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The experimental realization of magnetic skyrmion crystals in centrosymmetric materials has been
driven by theoretical understanding of how a delicate balance of anisotropy and frustration can stabilize
topological spin structures in applied magnetic fields. Recently, the centrosymmetric material Gd2PdSi3
was shown to host a field-induced skyrmion crystal, but the skyrmion stabilization mechanism remains
unclear. Here, we employ neutron-scattering measurements on an isotopically enriched polycrystalline
Gd2PdSi3 sample to quantify the interactions that drive skyrmion formation. Our analysis reveals spatially
extended interactions in triangular planes, and large ferromagnetic interplanar magnetic interactions that
are modulated by the Pd=Si superstructure. The skyrmion crystal emerges from a zero-field helical
magnetic order with magnetic moments perpendicular to the magnetic propagation vector, indicating that
the magnetic dipolar interaction plays a significant role. Our experimental results establish an interaction
space that can promote skyrmion formation, facilitating identification and design of centrosymmetric
skyrmion materials.
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Magnetic skyrmions are topologically nontrivial spin
textures with potentially transformative applications in
quantum computing and information storage [1–3].
Skyrmion crystals usually occur in noncentrosymmetric
magnets, in which they can be stabilized by antisymmetric
exchange interactions [4,5]. However, it was recently
shown that skyrmion crystals can be stabilized in centro-
symmetric systems by frustrated (competing) interactions
[6,7], presenting the exciting prospects of higher skyrmion
densities and manipulation of chiral degrees of freedom by
external fields [8,9]. While a small number of candidate
centrosymmetric skyrmion materials have been identified
[10–13], experimentally determining the magnetic inter-
actions driving this behavior remains a key challenge.
Addressing this challenge is a prerequisite for designing
and manipulating skyrmion-based devices.
The hexagonal material Gd2PdSi3 provides a rare exam-

ple of a skyrmion crystal in a centrosymmetric system [10].
In Gd2PdSi3, triangular layers of magnetic Gd3þ ions are
separated by honeycomb PdSi3 layers [Fig. 1(a)] [14]. A
transition from the paramagnetic state occurs at TN ¼ 21 K
to an incommensurate magnetic order with propagation
vector q ¼ ½q00�� with q ≈ 0.14 [10]. The observed q may
be stabilized by competition between ferromagnetic near-
est-neighbor interactions and antiferromagnetic further-
neighbor interactions [Figs. 1(a),1(b)] [6,7]. Application
of a magnetic field below TN yields a giant topological Hall
effect, signifying a transition to a topologically nontrivial
skyrmion crystal, which is a triple-q structure formed by

superposing magnetic helices with q ¼ ½q00��, ½0q0��,
and ½q̄q0�� [10]. The bulk magnetic susceptibility follows
a Curie-Weiss law with spin S ¼ 7=2, g ¼ 2, and a

FIG. 1. (a) Parent crystal structure of Gd2PdSi3 (space group
P6=mmm; a ≈ 4.06 Å, c ≈ 4.09 Å [19]). (b) Magnetic inter-
actions within triangular Gd3þ layers. (c) Proposed low-symmetry
Pd=Si superstructure showing …ABCDBADC… stacking of
PdSi3 layers (a0 ¼ b0 ¼ 2a, c0 ¼ 8c). The highest-symmetry space
group compatible with the superlattice ordering is Fddd [19].
Black lines show interlayer bonds with two Pd and four Si
neighbors, and striped orange and green lines show interlayer
bonds with six Si neighbors.
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ferromagnetic Weiss temperature θ ≈ 30 K, suggesting that
Gd3þ ions possess spin-only local moments [15–17].
However, coupled electronic and spin correlations develop
well above TN , as indicated by a minimum in the resistivity
at ∼2TN and a large negative magnetoresistance that
persists up to ∼3TN [16–18].
To explain spin textures in centrosymmetric systems

such as Gd2PdSi3, it is crucial to understand the system’s
underlying magnetic interactions. The experimental obser-
vation of Fermi surface nesting with a wave vector similar
to q suggests the relevance of long-ranged RKKY inter-
actions [26], while a theoretical study indicates that local
exchange processes are also important [27]. However,
quantifying the interactions experimentally is a complex
problem, for three main reasons. First, the ordered magnetic
structure in zero applied field is not conclusively solved
[10,17,28]. Second, although the crystal structure may be
approximately described with a statistical distribution of Pd
and Si, these atoms actually form a superlattice that may
affect exchange processes [Fig. 1(c)] [14]. Third, the large
neutron-absorption cross section of isotopically natural Gd
makes neutron-scattering experiments on large single
crystals challenging. So far, this has prevented the use of
neutron-scattering experiments to understand the magnetic
interactions of Gd2PdSi3.
Here, we employ neutron-scattering experiments on

