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We analytically identify a new class of quantum scars protected by spatiotemporal translation
symmetries, dubbed Floquet-Bloch scars. They are distinguished from previous (quasi-)static scars by
a rigid spectral pairing only possible in Floquet systems, where strong interaction and drivings equalize the
quasienergy corrections to all scars and maintain their spectral spacings against generic bilinear
perturbations. Scars then enforce the spatial localization and rigid discrete time crystal (DTC) oscillations
as verified numerically in a trimerized kagome lattice model relevant to recent cold atom experiments. Our
analytical solutions offer a potential scheme to understand the mechanisms for more generic translation-
invariant DTCs.
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Introduction.—Systems far fromequilibriumhave become
a fertile ground cultivating unexpected phenomena recently.
Among them, discrete time crystals (DTC) [1–7] constitute an
intriguing example. As foundational concepts of ground state
and temperature fall apart in the absence of thermal equilib-
rium, Landau’s theory of symmetry breaking [8] is replaced
by new principles like spectral pairing and eigenstate orders
[1,2] in handling time translation symmetries. That results in
the DTC phenomena where Hamiltonians Ĥðtþ TÞ ¼ ĤðtÞ
give rise to observables Oðtþ NTÞ ¼ OðtÞ (1 < N ∈ Z)
oscillating like a temporal charge (or spin) density wave.
Crucially, the periodicity NT demands no fine-tuning and
withstands generic perturbations.
The concept of DTCs has been considered in several

physical realizations [9–15]. While the strongly disordered
cases are relatively well understood [1–3,16], the possibil-
ity of DTCs in translation-invariant ordered systems is less
clear. Empirical evidence for DTCs is accumulating in
both physical and numerical experiments [9,10,17–23].
However, analytical explanations based on many-body
localization (MBL) [24] or prethermalization [25] do not
seem to apply to these cases. Recently, it was indicated that
quasiconservation laws [26,27], which can be enhanced by
single-particle terms, may help protect phenomena perti-
nent to DTCs. Meanwhile, the initial state dependence of
clean DTCs [26,28] has been reexamined in terms of scar
physics [29] in recent numerics [30,31]. Altogether, con-
tinued investigation on DTCs in nondisordered systems,
with the objectives of uncovering the underlying mecha-
nism that supports the DTC and the specific role of many-
body (vs. single-particle) effects, is warranted.
In this Letter, we gain insights on these two research

objectives by studying a small cluster of soft-core bosons

on driven trimerized kagome lattices, relevant to recent
experiments [32] and feasible for numerical verifications.
We find analytically that it is a class of quantum scars
protected by spatiotemporal translation invariance, dubbed
Floquet-Bloch scars (FBS), that gives rise to DTC behaviors
for sublattice density oscillations. FBSs identified here
neither exploit a static scar (i.e., PXP model [29,33,34])
nor end up with engineered static Hamiltonians. Instead,
these FBSs exhibit a unique DTC feature. Specifically, each
scar’s quasienergy may be shifted considerably under
perturbation. However, the interplay of strong interactions
and drivings equalizes the scar level shifts, which is proved
to all orders in our perturbative treatment. Then, the
quasienergy difference ω0 between FBSs remains invariant
and enforces the persisting 2π=ω0-periodic DTC. Rigid scar
level spacing here resembles the “spectral pairing rigidity"
for all Floquet eigenstates inMBLDTCs [1,16]. Also, such a
mechanism allows for rather generic perturbations compared
with preexisting scar models typically relying on micro-
scopic details to achieve configuration separations [29,33–
44]. Thus, our analytical solutions not only offer a more
definitive understanding of clean DTCmechanisms, but also
point out a new way of constructing scars showing peculiar
spectral orders characteristic of Floquet systems.
Model and phenomena.—We consider bosons evolving

under a Hamiltonian Ĥðtþ TÞ ¼ ĤðtÞ that is toggled
between two settings repetitively within each period T:

