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In the context of a single-electron two orbital Holstein system coupled to dispersionless bosons, we
develop a general method to correct the single-particle Green’s function using a power series correction
(PSC) scheme. We outline the derivations of various flavors of cumulant approximation through the PSC
scheme explaining the assumptions and approximations behind them. Finally, we compare the PSC spectral
function with cumulant and exact diagonalized spectral functions and elucidate three regimes of this
problem—two where the cumulant explains and one where the cumulant fails. We find that the exact and
the PSC spectral functions match within spectral broadening across all three regimes.
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Overview.—Electrons and holes in materials undergo
numerous complex interactions among themselves and the
external fields, as well as the constituent atomic lattice. The
strength of such many-body interactions depends on
various factors, like electronic configuration of the host
material, presence of doping, defects, lattice vibrations, etc.
Such factors manifest as bosonic collective excitations that
renormalize the particle states (electrons and holes) into
quasiparticle states with different energy and lifetime, and
even mix quasiparticle states depending on the interaction
strength. Alongside the quasiparticle features in photo-
emission spectra, these collective excitations show up as
“shakeoff” features that can be loosely separated into sharp
satellites emerging from bosonic collective modes (such as
plasmons and optical phonons) and continua arising from
nonzero-momentum particle-hole excitations (including
excitons) [1–3].
In experiments, the interaction strengths between collec-

tive excitations and particles are achieved by modulating
doping and defects [4,5]. In calculations, this interaction is
modeled as tunable electron-boson coupling parameters.
Although at very weak coupling the quasiparticle renorm-
alization due to the collective modes is negligible, with
stronger coupling a proportional renormalization of the
quasiparticle occurs. As an example, in photoemission
spectra of strontium titanate, this coupling manifests as a
significant shift in quasiparticle energy, significant decrease
in lifetime and intensity of quasiparticle features, and strong
shakeoff features, as well as a strong carrier mass enhance-
ment [6–10]. Strong electron-phonon coupling is also
visible in electronic spectra in metallic cuprates [11,12],
the metal-insulator transition in undoped cuprates [13], and
other correlated metals, for example, FeSe=SrTiO3 epitaxial
layers [14].
At extreme values of the coupling constant, strong

electron-boson coupling can completely self-trap and local-
ize electrons creating polaronic states. This severely

modifies carrier mobility in the material and is of particular
interest in material design for photovoltaics and electronics
[15–17]. Finally, in the presence of multiple boson species,
competition between their effect on the carrier can create
novel phase crossovers in materials [18]. A proper under-
standing and quantification of the effects of collective modes
on charge carriers is vital in understanding and designing
novel material with useful engineering applications.
The “GW” approximation [19], although expensive, is at

the heart of understanding internal energy landscape as well
as transport properties of materials. Computing the single-
particle Green’s function and charged excitation spectra
from GW approximation is also a fundamental first step in
understanding optical properties of material using the
Bethe-Salpeter equation (BSE) [20], which is even more
expensive. Inventing accurate approximations while taming
computational cost is an important active research topic for
both GW and BSE [21–27]. Therefore, a relatively in-
expensive method to improve charged excitation spectra
computed from simpler GW approximations in postpro-
cessing is of great value for both material study and more
sophisticated method development. In this Letter, we
construct a method that systematically generalizes existing
cumulant-expansion-based improvements to the GW spec-
tra [28] to describe single-particle dynamics of a system
with multiple electronic levels interacting through common
boson baths. Our Letter is a stepping stone toward
incorporating all four kinds of boson mediated losses
shown in Fig. 1 in the charged excitation (GW) spectra
of materials. Our inexpensive and simple method can
improve the GW spectra by incorporating the self-correc-
tion along with interorbital transition or interband vertical
transition, depending on the nature of problem (orbitals vs
flat bands). Through our formalism, we also inexpensively
solve for the photoemission spectra of a simple two-level
Holstein system, elucidate its various regimes as we tune
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the boson energy, and outline where and how cumulant-
based methods lose their validity.
The Letter is organized as follows. In Sec. II, we

