is a fundamental many-body model for light-matter
interaction. As a leading platform for quantum simulation, the trapped ion system has realized the JCH
model for two to three ions. Here, we report the quantum simulation of the JCH model using up to 32 ions.
We verify the simulation results even for large ion numbers by engineering low excitations and thus low
effective dimensions; then we extend to 32 excitations for an effective dimension of 277, which is difficult
for classical computers. By regarding the phonon modes as baths, we explore Markovian or non-Markovian
spin dynamics in different parameter regimes of the JCH model, similar to quantum emitters in a structured
photonic environment. We further examine the dependence of the non-Markovian dynamics on the
effective Hilbert space dimension. Our Letter demonstrates the trapped ion system as a powerful quantum
simulator for many-body physics and open quantum systems.
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As the size and the controllability of the available
quantum information processors advance [1,2], quantum
simulation [3–5] has become a promising and convenient
approach to understanding many-body quantum dynamics
that are challenging for classical computers, for which
various approximations have to be carefully designed and
implemented due to the well-known “curse of dimension-
ality.” Ion trap, one of the leading platforms for quantum
information processing [1], has been widely applied in the
quantum simulation of many-body spin models with long-
range Ising or Heisenberg-type interactions [6–8] mediated
by the spatial oscillation of the ions. Record-breaking
experiments have simulated quantum dynamics of up to
53 spins [9], and properties such as phase transitions [9–
12], frustration [13,14], information propagation [15–17],
localization [18–21], and Floquet dynamics [22,23] have
been examined. In these experiments, the quantized oscil-
lation modes, also known as phonon modes, are only
virtually excited through off-resonant laser driving. On the
other hand, stronger driving close to phonon sidebands can
explicitly excite the phonon states and interact them with
the spins. Such schemes have found broad applications in
quantum information processing [24–28], bosonic state
engineering [29–31], and quantum transport [32–36].
Moreover, the inclusion of the phonon degrees of freedom
opens up an avenue toward the richer phenomena in the
spin-boson hybrid systems such as the quantum Rabi
model [37–39] for a single ion and the Hubbard-like
models [40–42] in the multi-ion cases.
Two prototypical many-body models with spin-boson

interactions are the Jaynes-Cummings-Hubbard (JCH)

model [40,41,43–49] and the Rabi-Hubbard (RH) model
[42,50–53], both of which originate from cavity quantum
electrodynamics systems but are well suited for the trapped
ions owing to the strong and controllable spin-phonon
coupling. The embracement of the spin and phonon states
significantly increases the dimension of the effective
Hilbert space, making these problems even more challeng-
ing for classical computers. Recently, equilibrium and
dynamical properties of the RH model have been studied
for up to 16 ions, which amounts to an effective dimension
of 257 [54]. In comparison, the JCH model possesses an
additional U(1) symmetry and thus demonstrates essen-
tially different properties: the ground state phase diagram of
the JCH model now displays a multicritical point [47,48]
similar to the Bose-Hubbard model [55–57], as opposed to
the Ising universality class of the RH model [52,53]; the
effective Hilbert space dimension is now governed by the
conserved excitation number of the system, allowing a
well-regulated study of the many-body dynamics versus the
system dimension from a polynomial to an exponential
scaling with the ion number. This also provides a natural
test bed to directly verify the simulated Hamiltonian for
large ion numbers, rather than the exponential cost for
general systems [58–60] or to extrapolate from smaller
systems. Furthermore, when regarding the phonon modes
as an environment, the model resembles quantum emitters
in a structured photonic background like a photonic crystal
[61–64] where phenomena like thermalization [65],
non-Markovian dynamics [66–70], collective radiation
[68,71–73], and the dissipative generation of entanglement
[74–77] can emerge. Previously, the JCH model has been
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implemented in ion trap in small scales using two [78,79] or
three ions [80] for observing the hopping and blockade of
phonons and the signature of quantum phase transition.
However, many of the aforementioned dynamical proper-
ties require large system sizes and remain to be demon-
strated in the experiment.
In this Letter, we report the quantum simulation of a JCH