Ĥ1T=2ℏ¼ϕ1

X

r;μ≠ν
ifμν½ψ̂†

rμψ̂ rνþλψ̂†
rþeμ;μψ̂ rþeν;ν�; t∈ ½0;T=2Þ

Ĥ2T=2ℏ¼
X

r;μ

½ϕ2n̂rμðn̂rμ−1Þþθμn̂rμ�; t∈ ½T=2;TÞ: ð1Þ

PHYSICAL REVIEW LETTERS 129, 133001 (2022)

0031-9007=22=129(13)=133001(7) 133001-1 © 2022 American Physical Society

https://orcid.org/0000-0002-1904-1326
https://orcid.org/0000-0002-2591-4381
https://orcid.org/0000-0002-4845-5835
https://orcid.org/0000-0002-7264-8290
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.133001&domain=pdf&date_stamp=2022-09-19
https://doi.org/10.1103/PhysRevLett.129.133001
https://doi.org/10.1103/PhysRevLett.129.133001
https://doi.org/10.1103/PhysRevLett.129.133001
https://doi.org/10.1103/PhysRevLett.129.133001


Here, Ĥ1 describes the hopping of noninteracting bosons in
a trimerized kagome lattice with complex hopping ampli-
tudes, as shown in Fig. 1(a), while Ĥ2 describes the
combination of on site single-particle and interaction
energy shifts. Dimensionless parameters ðϕ1; λ;ϕ2; θμÞ
characterize the Floquet operator ÛF ¼ Pte

−ði=ℏÞ
R

T

0
dtĤðtÞ ¼

e−iĤ2T=2ℏe−iĤ1T=2ℏ. ψ̂ rμ and n̂rμ ¼ ψ̂†
rμψ̂ rμ are annihilation

and particle number operators respectively, for L2 unit cells
r ¼ m1e1 þm2e2 (m1;2 ¼ 0; 1;…; L − 1) and three subla-
ttices μ; ν ¼ 0, 1, 2. Here e1;2 are Bravais vectors for kago-
me lattices, and e0 ≡ 0. ifμν ¼ ð1þ 2e2πiðμ−νÞ=3Þ= ffiffiffi

3
p ¼

�i specifies the þi hopping directions in Fig. 1(a).
Note that

P
μ θμ ¼ 0 can always be achieved by sub-

tracting ðNb=3Þ
P

μ θμ from Ĥ2T=2ℏ, where total bosons
Nb ¼

P
rμ n̂rμ.

DTC dynamics obtained by exact diagonalization is brie-
fly shown in Fig. 1. When λ → 0, Ĥ1 enters the strongly
trimerized regime composed of disconnected triangles,
where π=2 fluxes equalize the spacing between single-
particle flat bands ωn ¼ 0;� ffiffiffi

3
p

ϕ1 (ÛFjωni ¼ eiωn jωni).
Then, ϕ1 ¼ 2π=3

ffiffiffi
3

p
leads to 3T ballistic oscillations for

particles Û†
Fψ̂

†
r;μ¼0;1;2ÛF¼ψ̂ r;μ¼1;2;0 breaking the Hamilto-

nian time translation symmetry of T, as in Fig. 1(a).
Frequencies given by single-particle physics are, of
course, unstable against perturbations. It is then the hall-
mark for DTC where strong interactions ϕ2 stabilize
the 3T periodicity without fine-tuning; see Fig. 1(b).
Late time dynamics can be further confirmed by the tempo-
ral correlation functions CðωÞ ¼ P∞

N¼−∞ðeiωN=2πÞ×P
nhωnjP̂ðNÞP̂ð0Þjωni ¼

P
mn δðω − ωmnÞAðωmnÞ for the

sublattice density bias, i.e., P̂ðNÞ ¼ ðÛ†
FÞNN−1

b

P
rðn̂r0−

n̂r1ÞÛN
F . Note that the summation N is over infinite

time without truncation. The spectral weight AðωmnÞ¼
jhωmjP̂jωnij2, ωmn ¼ ωm − ωn in Fig. 1(c) showing strong
peaks at frequencies ω0 → �2π=3þOð1=DÞ verifies
long-time oscillation periods 2πT=jω0j → 3T. The small
deviation Oð1=DÞ suppressed by Hilbert space dimension
D gives an envelop modulation in Fig. 1(b) as noticed
previously for both MBL [2,16] and clean [17] DTCs.
The above phenomena may be viewed from several