160Gd2PdSi3 to obtain a model of its zero-field magnetic
structure and interactions that explains multiple experi-
mental observations. We obtain the following key results.
First, magnetic interactions within triangular layers are
spatially extended and of competing sign. Second, ferro-
magnetic interactions between layers are dominant, and
strongly modulated by the Pd=Si superlattice. Third, below
TN , a helix with the spin plane perpendicular to q is the
only structure consistent with our neutron data and physical
constraints, suggesting the magnetic dipolar interaction
plays a significant role below TN [29]. Finally, we confirm
that our interaction model explains the skyrmion crystal at
small applied magnetic fields below TN [10,30]. Our results
provide a foundation for theoretical modeling and exper-
imental manipulation of spin textures in Gd2PdSi3.
We prepared a polycrystalline sample of 160Gd2PdSi3

(mass ∼0.8 g) by arc melting. Arc-melted samples were
wrapped in Ta foil, sealed in a quartz tube under a vacuum,
and annealed at 800 °C for one week. The sample quality
was confirmed by bulk magnetometry and by powder x-ray
diffraction, which reveals broad superlattice peaks consis-
tent with 126(6) Å domains of the superstructure shown in
Fig. 1(c) [19]. To minimize neutron absorption, the sample
was 98.1% enriched with 160Gd, and an annular sample
geometry was used for neutron diffraction and spectros-
copy experiments, which were performed using the HB-2A
and SEQUOIA instruments at ORNL, respectively.
Figure 2(a) shows magnetic diffuse-scattering data IðQÞ

collected above TN using HB-2A (λ ¼ 2.4067 Å). The data

are background subtracted and placed in absolute intensity
units by normalization to the nuclear Bragg scattering.
As the sample is cooled below 40 K, IðQÞ increases at
small wave vectors, Q≲ 0.3 Å−1, indicating the develop-
ment of predominantly ferromagnetic short-range correla-
tions. Figure 2(b) shows that the bulkmagnetic susceptibility
χT exhibits a large upturn over the same temperature range,
as expected because χT ∝ IðQ ¼ 0Þ at high temperature
[31]. For RKKY interactions with Fermi wave vector kF,
theory predicts an increase in IðQ≲ 2kFÞ as TN is
approached from above, with a simultaneous upturn in the

FIG. 2. (a) Magnetic diffuse scattering above TN , showing
experimental data (black circles), model fits (red lines), and data–
fit (blue lines). Successive curves are shifted vertically by
50 bn sr−1 Gd−1. Data collected and fitted at 35, 45, and 60 K
follow the same trends and are omitted for clarity. The dotted
green line shows the 22 K fit with five intra-layer couplings and
Jc ¼ 0. (b) Bulk magnetic susceptibility data and fit (colors as
above). (c) Comparison of IðQ → 0Þ from neutron data (green
circles) and magnetic susceptibility data (solid green line) with
published resistivity data from Ref. [16] (orange squares).
(d) Dependence of goodness-of-fit metric Rwp for neutron data
(green circles) and susceptibility data (orange squares) on the
number of intralayer neighbors, n. Solid symbols show results
when interlayer coupling Jc was fitted, and open symbols show
results for Jc ¼ 0. (e) Dependence of JðQÞ along high-symmetry
paths (Γ ¼ ð000Þ; K ¼ ð1

3
1
3
0Þ; M ¼ ð1

2
00Þ). Positions of global

and local maxima in JðQÞ are shown by long black and short gray
arrows, respectively.
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resistivity [32]. To test this prediction, Fig. 2(c) compares
IðQ → 0Þ—obtained from χT and by averaging IðQÞ over
0.1 ≤ Q ≤ 0.3 Å−1—with published resistivity measure-
ments [16]. Both IðQ → 0Þ and the resistivity shown an
upturn at the same temperature (∼40 K), in qualitative
agreement with the RKKY prediction [32]. This result
suggests that RKKY interactions may play a significant role
in Gd2PdSi3.
We quantify the magnetic interactions by analyzing IðQÞ