introduce the model problem and concepts of the electron
Green’s function, electron self-energy, and Dyson’s equa-
tion. In Sec. III, we briefly introduce existing methods
and their major drawbacks. In Sec. IV, we develop our
correction scheme and physically motivate the assumptions
used to simplify the equations. In Sec. V, we outline the
derivation of various flavors of cumulants through our
method and clarify the implicitly made but vaguely under-
stood assumptions behind these approximations. Finally, in
Sec. VI, we identify three important regimes of the problem
by comparing performances of the cumulant and the power
series method with results from exact diagonalization of
this problem in the finite boson basis.
Introduction to the problem.—We consider a model

Hamiltonian for a single-electron two orbital Holstein
system with bonding and antibonding energy εþ=ε− such
that their difference isΔ. This system is kept in baths of two
dispersionless boson species (�) of energy ωo. Interaction
of electron with ðþ=−Þ bosons causes the electron’s self-
and interorbital transition.
The electron-boson interaction strength is controlled by a

coupling constant g. The fermionic ladder operators are
cþ=c

†
þ and c−=c†− for bonding and antibonding orbitals,

respectively. The bosonic ladder operators for ð�Þ bosons
are b�=b

†
�. This Hamiltonian has three distinct pieces—the

noninteracting part,Hþ that has ðþÞ bosons that cause self-
transition, and H− that has ð−Þ bosons that cause inter-
orbital transitions,

H ¼
X
i¼�

ε�c
†
i ci þHþ þH−; where

Hþ ¼ ωob
†
þbþ þ gðc†þcþ þ c†−c−Þðb†þ þ bþÞ;

H− ¼ ωob†−b− þ gðc†þc− þ c†−cþÞðb†− þ b−Þ: ð1Þ

This Hamiltonian describes the physics of a model of the
dihydrogen cation ðHþ

2 Þ—two hydrogen nuclei and a
single electron. Historically, this problem was approached
with clamped nuclei approximation. This crude approach
completely neglects the vibronic coupling between the
electron and vibrational modes of nuclei (optical phonons
in crystalline structures), which becomes crucial when
Δ ≈ ωo. Vibronic couplings in this regime can cause
interorbital transitions and severely renormalize the
molecular energy levels [29–31]. Furthermore, no exact
analytical solution exists and existing approximate methods
either give incorrect boson satellites (GW) or are ad hoc
and incorrect at strong coupling (cumulant) [32]. Hence,
this is a good model to build and test our approximation
scheme due to its simplicity and the failures of existing
methods. The retarded-time (RT) formalism is better suited
to handle electron-hole problems because it treats both of
them in equal footing as particles [33]. For the Holstein
problem (1) with Fock vacuum j0i as the ground state and
f; g=½; � as the anticommutator-commutator, the electron
Green’s function Gðn; tÞ for each orbital [33] n and the
boson Green’s functionDðN; tÞ for each boson speciesN in
RT formalism is [34]

Gðn ¼ �; tÞ ¼ −iθðtÞh0jfcnðtÞ; c†ngj0i;
DðN ¼ �; tÞ ¼ −iθðtÞh0j½bNðtÞ; b†N �j0i: ð2Þ

For noninteracting (g ¼ 0) electrons and dispersionless
bosons with energy ωo, the bare electron Green’s function
Go and a bare boson Green’s function D are

Goð�; tÞ ¼−iθðtÞe−iε�t; Dð�; tÞ ¼−iθðtÞe−iωot: ð3Þ

The quasiparticle energies, lifetimes, and boson satellites
show up as complex poles of Gðn;ωÞ, where ω is the
frequency. The frequency axis spectral function Aðm; n;ωÞ
(see Supplemental Material [35]) is defined as

