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Quantum process tomography is a pivotal technique in fully characterizing quantum dynamics.
However, exponential scaling of the Hilbert space with the increasing system size extremely restrains
its experimental implementations. Here, we put forward a more efficient, flexible, and error-mitigated
method: variational entanglement-assisted quantum process tomography with arbitrary ancillary qubits.
Numerically, we simulate up to eight-qubit quantum processes and show that this tomography with m
ancillary qubits (0 < m < n) alleviates the exponential costs on state preparation (from 4" to 2"~™),
measurement settings (at least a 1 order of magnitude reduction), and data postprocessing (efficient and
robust parameter optimization). Experimentally, we first demonstrate our method on a silicon photonic chip
by rebuilding randomly generated one-qubit and two-qubit unitary quantum processes. Further using the
error mitigation method, two-qubit quantum processes can be rebuilt with average gate fidelity enhanced
from 92.38% to 95.56%. Our Letter provides an efficient and practical approach to process tomography on

the noisy quantum computing platforms.
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Introduction.—With the rapid development of quantum
computing devices in recent years, the quantum computing
systems scale to over fifty available qubits [1-3]. Hence,
efficient and practical quantum certification and bench-
marking appear to be increasingly essential in the noisy
intermediate-scale quantum (NISQ) era [4-7]. Various
protocols have been proposed, including direct fidelity
estimation [8], randomized benchmarking [9,10], and so
on; nevertheless, quantum process tomography (QPT) still
plays an indispensable role, since it is a comprehensive
characterization of quantum systems with full information.

However, standard QPT [11,12] is an inefficient and
resource-demanding procedure. Specifically, standard QPT
needs 4" input states and consequent quantum state
tomography (QST) for each state, and the total number
of quantum measurements scales as 42" for an n-qubit
quantum process [13]. Besides, solving the inverse problem
of state estimation involves huge computational costs
[14,15]. Such exponential expenditures on space, time,
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and computation are tremendous for practical usages;
hence, it is physically feasible only up to three-qubit case
from the point of experiment [16-22]. Many proposals are
put forward to address these problems, including com-
pressed sensing tomography [19,23] and ansatz-based
tomography [24], but at the cost of stronger assumptions
(e.g., sparsity requirements, low-rank or specific tensor-
product structure) and hence not applicable to general
conditions. Entanglement-assisted process tomography
(EAPT) [25-27] uses the intrinsic relation between QST
and QPT based on Choi-Jamiolkowski isomorphism
[28,29] and imprints complete information about a quan-
tum process on its output state [30]. However, there still
needs to be a complete QST procedure on the output states
in the extended Hilbert space. And it introduces an ancillary
space as great as the system space and consumes double
amounts of qubits. Thus, the experimental realization is
realized on bulk optical platforms up to one-qubit cases
[25,31].

In this Letter, we put forward a more efficient, flexible,
and error-mitigated method: variational entanglement-
assisted process tomography (VEAPT) with arbitrary
ancillary qubits. The overall scheme is illustrated in
Fig. 1(a).

To enhance the efficiency, we first introduced the
variational quantum algorithm (VQA) [33—41] to alleviate
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(a) Structure of the VEAPT with arbitrary ancillary qubits. The scheme consists of the preparation of input entanglement

states, the evolution of the unknown channel and the controllable process, and the classical processing unit. The classical part is
composed of cost function evaluation, classical optimization, and parameter updating. (b) Structure of the VEAPT with full
ancillaries. It is a specialized version of VEAPT in that the V() process can be transposed to the ancillary space by quantum
ricochet property when the ancillary qubits are full. (c) Scheme of the error mitigation method. The first stage is the aligning

operation by directly setting the circuit as /. The second stage is the normal VEAPT optimizing with target U and encoding V(é)
(d) Photonic chip structure and experimental realization. When the ancillary qubits are arbitrary, the laser is inputted at the first layer
of the beam splitter network (denoted as ®). When the ancillaries are full, it pumps in the second layer (denoted as ®). In the
encoding circuit part, we give an illustration of the VEAPT with full ancillaries [the dashed box denotes U and the dotted box

denotes VT(é)]. The red colored phase shifters are for one-qubit process encoding, while the blue colored ones are for the two-qubit
case. More details are provided in the Supplemental Material [32].

the data postprocessing. Specifically, we transformed the
complicated QST procedure into a more efficient optimi-
zation problem of the parametrized circuit. Second, we
combined the EAPT approach to fully exploit the quantum
parallelism of entanglement and reduce the input states’
preparations.

In terms of the flexibility, we put forward the VEAPT
theory with arbitrary ancillary qubits. We proved that for an
n-qubit arbitrary unitary process, VEAPT with m ancillary
qubits (0 < m < n) needs 2"~ entangled states as inputs to
rebuild the quantum process.