and χT data measured at T > TN within a Heisenberg model

Hex ¼ −
1

2

X

i;j

JijSi · Sj; ð1Þ

where Si denotes a classical spin vector with position Ri

and length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þp

, and the interaction parameters
Jij ∈ fJ1; J2; J3; J4; Jcg are shown in Figs. 1(a),1(b). We
make two simplifying assumptions in this high-temper-
ature analysis. First, we neglect non-Heisenberg terms such
as the magnetic dipolar interaction and single-ion
anisotropy, which have negligible effect above TN because
of their small energy scales [19]. Second, we assume the
high-symmetry hexagonal structure, neglecting a possible
variation in Jij due to the Pd=Si superstructure. To calculate
IðQÞ from the Jij, we apply reaction-field theory, a self-
consistent mean-field theory that gives good agreement
with classical Monte Carlo simulations [33–35]. Within
reaction-field theory, the wave-vector-dependent suscep-
tibility χðQÞ¼ χ0=f1−χ0½JðQÞ−λ�g [36], where JðQÞ ¼P

j Jij expðiQ ·RjÞ, χ0 ¼ SðSþ 1Þ=3, λ is obtained self-
consistently by enforcing that

R
BZ χðQÞdQ ¼ SðSþ 1Þ

[36], and IðQÞ is calculated by spherically averaging
IðQÞ ¼ cT½fðQÞ�2χðQÞ, where c ¼ 0.1937 bn [31] and
fðQÞ is the Gd3þ magnetic form factor [37].
We first tested a two-dimensional model by setting Jc ¼ 0

and refining the intra-layer couplings fJ1;…; Jng to our
IðQÞ and χT data shown in Figs. 2(a) and 2(b). This model
does not represent the datawell. By contrast, also refining the
interlayer coupling Jc substantially improves the refinement
quality metric Rwp [Fig. 2(d)], demonstrating that the
interactions are three dimensional. To estimate the spatial
extent of the interactions, Fig. 2(d) shows the dependence of
Rwp on the number of Jn fitted in addition to Jc. No
significant improvement is obtained for n > 4; hence, our
minimal model contains fJ1; J2; J3; J4; Jcg. The optimal
parameter values from a global fit to IðQÞ and χT data are
given in Table I. Including dipolar interactions does not
significantly affect the refined Jij [19]. Ferromagnetic Jc is
dominant, while intralayer interactions compete between
antiferromagnetic J4 and shorter-range ferromagnetic cou-
plings, resembling an RKKYinteraction [38,39]. Figure 2(e)
shows the corresponding JðQÞ, which is maximal at the
calculated propagation vector, qcalc ≈ ½0.12; 0; 0��. Notably,
the energy scale SðSþ 1ÞJðqcalcÞ is similar to first-principles
results [27,40]. While qcalc is smaller than the measured

low-temperature q ≈ ½0.14; 0; 0��, the difference is plausible
because q decreases with increasing temperature below TN
[10]. Interestingly, a local JðQÞ maximum occurs along
the ½110�� direction with < 0.2% energy difference from
JðqcalcÞ. Fermi-surface measurements of Gd2PdSi3 show a
nesting wave vector ∼½1

6
1
6
0�� [26], while Tb2PdSi3 exhibits

short-range magnetic ordering with this periodicity [41],
suggesting quasidegeneracy may be generic to these materi-
als. Finally, we considered an alternative five-parameter
model containing two interlayer and three intralayer cou-
plings. While this model yields a comparable refinement of
IðQÞ and χT measurements, it does not agree well with
inelastic neutron-scattering data [19].
We now investigate the zero-field magnetic structure for

T < TN . Taking the hexagonal structure as the parent phase,
there are three magnetic irreducible representations (irreps)
that correspond, respectively, to sinusoidal modulations of
the Gd ordered magnetic moment μord along orthogonal
directions a�, b, and c [Fig. 3(a)] [42]. Alternatively,
combining pairs of irreps yields helices with μord in the
ab, a�c, or bc plane [Fig. 3(b)]. Helical and sinusoidal
models have been proposed for the zero-field structure of
Gd2PdSi3 [27,28]. A triple-qmeron-antimeron structurewas
also proposed [10]. In Fig. 3(c), we compare the Rietveld
refinement for each model with the magnetic diffraction
pattern, obtained as the difference between the 1.5 and 25 K
data. All magnetic Bragg peaks are explained by Gd
magnetic ordering, indicating that any Pd magnetic polari-
zation is below the detection limit of our data. For each
model, Fig. 3(e) shows Rwp, and Fig. 3(f) shows the refined
maximum value of μord. The a�-sine model (i), with spins
Skq, would give zero intensity for the strong ðq00Þmagnetic
peak, and so is ruled out. Of the remaining models, b-sine
(ii), bc-helix (vi), and bc-ellipse (vii) structures yield
similarly high-quality refinements. The meron–antimeron
structure has an identical diffraction pattern to its single-q
analog, the bc helix, and is not shown separately. The refined
μord is a key discriminating factor, as any physicalmodelmust
satisfy the constraint that maxðμordÞ ≤ 2SμB (¼ 7.0μB for
Gd3þ) to ensure consistencywith magnetic susceptibility and
saturationmagnetizationmeasurements. This constraint rules
out the b-sine model with maxðμordÞ ¼ 8.7μB [Fig. 3(f)]. It
also disfavors the meron–antimeron structure, for which
maxðμordÞ ¼ 3