Aðm; n;ωÞ ¼ 1

π
jImGðm; n;ωÞj: ð4Þ

At zero coupling (g ¼ 0), the energy eigenvalues ε� of (1)
are real and states have infinite lifetime, owing to the lack
of interaction between the orbitals. However, upon switch-
ing on the boson mediated interaction (g ≠ 0) between
orbitals, the exchange of energy and momenta between
states through boson exchange causes clumping of elec-
trons and holes to form quasiparticles. Because of time-
translational invariance, we can package this interaction
information together and call it the self-energy,

−iΣðtÞ ¼ g2
X

N;n¼�
DðN; tÞGðn; tÞ ¼ g2

X
n¼�

− iΣðn; tÞ: ð5Þ

Each orbital’s self-energy Σðn; tÞ is complex-valued, giving
rise to spectral peak broadening—an indication of a finite

FIG. 1. Schematic of different kinds of boson mediated losses
that create shakeoffs in excitation spectra of material. (a) Self
transitions, (b) interorbital transition, (c) interband vertical
transition, and (d) interband nonvertical transition between
conduction and valence band (CB and VB).

PHYSICAL REVIEW LETTERS 129, 136401 (2022)

136401-2



quasiparticle lifetime. A proper self-energy also incorpo-
rates boson mediated transitions, produces satellite peaks at
the correct energies, and redistributes the spectral weight
from the quasiparticle to the satellites. Dyson’s equation
governs the evolution of G by repeated application of this
self-energy,

Gðn;ωÞ ¼ Goðn;ωÞ þ Goðn;ωÞΣðωÞGðn;ωÞ: ð6Þ

GW, cumulant expansion, and their drawbacks.—Unlike
fully self-consistent GWΓ [19], the simpler GW approxi-
mations sacrifice self-consistency through abrupt trunca-
tion of Dyson’s equation for reasonable computing cost.
Although these approximations give a reasonably good
description of quasiparticle properties at weak coupling,
the plasmon satellites are averaged and misplaced at some
incorrect average energy [28]. At strong coupling, due to
the lack of self-consistency, even the quasiparticle proper-
ties can be incorrect.
For a single band of electron in a dispersionless boson

bath [28], the following exact Green’s function exists:

Gðk; tÞ ¼ Goðk; tÞeCðk;tÞ: ð7Þ

The cumulant C is calculated by linearizing and comparing
Eqs. (7) and (6). Cumulant-generated satellites manifest as
a Poisson series of peaks, plasma frequency apart in
spectral function. In real systems, although not all assump-
tions of the above model hold true, an approximate
cumulant correction can be found using the same recipe
as above on a GW self-energy [36]. Recently, interest in
cumulant approximation has resurged [33,37–39] enabled
by increases in computational ability to perform GW and
inspired by experiments (e.g., [40]).
The cumulant has the considerable merit of giving near-

exact spectra for weak electron-boson coupling: Δ ≫ ωo
and/or g ≪ 1. However, at strong coupling and in the
presence of multiple electronic levels, the bosons signifi-
cantly affect quasiparticle properties in ways not reflected
in the cumulant approximation. The cumulant is also not
systematically improvable by design and lacks proper
accounting of interband scattering owing to the absence
of self-consistency.
Theoretical framework.—The power series ansatz: Ra-

ther than assuming an exponential correction, we assume a
power series correction PnðtÞ in the powers of g2 to the nth
orbital’s bare Green’s function Goðn; tÞ due to interaction
with bosons for time duration t. By construction, the
interacting system smoothly maps to the noninteracting
system as g2 goes to zero,

Gðn; tÞ ¼ Goðn; tÞPnðtÞ ¼ Goðn; tÞ
X∞
X¼0

g2XCXðn; tÞ: ð8Þ

HereC0 ¼ 1 and all otherCX are distinct correction functions
of different orders that are zero when t < 0. This makes

physical sense because in the RT framework the particle does
not exist for t < 0. This, just like the cumulant, is still a
diagonal approximation [33] to the Green’s function matrix
because, by construction, only those corrections in which a
particle eventually returns back to its initial state n are
accounted for.
Temporal contraction relation: Because of the boun-

dary value dependence on time of the Green’s function,
PnðtÞ has the following temporal contraction property:

Pnðtf − tiÞ ¼ Pnðtf − toÞPnðto − tiÞ; ti < to < tf: ð9Þ

This property is central in generating cumulant diagrams
and does not apply between power series pieces of different
orbitals.
Assumption on electron self-energy: To properly con-

struct the electron self-energy, rather than replacing G by
Go inside the self-energy as inGW or cumulant expansions,
we replace it by power series ansatz and reintroduce self-
consistency,

−iΣðtÞ ¼ g2
X

N;n¼�
DðN; tÞGoðn; tÞPnðtÞ

¼ g2
X
n¼�

− iΣoðn; tÞPnðtÞ: ð10Þ

Here, the nth orbital’s self-energy Σoðn; tÞ is computed
using Go. The introduction of power series in Σ through G
produces corrections due to the particle’s eventual return to
the initial state after scattering through other possible states.
Including these cyclic scattering contributions in the
Green’s function matrix’s diagonal makes the diagonal
exact.
Correction scheme: We take the temporal Dyson’s

equation for the mth band and replace G and Σ by their
power series corrected versions from (8) and (10). We then
use temporal limits enforced by the RT bare Green’s
function (3) and simplify the equation using the temporal
contraction property from Eq. (9),

Gðm; t − t0Þ ¼ Goðm; t − t0Þ þ
ZZ

dt1dt2Goðm; t − t2Þ

× Σðt2 − t1ÞGðm; t1 − t0Þ:
Setting t0 ¼ 0 and t2 − t1 ¼ τ, and simplifying, we get

PmðtÞ ¼ 1þ ð−ig2Þ
X
n¼�

Zt

0

dt2

×
Zt2
0

dτ eiεmτΣoðn; τÞPnðτÞPmðt2 − τÞ:

The integral in this equation contains two distinct correc-
tion contributions. The self-correction (PSC

m ) contains
interactions within same orbital (n ¼ m) on the right side
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of this equation, which will be merged by contraction
property (9). The interband scattering term (PIC

m ) occurs
when different orbitals interact (n ≠ m) and therefore the
contraction property is invalid,

∴PmðtÞ ¼ 1þ PSC
m þ PIC

m ; where

PSC
m ¼ −ig2

Zt

0

dt2

Zt2
0

dτ eiεmτΣoðm; τÞPmðt2Þ;

PIC
m ¼ −ig2

Zt

0

dt2

Zt2
0

dτ eiεmτΣoðn; τÞPnðτÞPmðt2 − τÞ:

ð11Þ
For numerical solution, we start with an initial guess of
P ¼ 1 on the right and self-consistently compute better
values for P on the left until it converges.
Derivation of various cumulant schemes.—We validate

our method by deriving the exact result for the core-hole
problem with a single orbital of bare energy εo in a bath
of dispersionless plasmons of frequency ωo [28]. The
Hamiltonian in this case is

H ¼ εoc†cþ ωob†bþ gðb† þ bÞðc†c − 1Þ:
This is an idealization of an isolated electron energy level
εo deep under the Fermi level being probed using x-ray
photoemission [41]. The energetic electron exiting the
system leaves behind a hole and the electron cloud
responds to this imbalance of Coulomb forces by under-
going quantized long range oscillations (plasmons) at
multiples of ωo. The corrected self-energy for this case is

ΣðtÞ ¼ g2ΣoðtÞPðtÞ ¼ g2½−ie−iðεo−ωoÞtθðtÞ�PðtÞ:
For a single energy level, there is no interband scattering
correction in Eq. (11),

PðtÞ ¼ 1þ
�
−ig2

Zt

0

dt2

Zt2
0

dτ eiεoτΣoðτÞPðt2Þ
�
:

Expanding power series on both sides and comparing terms
of the same order in g2, we generate the following higher
order corrections:

CmðtÞ ¼
CðtÞm
m!

and CðtÞ ¼
�
eiωot − iωot − 1

ω2
o

�
:

Summing all of these corrections results in the exact result
from Eq. (7).
The time-ordered cumulant expression in [36–39] was

derived assuming that the nth orbital’s cumulant Cðn; tÞ
depends only on the nth orbital’s self-energy Σðn; tÞ,
thereby neglecting boson mediated interband scattering
effects. In power series language for the Holstein model,
this means that the band gap Δ ≫ ωo and each orbital
essentially is an independent core-hole problem with PIC
set to zero and the corrections governed by PSC alone.

In the other limit (Δ ≪ ωo), the satellites are so far away
that they do not modify the quasiparticle appreciably.
Hence, both PSC and PIC are small and scale roughly
equally, so they can be approximated as being independent
of the orbital index in (11). This orbital independence lets
us use the temporal contraction (9) for PIC regardless of
orbital identity, thereby giving retarded-cumulant correc-
tion [33,40,42]. The details of both derivations are in the
Supplemental Material to this Letter [35].
Comparison between methods.—We numerically com-

pute and compare the spectral functions from power series,
exact diagonalization (N ¼ 50 boson basis), and core-hole
cumulant for problem (1) with ε∓ ¼ �3, ωo from 10 to 0.1,
spectral broadening of 0.1, and a strong coupling parameter
of g ¼ 1 in Fig. 2. Depending on the magnitude of ωo=Δ,
Fig. 2 separates into three distinct regions roughly demar-
cated by dashed blue lines.

FIG. 2. Natural log of spectral function from (a) core-hole
cumulant, (b) exact diagonalization, and (c) power series for
ε� ¼∓ 3 (horizontal white dotted lines) and ωo between 10 and
0.1. Blue vertical lines separate the three distinct regions.
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The first region is the weak coupling regime of
ωo ≫ Δ—here ωo > 8. Here, both (�) plasmon satellites
are far away from quasiparticles and therefore their effect
on the quasiparticle energy and weight is negligible. This is
most prominently seen from the negligible change in
quasiparticle energies from noninteracting energies ε�.
Here, the cumulant adequately captures all the exact
spectral features correctly.
The second region has ωo ≈ Δ—here 8 > ωo > 1.5. A

huge shift of spectral weight occurs from bonding to
antibonding orbital, effectively splitting the antibonding
orbital as well as the respective shakeoffs into two (between
ωo of four and seven). These are captured exactly by power
series Fig. 3 but not by cumulant because they lack proper
accounting of interband interactions.
The third region is when ωo ≪ Δ—here ωo < 1.5. Here

bosonic events are extremely localized around the non-
interacting energy and (+) bosons dominate the process.
Therefore, interband correction is vanishingly small and the
solution is dominated by self-correction, i.e., core-hole-like
cumulant. We observe this in all three spectral functions,
although both exact and power series solutions become
computationally expensive—the former due to large boson
number being necessary and the latter due to large con-
vergence order.
Conclusion.—In this Letter, we derived a general power-

series-based method that mitigates all the problems of
cumulant methods, is practical to implement, and repro-
duces the exact result in a finite basis for this problem
within the spectral broadening used. We also identified
three important regimes of this problem as a function of
boson energy and elucidated where the cumulant works,
why the cumulant works, and when it fails. Recently, new
works highlighting the importance of self-consistency in
cumulant approximation [43,44] have emerged. Hence, we
hope to extend this Letter to real multielectron systems with
strong plasmon resonances, a sketch of which is provided
in the Supplemental Material [35].

We heartily thank Paul J. Robinson and Professor David
Reichman for useful discussions regarding the validity of
our method as well as suggestions for the future appli-
cability of our work.
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