angles. Particularly, in the case of complete trimerization,
λ ¼ 0, the two-dimensional lattice breaks up into isolated
trimers. DTCs observed in this case are then explained
simply as that of a microscopic three-site chiral system
similar to Ref. [45]. If we were to regard intertrimer
coupling as simply opening up each one-trimer DTC to
an external bath composed of other trimers, we might
expect the overall DTC dynamics to be destroyed over short
time at λ ≠ 0 [46]. Yet, such expectations contradict results
in Figs. 1(b) and 1(c). Below, we offer an explanation that
DTCs in the coupled-trimer regime are stabilized by a
special class of scar Floquet eigenstates each spanning over
the entire two-dimensional lattice.
Identifying scars.—Quantum scars are rare nonergodic

eigenstates within an eigenstructure that is otherwise
thermalizing [47]. Numerical calculations confirm the
overall thermalizing, nonintegrable nature of our model
system. Specifically, we point to two signatures of non-
integrability: level-spacing statistics and entanglement
entropy.
Consider first the level spacing. Ordering quasienergies

as ωn < ωnþ1, following Ref. [48], we test for ergodicity by
calculating the level spacing ratios rn ¼ minðδn; δnþ1Þ=
maxðδn; δnþ1Þ for consecutive gaps δn¼ωnþ1−ωn. Clearly
from Fig. 2(a), except for a vanishingly small region in
proximity to single particle limit ϕ2 → 0, our model is
generically far from the integrable Poissonian case hri →
0.39. We also note a crossover between two ergodic
Gaussian orthogonal (GOE) or unitary (GUE) ensembles
purely by different drivings, an interesting feature previous
seen in spin models [49].
We next exploit the entanglement entropy (EE) to

examine each Floquet eigenstate jωni. Reduced density
matrices ρA ¼ TrBðjωnihωnjÞ for subsystem A [region
enclosed by highlighted paths in Fig. 2(b)] can be formed

(a) Lattice and phenomena

(c) Eigenstate correlations (b) Dynamics (m )

FIG. 1. (a) Trimerized kagome lattice and the schematic
illustration of DTC dynamics. Triangles with strong (weak)
bonds are denoted by black (gray) colors, with þi hopping
directions indicated by arrows. (b) Particle dynamics nμðNTÞ ¼P

rhψ inijðÛ†
FÞNnrμÛN

F jψ inii, with the initial state jψ inii at t=T ¼
1 when all particles locate at a single site r ¼ 0, μ ¼ 0. To
facilitate reading, data are grouped into three sets at t mod
3T ¼ 0, 1, 2 respectively. For comparison, the noninteracting
ϕ2 ¼ 0, L ¼ 3 case is plotted at all t in the upper panel as
translucent dots. (c) Temporal correlation functions indicating
infinite-time response frequencies (L ¼ 3). Unless denoted
otherwise, Nb ¼ 5, ϕ1 ¼ 2π=3

ffiffiffi
3

p
, λ ¼ 0.1, ϕ2 ¼ 1.1, and

θ1;2;3 ¼ ð0.1; 0.2;−0.3Þ.
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by tracing out the remaining part B in real space. The EE
Sent ¼ −TrðρA ln ρAÞ then shows that in both proximate-
integrable [Fig. 2(c)] and DTC [Fig. 2(d)] regimes, majority
eigenstates do exhibit the typical arch shape for Sent whose
values increase with Hilbert space dimensions [50]. The
narrow distribution of EE for eigenstates of similar qua-
sienergy in the DTC regime confirms that majority arch
eigenstates are ergodic [50], consistent with hri results
previously.
However, in the DTC regime, additional nonergodic

states are observed. As exhibited in Fig. 2(d), we identify
precisely 3L2 low Sent scar states (each scar dot in the figure
is L2-fold degenerate). Each set of scars separates from the
others by quasienergy jΔEj → 2π=3, corresponding exactly
to the DTC frequency in Fig. 1(c). The scaling of lowest EE
in Fig. 2(e) shows a system size L insensitive scar EE for
λ → 0. With increasing λ, a possible transition is observed
around λ0 ≈ 0.135 [51], after which all eigenstates
approach the volume law ergodic limit.
We have confirmed numerically that the parameters in