2
μhelixord , where μhelixord ¼ 6.14ð7ÞμB is the refined

ordered moment of the bc helix. Thus, the key result of our
Rietveld analysis is that only “proper screw” helices with
S⊥q, models (vi) and (vii), yield good fits and reasonable
μord values. The best such refinement is for an elliptical helix
with μkc ¼ 5.13ð7ÞμB, and μkb fixed to 7.0μB. Notably, the

TABLE I. Fitted values of magnetic interaction parameters.
Parameter uncertainties indicate 3σ confidence intervals.

Jc (K) J1 (K) J2 (K) J3 (K) J4 (K)

1.97(46) 0.31(9) 0.19(15) 0.27(18) −0.21ð5Þ
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ordered moment is not fully polarized as μhelixord < 2SμB at
1.5 K. Magnetic peaks are also selectively broadened
compared to nuclear peaks [Fig. 3(d)]. Refinement of a
quadratic-in-l size-broadening term yields magnetic domain
dimensions of 332(8) Å in the ab plane vs 27(2) Å along c,
which may be a consequence of the disordered stacking of
PdSi3 layers indicated by our x-ray diffraction data [14,19].
The magnetic excitation spectrum at T ≪ TN provides a

sensitive test of our model. Our inelastic neutron-scattering
data (Ei ¼ 11 meV) show spin-wave excitations atT ¼ 5 K,

superimposed on a diffuse magnetic background that likely
occurs because μhelixord < 2SμB. In Fig. 4(a), we show I05 K ¼
I5 K − ½1 − ðμhelixord =2SμBÞ2�I25 K, which isolates the spin-
wave contribution. Our data show an overall bandwidth of
approximately 4 meV. For E < 4 meV, the spectrum has a
broad energy dependence with intensity minima for 0≲ E≲
1 meV and 2≲ E≲ 3 meV that are most apparent at
small Q≲ 0.7 Å−1. Figure 4(b) shows the calculated spec-
trum for the interaction parameters given in Table I and a
single-q helical ground state, calculated within linear spin-
wave theory [43] using the SpinW program [44]. Including
the dipolar interaction has only a small effect on the spectrum
[19]. This model reproduces the overall bandwidth, but fails
to explain the intensity minimum for 2≲ E≲ 3 meV.
Attempts to refine fJ1; J2; J3; J4; Jcg to the inelastic data
also failed to reproduce this feature. To explain our data, it
was necessary to consider the effect of the Pd=Si super-
structure on Jc. All proposed models of the Pd=Si super-
structure involve doubling the unit cell along a and b, such
that 75% of Jc bonds (notated Jcþ) have four Si and two Pd
neighbors, while the remaining Jc bonds (notated Jc−) have
six Si neighbors [Fig. 1(c)]. We assume the superstructure
splits Jc by an amount ΔJc, such that Jcþ ¼ Jcð1þ Δ=4Þ
and Jc− ¼ Jcð1 − 3Δ=4Þ, and neglect any splitting of
the weaker interactions. For the ð2a; 2a; 8cÞ superstructure
shown in Fig. 1(c), the stacking of Jc� bonds is

(a)

(b)

(c) (d)

(e)

(f)

helix

sine

FIG. 3. (a) Sinusoidal spin-density wave with spin axis
perpendicular to q. (b) Proper screw helix with spin plane
perpendicular to q. (c) Magnetic diffraction data at 1.5 K (black
circles), model fits (red lines), and data–fit (blue lines). (d) Mag-
netic diffraction data, fits, and data–fit (colors as above) on an
expanded Q-axis scale for models (vi) and (vii), showing
broadening of peaks with l ≠ 0 and improved fit for the elliptical
helix (vii) compared to the circular helix (vi). (e) Goodness-of-fit
metric Rwp for each model. (f) Maximum refined value of the
ordered magnetic moment μord per Gd3þ for each model.
Parameter uncertainties represent 1σ confidence intervals. For
model (vii), μordkb is shown as a gray bar.