model with long-range interaction using a trapped chain of
up to 32 ions. The successful simulation of the JCH
Hamiltonian is verified directly for large ion numbers by
engineering the low total excitation number of the system.
Then we demonstrate the change from the Markovian to
non-Markovian dynamics by tuning the frequency of the
spins into different locations of the phonon spectrum. We
further adjust the effective dimension of the system via the
ion number and the excitation number, and observe that the
non-Markovian dynamics persists for large systems. With
up to 32 excitations in 32 ions, an effective Hilbert space
dimension above 277 is achieved, which is challenging for
existing supercomputers. Our Letter showcases the trapped
ion system as a powerful quantum simulator of spin-boson
coupled systems and open quantum systems with a bosonic
environment.
Our experimental setup is shown schematically in Fig. 1

using a chain of 171Ybþ ions in a linear Paul trap. The
internal electronic levels j↓i≡ jS1=2; F ¼ 0; mF ¼ 0i and
j↑i≡ jS1=2; F ¼ 1; mF ¼ 0i of each ion encode an indi-
vidual spin. The local phonon modes of the ion chain
naturally possess long-range hopping terms due to the
Coulomb interaction. We further turn on the on-site Jaynes-
Cummings interaction via a pair of counterpropagating
355 nm global Raman beams whose beat frequency is
tuned close to the red motional sideband. Moving into an
interaction picture, the Hamiltonian of the system is
governed by a JCH model

H ¼
X

i

�
Δ
2
σiz þ ωia

†
i ai þ giðσiþai þ a†i σ

i
−Þ
�

þ
X

i<j

tijða†i aj þ a†jaiÞ; ð1Þ

where Δ is the spin frequency set by the Raman laser
detuning from the motional sideband, ωi the local phonon
frequency in the interaction picture, gi the spin-phonon
coupling on the ith ion, and tij the phonon hopping rates.
Since gi is not uniform due to the finite laser beam width,
we describe it by a maximal coupling g for the central ion
and the others can be deduced from the Gaussian beam
profile of the laser. More details about the derivation of the
Hamiltonian and the calibration of the model parameters
can be found in Supplemental Material [81]. Note that Δ
and ωi can be shifted by a same constant without affecting

FIG. 1. Experimental scheme. Two counterpropagating global
Raman laser beams are applied perpendicular to a chain of 2 to 32
ions to generate a Jaynes-Cummings-Hubbard (JCH) model
Hamiltonian. The beat frequency of the Raman laser beams is
tuned close to the red motional sideband, and is stabilized by a
phase-locked loop (PLL). The internal state of each ion is coupled
with its local oscillation by the Raman laser beams as a Jaynes-
Cummings model, and these local oscillation modes of individual
ions are further coupled by their Coulomb interaction.
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FIG. 2. Comparison between experimental spin dynamics and
theoretical prediction for small Hilbert space dimensions. Blue
dots (with error bars representing one standard deviation) are
experimentally measured hσizðtÞi for individual ions, and the red
curves are the corresponding theoretical results by exact diag-
onalization with no fitting parameters. (a) Two ions initialized in
j↑; 0i⊗2 (two total excitations) under Δ ¼ −2π × 60 kHz and
g ¼ 2π × 11.6 kHz. The evolutions of the two ions are symmetric
so only one is plotted. (b) Similar plot for a central ion (ion 4,
labeled by 1 to N from left to right) in an N ¼ 8 chain under
Δ ¼ −2π × 60 kHz and g ¼ 2π × 11.5 kHz with the initial state
j↑; 0i⊗8 (8 excitations). (c)–(e) N ¼ 20 ions with two total
excitations initialized in j↑; 0i⊗2 ⊗ j↓; 0i⊗18 under Δ ¼ −2π ×
5 kHz and g ¼ 2π × 10 kHz. (c) Ion 1 and (d) ion 2 are the two
ions being excited on the left of the chain, while (e) ion 20 is the
ion on the right. (f)–(h) N ¼ 32 ions with one total excitation
initialized in j↑; 0i ⊗ j↓; 0i⊗31 under Δ ¼ −2π × 5 kHz and
g ¼ 2π × 11.6 kHz. (f) is for the excited ion 1 on the left,
(g) for its neighbor ion 2, and (h) for the ion 32 on the other end of
the chain.
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any relevant dynamics owing to the U(1) symmetry of the
Hamiltonian. This symmetry also results in the conserva-
tion of total spin and phonon excitations in the system,
which is in stark contrast to the RH model [54].
First, we verify the successful quantum simulation of the

JCHmodel by measuring the spin dynamics and comparing
with the theoretical predictions in small system sizes. For N
ions and M total excitations, the effective dimension of the
Hilbert space is given by