Fig. 2(c) give a rather short DTC lifetime, unlike the
lifetime shown in Fig. 1(b) for the parameters in Fig. 2(d). It
strongly indicates that the DTC behaviors here are inti-
mately associated with scars rather than (approximate)
overall integrability.
Analytical results for FBS.—To characterize these

quantum scars further, we work in the many-
body momentum basis [52] jk; fnr;μgi ¼
ð1=LÞ PL−1

m1;m2¼0 e
ð2πi=LÞðk1m1þk2m2Þjfnrþm1e1þm2e2;μgi cons-

tructed from Fock basis jfnrμgi¼
Q

rμ ½ðψ̂†
rμÞnrμ=

ffiffiffiffiffiffiffiffi
nrμ!

p �j0i.
Here fnrμg specifies occupation numbers at different sites,

and k ∼ k1;2 ¼ 0; 1;…; L − 1. Then, translation-invariant
ÛF are block diagonalized hk; fnrμgjUFjk0; fn0rμgi ∼ δk;k0 .
Each k sector would be shown later to host three scar states,
leading to the 3 × L2-fold scars in Fig. 2(d).
It is helpful to write down the solutionUFjk;l; fnrμgi ¼

eiEðl;fnrμgÞjk;l; fnrgi to Eq. (1) at the anchor point λ ¼ 0,

jk;l;fnrμgi¼
1ffiffiffi
3

p
X

m¼0;1;2

e−ið2πm3 l−αmÞjk;fnr;μþmmod 3gi; ð2Þ

Eðl;fnrμgÞ¼
2π

3
lþϕ2

X

rμ

nrμðnrμ−1Þ; l¼ 0;�1; ð3Þ

where α0 ¼ 0, α1 ¼
P

rμ θμnrμ, and α2 ¼
−
P

rμ θμnr;μþ2 mod 3. Each eigenstate populates three sub-
lattices μ ¼ 0, 1, 2 coherently, and therefore an arbitrary
Fock state jfnrμgi, usually taken as initial states, will
simultaneously overlap with all three branches l ¼ 0;�1
separating from each other by quasienergy jΔEj ¼ 2π=3.
Then, observables diagonal in the Fock basis, such as Ô ¼
n̂rμ or Ô¼P̂¼N−1

b

P
rðn̂r0−n̂r1Þ, will demonstrate an osci-

llation hÔiðtÞ∼c�1c2hk1;l1;fnrμgjÔjk2;l2;fnrμgie−iΔEt=Tþ
c:c: with periodicity 2πT=ΔE ¼ 3T.
Spectral pairing ΔE for the majority of eigenstates in

Eqs. (2) and (3) is, as expected, unstable against perturba-
tions. The crucial difference here from the disordered case
[1–3,16] is the uniform interaction strength ϕ2 in Eq. (3),
which results in an enormous Floquet emergent de-
generacy. Specifically, consider the combination Qa ¼
fðqðaÞj ; NðaÞ

j Þjj ¼ 1; 2;…;Mg for, i.e., qðaÞj copies of sites

each hosting NðaÞ
j ≥ 0 particles. In terms of the Hubbard

interaction ϕ2

P
rμnrμðnrμ−1Þ¼ϕ2

P
j q

ðaÞ
j NðaÞ

j ðNðaÞ
j −1Þ,

each Qa manifold contains degenerate levels of different
fnrμg as degðQaÞ ¼ ð3L2Þ!=QM

j¼1 q
ðaÞ
j !. The degeneracy,

though partially lifted by 2πl=3 in Eq. (3), leads to the
instability that a small perturbation could generally trigger
a reconstruction for extensive numbers of eigenstates in
Eq. (2) with different configurations fnrμg, leading to the
ergodicity as indicated by Fig. 2. Correspondingly, a Fock
initial state would overlap with large numbers of eigen-
states with different quasienergies without rigid spectral
pairings.
To identify FBS, we then seek manifolds with low

degeneracy. Except for a homogeneous distribution nrμ ¼
Nb=3L2 (deg ¼ 1) without dynamical signatures, the low-
est degenerate fnrμg deposits all Nb bosons into a single
site nrμ ¼ δr;r0δμ;μ0Nb. There are apparently 3L2 such fnrμg
with Nb bosons allocated into different sites ðr0; μ0Þ. They
compose the FBS eigenstates

jk;l;Nbi¼
1ffiffiffi
3

p
X

m¼0;1;2

e−ið2πm3 l−αmÞjk; fnrμ¼δr;0δμ;mNbgi;