FIG. 4. (a) Inelastic neutron-scattering data measured at T ¼
5.8 K with Ei ¼ 11 meV. Data are corrected for detailed balance
and diffuse scattering is subtracted. (b) Linear spin-wave theory
(LSWT) calculation for the interaction parameters given in
Table I. (c) LSWT calculation with Jc split by Δ ¼ 0.8 (defined
in the text) for Pd/Si superlattice ordering with periodicity
ð2a; 2a; cÞ. (d) LSWT calculation with Jc split by Δ ¼ 0.8 for
Pd=Si superlattice ordering with periodicity ð2a; 2a; 8cÞ. Each
panel contains a color plot (left) of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðQ;EÞp

, and line cuts of
intensity Iavg averaged over 0.5 < Q < 0.7 Å−1 (black circles)
and 0.5 < Q < 2.0 Å−1 (blue squares).
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…ABCDBADC… [14], whereas the ð2a; 2a; cÞ superstruc-
ture considered in Ref. [27] has …AAA… stacking. Taking
Δ ¼ 0.8 with the ð2a; 2a; cÞ superstructure reproduces the
intensity minimum for 2≲ E≲ 3 meV and yields good
overall agreement with our inelastic neutron-scattering data
[Fig. 4(c)], without degrading the agreement with IðQÞ data
above TN [19]. Taking Δ ¼ 0.8 with the ð2a; 2a; 8cÞ super-
structure also generates intensity minima, but yields worse
agreement with our data [Fig. 4(d)]. Our results show that the
Pd=Si superstructure strongly enhances Jc for bonds with Pd
neighbors, perhaps consistent with a superexchange contri-
bution here.
We use extensive Monte Carlo simulations [45] to

calculate the phase diagram of our model as a function
of temperature T and applied magnetic field Bkc. The spin
Hamiltonian is given by

H¼Hexþ gμBB
X

i

Szi þD
X

i>j

Si ·Sj− 3ðSi · r̂ijÞðSj · r̂ijÞ
ðrij=r1Þ3

;

ð2Þ

where, to stabilize helical ordering with S⊥q, we include the
magnetic dipolar interaction with magnitude D ¼ 0.037 K
at the nearest-neighbor distance r1 [29,46]. To minimize
finite-size effects, we constrain the interactions to stabilize
qMC ¼ ½qMC00�� ≈ qcalc, with commensurate qMC ¼ 1

8
or 1

9
.

The calculated magnetic susceptibility χcalczz ðB; TÞ is shown
in Fig. 5(a), and reveals both similarities and differences with
experiment [30,47]. In agreement with experiment, we find
Tcalc
N ≈ 20 K, and below TN, a transition from a helical to a

skyrmion crystal at small B (calculated as 0.25 T; cf. 0.38 T

experimentally [30]). At larger B, a further transition occurs
to a topologically trivial triple-q phase previously identified
using mean-field theory [29]. The single-q vs triple-q nature
of each phase is revealed by its calculated magnetic dif-
fraction pattern [insets in Fig. 5(b)]. The behavior is not
qualitatively affected by the splitting of Jc, or by the precise
value of qMC [Fig. 5(b)]. Given the simplicity of our model,
its reasonable agreement with experiment at small B is
satisfying; however, it does not explain the large increase in
saturation field on cooling the sample (Bsat ≈ 8 T at 2K [30])
or the presence of magnetic transitions for B > 1 T [47].
These differencesmotivate further theoretical work to under-
stand the role of non-Heisenberg interactions.
Our neutron-scattering results provide an experimental

understanding of the magnetic interactions in Gd2PdSi3 and
clarify its zero-field magnetic structure. This approach may
provide insight into other centrosymmetric skyrmion mate-
rials, such as Gd3Ru4Al12 and GdRu2Si2 [11,13]. Notably,
our interaction model explains key aspects of the exper-
imental behavior without invoking biquadratic or multispin
interactions [48]. However, the spin dynamics can only be
understood by accounting for the Pd=Si superstructure,
suggesting it is important to include this in models. We
anticipate that this model of the skyrmion stabilization
mechanism in Gd2PdSi3 will facilitate design and identi-
fication of new centrosymmetric skyrmion hosts, including
in materials where large single-crystal samples are unavail-
able or unsuitable for neutron-scattering measurements.
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