D ¼
XminðN;MÞ

k¼0

CðN; kÞ × CðN þM − k − 1; N − 1Þ; ð2Þ

whereCðn;mÞ≡ n!=½m!ðn −mÞ!� is the combination num-
ber to choose m items from n elements. Although D
generally increases rapidly withN andM (forN ¼ M ¼ 32

we have D > 277), it turns out that even under large ion
number N ¼ 32, the classical simulation is still feasible for
small values of M. This allows us to directly verify the
correctness of the quantum simulation results at large
system sizes rather than to extrapolate from smaller
systems. In Fig. 2 we plot the measured spin dynamics

for N ¼ 2 and N ¼ 8 ions with M ¼ N total excitations,
and for N ¼ 20 and N ¼ 32 ions with M ¼ 2 and M ¼ 1
total excitations, respectively. To create M ¼ N total
excitations, we initialize the system in jψ0i ¼ j↓; 0i⊗N

by sideband cooling and optical pumping [81,83], and then
we apply a global microwave π pulse to get j↑; 0i⊗N . As for
the M ¼ 1 or M ¼ 2 cases, after initializing jψ0i, we use a
combination of global microwave pulses and a focused
355 nm Raman beam to flip the target ions (which we
choose as ions on the edges because they have larger
interion spacings and thus less crosstalk errors) into j↑i
[81]. After preparing an initial state with the desired total
excitation number, we turn on the JCH Hamiltonian and
measure hσizðtÞi for individual spins. As we can see, for
various system sizes, excitation numbers as well as ion
locations, the measured spin dynamics agrees well with the
theoretical results with no free parameters (all parameters
are calibrated in advance as described in Supplemental
Material [81]). There is a small systematic discrepancy for
N ¼ 20 and N ¼ 32 where we prepare one or two spin
excitations on the one end of the chain while the curve for
the ion on the opposite end rises earlier than the theoretical
prediction. This is mainly caused by the imperfect sideband
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FIG. 3. Markovian and non-Markovian spin dynamics in different regimes of the JCH model. We initialize the system at j↑; 0i⊗N with
M ¼ N total excitations. We fix g ¼ 2π × 12.9 kHz and tune Δ to observe different spin dynamics hσizðtÞi. (a) Experimental results for
N ¼ 4 ions withΔ ranging from −2π × 120 kHz to 2π × 60 kHz. The response strongly depends on the location ofΔwith respect to the
phonon band from −2π × 52 kHz to zero. (b)–(g) Dynamics in different parameter regimes in (a) as indicated by black horizontal arrows
for the central (left panel) and edge (right panel) ions. Red curves are the theoretical results from exact diagonalization. (h),(i) Measured
spin dynamics for a central ion of an N ¼ 20 chain with Δ ¼ 2π × 30 kHz (outside band) and −2π × 5 kHz (near band edge),
respectively. (j),(k) Similar plots for an N ¼ 32 chain with Δ ¼ 2π × 30 kHz and −2π × 5 kHz, respectively.
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cooling such that with small probability there are additional
phonon excitations in the system that can quickly convert
into the spin excitation of the distant ions [81].
After demonstrating the successful quantum simulation

of the JCH model, now we regard the phonon modes as a
structured bosonic environment and examine the non-
Markovian dynamics of the spins. This problem is similar
to quantum emitters in a photonic crystal [61–64], and it
has been predicted [64,68] and demonstrated [70] that by
placing the spins at different locations of the bosonic
spectrum, strikingly different behavior can occur. In
Fig. 3 we measure the spin dynamics for N ¼ 4, 20, 32
and M ¼ N from the initial state j↑; 0i⊗N . For N ¼ 4 ions
the frequencies of the collective phonon modes (note that
they are different from the local phonon frequencies ωi) are
distributed from −2π × 52 kHz to 0 in the interaction
picture [81]. As we can see in Fig. 3(a), when tuning Δ
within this phonon band, we observe significant decay in
the individual hσizðtÞi away from their initial values of one,
while outside the phonon band the response is much
weaker. We further plot the dynamics for typical Δ in
Figs. 3(b)–3(g) together with the theoretical predictions
under the same parameters. Far outside the phonon band
[(b),(c) Δ ¼ 2π × 60 kHz], there is almost no decay in
hσizðtÞi due to the large detuning between the spins and
phonons; inside the band [(d),(e) Δ ¼ −2π × 15 kHz] a
fast decay is observed (predicted to be exponential in the
continuum limit [64,68]) with small oscillations; and near
the edge of the band [(f),(g) Δ ¼ −2π × 60 kHz] there is
non-Markovian dynamics of both decay and oscillation,
resulting from a mixture of the dynamics inside and outside
the phonon band. We observe similar behavior for larger
ion numbers N ¼ 20 (h),(i) and N ¼ 32 (j),(k) as well:
outside the phonon band [(h),(j) Δ ¼ 2π × 30 kHz] the
spin population evolves slowly; while near the band edge
we get non-Markovian dynamics of fast decay together
with long-term oscillation, namely collapse and revival in
the spin population.
Intuitively, one would expect a monotonic decrease in