ð4Þ

FIG. 2. (a) hri shows generic ergodicity. (b) Subsystem for
computing EE. (c) and (d) Eigenstate EE in (c) proximate-
integrable and (d) DTC regimes, where low-entropy scars
in (d) are highlighted by larger dots. (e) Lowest EE approaching
size-insensitive values at small λ and volume law Sent ∼
ðNsub=3L2Þ lnðDLÞ at large λ. Here DL is the total Hilbert space
dimension and Nsub the subsystem site number enclosed in (b).

Inset: ΔSent ¼ SðL¼3Þ
ent − SðL¼2Þ

ent near the crossing λ0 ≈ 0.135.
Unless specified otherwise, in all plots parameters are the same
as in Fig. 1. Blue (or red) colors denote L ¼ 2 (or L ¼ 3)
respectively.
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with quasienergy EscarðlÞ ¼ 2πl=3þ ϕ2NbðNb − 1Þ. The
3L2 FBSs equally partition into L2 conserved many-body
momentum k sectors, each hosting three scars with l ¼
0;�1. Spatial translation symmetry then forbids hybridiz-
ing eigenstates of different k, and temporal translation
symmetry protects the conserved quasienergy separa-
ting different l by jΔEj ¼ jEscarðlþ 1Þ − EscarðlÞj ¼
2π=3. Therefore, FBSs experience no degenerate-level
perturbations.
It still remains to consider nondegenerate perturbations.

In particular, the periodicity 2π of Floquet quasienergy
constrains the Hubbard-interaction gap for different Qa to
be of the order unity. Then, one may expect each scar level
to receive an energy correction ∼λ2 (of Fermi golden rule
type), resulting in fast detuning within t ∼ T=λ2 ∼ 100T for
λ ¼ 0.1. However, such estimations directly contradict
Fig. 1(b).
The resolution turns out to be that all three l ¼ 0;�1

scars are shifted identically, such that their quasienergy
difference, dubbed spectral pairing gap jΔEj ¼ 2π=3 [53],
is unchanged. In the Supplemental Material [54], we
construct the strong-drive perturbation theory. For concise-
ness, we illuminate the essential physics below by elabo-
rating results up to the second order in the perturbation
series, while higher orders cases are left to the
Supplemental Material [54].
Arrange a Floquet operator in the form UF ¼ U0U0,

whereU0 corresponds to Eq. (1) at λ ¼ 0, and perturbations
are factored into U0 ≡ eiλH

0
. For our purposes, it is more

than enough to take H0 as a generic hopping Hamiltonian
H0 ¼ P

Jrμ≠r0μ0 ψ̂
†
rμψ̂ r0μ0 . (See the Supplemental Material

[54] for the factorization process). Scar quasienergy cor-

rections eiẼscarðlÞ ¼ ei½EscarðlÞþ
P

∞
α¼1

λαEðαÞ
l � up to the second

order read as Eð1Þ
l ¼ hk;l; NbjH0jk;l; Nbi, Eð2Þ

l ¼
− 1

2

P0
ðl0;fnrμgÞ jhk; l0; fnrμgjH0jk; l; Nbij2 cotf½EscarðlÞ−

Eðl0; fnrμgÞ�=2g, where summation
P0

excludes the scar

eigenstate in consideration. Here, Eð1Þ
l ¼ 0 is trivially

identical for all l. Importantly, Eqs. (2)–(4) show that

each term for Eð2Þ
l depends only on the difference ðl − l0Þ.