The VEAPT method shows the inherent tolerance to
state preparation and measurement error and shot noise.
Besides, we further put forward an error mitigation
method [42,43] based on the simplified VEAPT struc-
ture with fixed and flexible input states and efficient
measurements.

Numerically, we conducted simulations based on the
variational quantum circuit simulator to eight-qubit quan-
tum processes and results present the alleviation of the
exponential costs on state preparation (from 4" to 2"~™),
measurement settings (at least 1 order of magnitude fewer
measurements), and data postprocessing.

Experimentally, we designed a silicon photonic chip
shown in Fig. 1(d) and demonstrated our method on one-
qubit and two-qubit randomly generated unitary quantum
processes. Results show good consistency with our theory
and present robustness in terms of shot noises and enhanced
performance with error mitigation method.

Efficient VEAPT with full ancillary qubits.—For an n-
qubit quantum process, the standard EAPT needs to
introduce n ancillary qubits and construct one 2n-qubit
maximally entangled state |®,,) = (1/Vd) Y% |j) ®
|7) as input, where d = 2". Then, based on Choi’s proof
in Ref. [28,29], we can obtain the Kraus operator-sum
representation of the process E(p) =D ; (Ar ® )X
p(Ar ® I,.)" once we have done the full QST on the
output E(p), where p = |®;,)(P;,|, A; are the Kraus
operators, and [,,. denotes no operation on the ancil-
lary space.

Furthermore, we introduced the VQA framework [44,45]
to the EAPT procedure following the two steps to further
enhance the performance of the data postprocessing.

First, we fixed the quantum process output state identical
to the input, therefore avoiding the QST procedure on the
output. It can be deduced from Choi’s conclusion that when
the output is the same as the input, the overall quantum
process is Iy ® Iy It is also feasible to set the output
state as a known and fixed state (Ryys ® Iy )|®P;r,). Here,
for simplicity, we chose the identical input and output
states. Second, we transformed the data postprocessing
structure into a variational framework. Specifically, we

-

introduced a parametrized controllable process V(0) as the
variational target, which follows the unknown process U.
The variational process is to update the parameter list @ and
minimize the infidelity between the output state and the
input state based on the direct fidelity estimation method. It
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is worth noting that under the maximally entangled states

|®;',), we could transpose the V/(6) circuit to the ancillary
space based on the quantum ricochet property as shown in
Fig. 1(b). Hence, the cost function is defined as

f(6) =1-F(|lo;,). (V(O)U ® I)|®;,))
= 1-F(|o;,). [U® VI (0)]®7,). (1)

where F denotes the fidelity measure. When the cost
function f (5) goes down to zero, we can arrive at
V(0)U = I. Therefore, the controllable parameters in the

V(é) can be directly used to rebuild the quantum process U
without complicated data postprocessing.

In the variational optimizing procedure, our framework
accepts all efficient algorithms flexibly. In this Letter, we
take the typical iterative method for solving unconstrained
nonlinear problems—Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [46—49]—and the gradient-based simul-
taneous perturbation stochastic approximation (SPSA) [50]
algorithm as examples. We numerically and experimentally
verified these two algorithms (more details provided in the
Supplemental Material [32]).

Flexible VEAPT with arbitrary ancillary qubits.—The
VEAPT method alleviates the state preparation and data
postprocessing burdens. However, it constrains the input as
a faithful state p by requiring the Schmidt number
Sch(p) = d?, thus demanding the ancillary space as great
as the system space [30]. Hence, it suffers from at least
double amounts of qubits, which is quite an overhead and
waste for quantum devices since the ancillary qubits
undergo no operations at all in the protocol. Therefore,
we take the more general and flexible ancillary conditions
into consideration as shown in Fig. 1(a). We proved that for
an n-qubit arbitrary unitary process, VEAPT with m
ancillary qubits (0 <m < n) needs to prepare 2"
entangled states as inputs to rebuild the quantum process.
Below we give theoretical explanations.

The VEAPT method fully exploits the most important
advantage of quantum computing: quantum parallelism. By
preparing a maximally entangled state |®;},), the informa-
tion of the system is completely imprinted in the quantum
entanglement. Actually, tracing out the ancillary space, the
remaining system state is in a superposition of all computa-
tional basis Ty (|D;, ) (@5, ) =(1/2") 3722, i) (i|. Hence,
such a maximally entangled state can simultaneously
calculate the dynamics for all the basis.

Similarly, when the ancillary qubits m is less than the
system qubits n, there still exists partial maximally entan-
glement between the m ancillary and m system qubits,
which contain 2™ basis components in an output state.
Under such case, it is natural to divide the total 2" basis
into 2"/2™ = 2"~ gtates. Each state couples the 2™

entangled terms i) |i),,c With one of the remaining

2" basis |j) to construct the superposition. Hence,
the 2"~ states are

om

|¢){l m \/jm—z Sys ® | anc) ® |]>sys’ .] =1..2""
(2)

It can be seen that when m = n, the needed one input is the
|®;,) in EAPT.