the revival signal as the dimension of the effective Hilbert
space increases. However, the non-Markovian dynamics is
known to persist even for a continuum of the environment
[68,70]. To resolve this inconsistency, in Fig. 4 we
systematically examine this dependence on the system
dimension. We plot the spin dynamics for N ¼ 4 (a),(b),
N ¼ 20 (c),(d), and N ¼ 32 (e),(f) ions with M ¼ 1 (left)
and M ¼ 2 (right) total excitations. The change is most
significant when increasing from N ¼ 4, M ¼ 1 to N ¼ 4,
M ¼ 2 or to N ¼ 20, M ¼ 1, while for larger system sizes
the curves are similar and there can even be additional
revival signals owing to the added excitation number at
M ¼ 2, which are also confirmed by the theoretical
calculation as the red curves in these plots. This can be
explained by the localization of the excitations near the
individual spins when tuned close to the band edge [68]

such that the relevant phonon environment ceases to further
scale up with the system sizes and thus the dynamics
becomes similar for large N. Similar phenomena are also
observed for average spin dynamics

P
ihσizðtÞi=N when we

prepare M ¼ N total excitations. In Fig. 4(g) we observe a
reduction in the oscillation amplitude for N ¼ 4 ions
compared with (a) and (b), and there is a further reduction
to N ¼ 20 as shown in Fig. 4(h). However, the curves for
N ¼ 20 and N ¼ 32 are again similar and show non-
Markovian revivals (see Supplemental Material for a larger
plot [81]). Note that in (h) the data points are directly
connected to guide the eye, because exact diagonalization
for the large Hilbert space dimensions is not feasible.
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FIG. 4. Collapse and revival in spin dynamics under various
Hilbert space dimensions. (a) and (b) Experimental data (blue
dots with error bars for one standard deviation) and theoretical
results (red curves) for an initially excited ion in an N ¼ 4 chain
with (a) one and (b) two total excitations, respectively. Here, we
choose Δ ¼ −2π × 10 kHz and g ¼ 2π × 11.5 kHz. (c)–(f) Sim-
ilar plots for (c) and (d) N ¼ 20 ions under Δ ¼ −2π × 5 kHz
and g ¼ 2π × 10 kHz, and (e),(f) N ¼ 32 ions under Δ ¼ −2π ×
5 kHz and g ¼ 2π × 11.6 kHz. The system has (c),(e) one or (d),
(f) two total excitations. (g) The average spin dynamicsP

ihσizðtÞi=N under the parameters of (a),(b) with all the spins
initialized in j↑i. (h) The average spin dynamics for N ¼ 4, 20,
32 ions withM ¼ N total excitations. The N ¼ 4 case is the same
as (g). For N ¼ 20 and N ¼ 32 ions with N excitations,
numerical calculation using exact diagonalization is intractable.
Hence, in this case the theoretical curves are not plotted, and the
data points are directly connected to guide the eyes.
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In summary, we have demonstrated quantum simulation
of the JCH model using up to 32 ions and up to 32 total
excitations, which amounts to 277 dimensional Hilbert
space. The conservation of excitation number in this model
allows us to adjust its effective dimension, thus providing
efficient verification of the quantum simulation results even
for large system sizes. Similar schemes shall also work for
the quantum simulation of other models where under
certain parameters the effective dimension is governed
by a conservation law. With this tool, we observe the
change from Markovian to non-Markovian spin dynamics
by tuning the spin frequencies to different locations of the
phonon band. We further study the dependence of the
collapse and revival signals versus the effective dimension
of the Hilbert space, and find similar dynamics for large
system sizes which can result from localization in the
system. Our Letter demonstrates the trapped ion quantum
simulator a powerful platform for rich properties in spin-
boson coupled systems and open quantum systems with
structured bosonic environments.
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