Combined with the variational framework, we can
give the following theoretical analysis. For VEAPT
with m ancillaries, the quantum process is extended to
Uyryn @ Ipn pn, and based on the above 2"~ input states,
we have that for j = 1...2"7"",

2m m
Z U|i>sys|j>sys ® I|i>anc = Z |i>sys|j>sys ® ‘i>anc' (3)
i=1

i=1

By multiplying arbitrary basis (xyz| to Eq. (3), we obtain

D eyl Ulig)(eliy =Y iyl ali),
i=1 i=1
ny,ij = 5ix5jy’ (4)

Hence, only diagonal elements in U are equal to 1. By
keeping the 2"~ outputs identical to the inputs, the
quantum process is fixed at I.

So, VEAPT with m ancillaries lowers the demands for the
ancillary qubits and offers a flexible and practical method to
determine the input states considering the physical qubit
resources. It is noted that the generality is maintained and
still applicable to arbitrary unitary processes.

Besides, the VEAPT method has advantages to tackle the
QPT problem in the NISQ background. On the one hand, it
has an inherent robustness toward state preparation and
measurement errors and shot noises since the lower
demands on input states and the simplified data processing
with variational framework help to decrease the error
sources. Moreover, it has the capability to conduct the
error mitigation method as shown in Fig. 1(c). There are
two stages primarily. In the aligning operation stage, by
setting the circuit as an identity process in advance, it can
align the state preparation parameters ¢, to eliminate the
relative deviations under noisy conditions. Here, the cost
function defines as the infidelity between the preparation
state and the measurement basis. After the aligning, we

obtain the optimal input state |$(6"")). In the normal
VEAPT stage, we prepare the input state at the aligned
optimal state |¢( Opt)), and conduct the consequent
VEAPT optimizations with U and V(6) introduced.

It is worth noting that the error mitigation feature is
based on the generalized EAPT theory (fixed state
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FIG. 2. Numerical simulations on variational quantum circuit
simulator for RQC with different circuit depth d and Heisenberg
XXZ spin chain time evolution quantum processes up to eight-
qubit cases. It is obvious that the VEAPT method significantly
decreases the total number of measurements compared to
standard QPT (blue starred line) when the qubit number scales.
Furthermore, in the inset graph, we present the graph in the
logarithmic axis and obtain a clear and enlarged measurement gap
(at least a 1 order of magnitude reduction).

preparation) and variational data postprocessing (simplified
state measurement). Hence, these three features are insepa-
rably interconnected and complement each other to fulfill
collaborated efforts toward an efficient, flexible, and error-
mitigated VEAPT method in the NISQ era.

Numerical and experimental demonstration.—We first
conducted numerical simulations on two types of quantum
processes up to eight-qubit cases—d-depth randomly gene-
rated quantum circuit (RQC) [51,52] and Heisenberg XXZ
spin chain [53] with evolution time dt = 0.01—using the
variational quantum circuit simulator. The total number of
measurements is illustrated in Fig. 2. It is clear that the
measurement settings are at least 1 order of magnitude
fewer than the standard QPT and the gap tendency appears
to be larger with the system size increasing. Details are
provided in the Supplemental Material [32].

Experimentally, silicon photonic chips have made con-
siderable progress in quantum computing, including
entanglement generation [54], quantum control [55], and
application [56]. Based on the VEAPT method, we
designed a silicon photonic chip and conducted an exper-
imental demonstration on it. The chip structure is illustrated
in Fig. 1(d), which consists of three parts: entangled state
generation, quantum process [unknown U and controllable

V(é)] encoding, and measurement.

In terms of the entangled state generation, the chip
contains a tree-organized beam splitter network and four
spontaneous four-wave mixing photon-pair sources to
prepare several simple and fixed input states. In the
encoding part, we imprinted the quantum process informa-
tion as the phase shifters’ values 6. Figure 1(d) shows the
VEAPT with full ancillaries configuration, where the
dashed box denotes U and the dotted box denotes VT(é).
Under such a condition, we used both system space and
ancillary space to encode the information that increases the

encoding degree and decreases the circuit depth. More
details are provided in the Supplemental Material [32].
Finally, in the measurement part, we conducted the direct
fidelity estimation to obtain the cost function values. In the
classical processing part, the VQA takes cost function
evaluation values, uses classical optimization methods to
calculate its gradient, and updates the circuit parameters.
As a whole, the VEAPT method is a quantum-classical
hybrid architecture.

Here, we evaluate experimental results using the average
gate fidelity [57]. The average gate fidelity F,,, between
the rebuilt U and the real £ is given by F,,(E,U) =
[ dy (w|U E(ly) (w|)Uly). For VEAPT with full ancilla-
ries, we experimentally demonstrated one-qubit and two-
qubit cases. Specifically, for one-qubit VEAPT, the input
two-qubit entangled state is |} ,) = (|00) + [11))/v/2,
while in the two-qubit VEAPT case, the four-qubit input
entangled state is |®3,) = (|0000) + [0101) + [1010)+
[1111))/2. And in the encoding section, we randomly
generated phase shifters to encode the unknown U infor-
mation. Correspondingly in the decoding part, phase
shifters are used to recover the values. The initial values
of the optimization are set at the orthogonal position with
the answer to present a complete optimization process from
one to zero. Figure 3(a) gives the experimental results of
VEAPT with full ancillaries, where the maximum average
gate fidelities are 99.73% and 93.33%, respectively.

Moreover, we also verified the VEAPT with fewer
ancillaries and conducted the experiment of two-qubit
QPT with one ancillary qubit. Under such conditions, there
needs to be two input entangled states: |®} ) = (|000) +

1101))/v/2 and |®%,) = (|010) + |111))/V/2, as Eq. (3)
shows. The cost function is the sum of the two infidelities
F(0)=2= (@} [¢)[*= (@3 |3") P where |¢5") corre-
sponds to the output state of |®j ). It is clear in Fig. 3(b)
that the two infidelities converge quickly, and the final
quantum gate fidelity could reach over 97%.

Besides, we also demonstrated the capability of error
mitigation and the robustness toward shot noises in the
NISQ background. The VEAPT structure greatly simplifies
the frontier state preparation and back-end measure-
ment, thus, facilitating the error mitigation operations.
Specifically in the aligning stage, the parameters 6, are
the phase shifters in the state preparation part and the U and

-

V(0) encoding circuits are kept identity. After the aligning,
we prepared the optimal aligned state |¢(§;pt)> as input,

-

encoded the target U, initialized the V(6), and conducted
the consequent VEAPT optimization. Figure 3(c) gives the
error mitigation results on two-qubit cases, which further
enhanced maximum F,, to 95.56%. It is an illustrative
example of quantum machine learning in solving several
challenging tasks. Furthermore, we verified the influence of
shot noises on our method in Fig. 3(d). By adjusting the
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Experimental demonstration of the VEAPT method. (a) VEAPT with full ancillary qubits on one-qubit (triangle) and two-

qubit (circle) cases. The cost function f(6) (red dotted lines) and the average gate fidelity F',, (blue solid lines) gradually converge.

Minimum f (5) and maximum F,, are listed in the table. (b) Two-qubit VEAPT with one ancillary qubit and two input states. The red
dotted line is the overall cost function, while the yellow and purple ones show the corresponding infidelities between the output state and
the two entangled states, respectively. (c) Error mitigation results on two-qubit cases, where the blue circle and red triangle lines are

different trials with and without error mitigation, respectively. The

final maximum F,,, is further enhanced to 95.56% after the error

mitigation operation. (d) Two-qubit VEAPT with one ancillary qubit under different levels of shot noise. The vertical axis denotes the
average cost function values among the past 10 epochs. In the inset graph, it is clear that longer integration time ¢ with more photons

achieves better performance. We used the BFGS algorithm in (a)

photon integration time ¢, we can obtain different shot noise
levels. When the integration time ¢ is small, the corre-
sponding photon counting rate is low and the shot noise
level is relatively high. It can be seen that the optimization
procedure may be longer with shorter #. More details are
provided in the Supplemental Material [32].
Conclusion.—Quantum process tomography is an incre-
asingly important certification and benchmarking tool for
quantum computing devices with the full information gain.
In this Letter, we put forward an efficient, flexible, and
error-mitigated VEAPT method with arbitrary ancillary
qubits, which is promising for practical usage in the NISQ
era. Numerically, we simulated up to eight-qubit quantum
processes showing that VEAPT with m ancillary qubits
(0 <m < n) alleviates the exponential costs on state
preparation (from 4" to 2"~), measurement settings (at
least 1 order of magnitude fewer than standard QPT), and
data postprocessing (efficient and robust parameter opti-
mization). Experimentally, we first demonstrated our
method on a silicon photonic chip by reconstructing
arbitrary one-qubit and two-qubit unitary quantum proc-
esses. Results show that those quantum processes can be
rebuilt with average gate fidelity 99.73% and 93.33%,
respectively. Moreover, we conducted error mitigation
trials on two-qubit quantum processes presenting obvious
enhancement to 95.56%. Our Letter provides an effi-
cient, flexible, and error-mitigated approach to process

and (c), while the SPSA algorithm is employed in (b) and (d).

tomography and can be used as a practical demonstration
tool in larger-scale quantum computing devices in the
NISQ era.
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