Because of 2π quasienergy periodicity, quantum numbers l
in Eqs. (2) and (3) are only defined modulo 3. That allows

for shifting dummy indices l0 in the summation Eð2Þ
l1
≡P0

l0;fnrμg εðl1 − l0Þ ¼ P0
l0;fnrμg ε½l2 − ðl0 − l1 þ l2Þ� ¼

P0
l00;fnrμg εðl2 − l00Þ ¼ Eð2Þ

l2
, proving the equality of

energy corrections for all scars. The Supplemental
Material [54] also numerically verifies spectral pairing
rigidity for Eq. (1) and against more generic bilinear
perturbations.
Importantly, it is exactly the Floquet spectrum periodic-

ity that allows for shifting all three l’s in Eq. (3) by the
same integer and ends up with an identical set of levels,
which is crucial for the above proof. In the Supplemental

Material [54], we prove that the spectral pairing rigidity
persists to all perturbation orders for FBSs. Therefore,
OðL2Þ initial states overlapping with multiple FBSs sepa-
rating by a rigid ω0 ¼ 2π=3T will exhibit persisting
2π=ω0 ¼ 3T DTC oscillations.
Analytical identification of FBSs and proof for their

spectral pairing rigidity are the main results of our Letter.
They rely on three pivotal factors. First, strong interactions
validate the starting point from Eqs. (2) and (3) for kicked
Fock states. Second, strong Floquet drivings produce three
identical l ¼ 0;�1 spectral plethora at λ ¼ 0, and the 2π
quasienergy periodicity intrinsic of Floquet nature enables
the rigid spectral pairing for FBS against perturbations.
Third, spatiotemporal translation symmetry prevents FBS
from mutual hybridization. Therefore, FBSs describe
genuine strongly interacting Floquet matters in clean
systems.
Numerical verification.—Revisiting previous numerics

can now be illuminating. Spectral function peaks in
Fig. 1(c) derive from pairs of FBSs in Eq. (4),
Aðω0Þjλ→0 ¼ jhk;l1; NbjP̂jk;l1 � 1; Nbij2 ¼ 1=3, jω0j ¼
2π=3. The spectral pairing rigidity then stabilizes jω0j
against perturbation up to finite size effects, resulting in
DTC oscillations in Fig. 1(b). Also, Eq. (4) prescribes an
L-independent EE for FBS at λ → 0 (see the Supplemental
Material [54] for analytical calculation) as in Fig. 2(e).
Finally, we offer an efficient way to benchmark FBS by

exploiting their peculiar k space localization. A natural
measure is then the momentum space inverse participation
ratio IPR ¼ P

fnrg jhk; fnrμgjωnij4, where scars would
show exceptionally large IPR as in Fig. 3(a). Because of
the absence of degenerate level hybridization, the original
scar components in Eq. (4) still dominate upon perturbation

FIG. 3. Structure of Floquet eigenstates in k ¼ 0 sector. Other k
sectors show essentially the same results. (a) Most eigenstates
involve an extensive number of basis jk; fnrμgi leading to
vanishing IPR, except for the three FBSs. (b) Expand for instance
one FBS in the basis jk; fnrμgi; we see it is dominated by three
components depicted in (c), exactly as given by Eq. (4). (d) Scal-

ing of the maximal IPR, where ΔIPRmax ¼ IPRðL¼3Þ
max − IPRðL¼2Þ

max

in the inset. Parameters are the same as in Fig. 1, and L ¼ 3 for
(a) and (b).
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as in Figs. 3(b) and 3(c). The scaling of the largest IPRs in
Fig. 3(d) reproduces the reference transition λ0 ≈ 0.135 as
in Fig. 2(e).
Experimental relevance.—Small clusters studied above

can be readily realized using the latest technology of
quantum gas microscopes [62–64], which allows for
manipulation and detection with single-site resolutions.
We now further discuss cases with finite filling fractions
relevant to wider ranges of experiments.
In principle, previous analytical results show that initial

states populating more than one unit cell will chiefly
overlap with nonscar ergodic eigenstates. Therefore, a
finite filling fraction among all unit cells will eventually
lead to a thermalizing behavior without dynamical signa-
tures. However, there could exist a finite and predictable
time window before decay to observe the scar DTCs due to
scar localization.
To show it, we first take a closer look at Fig. 1(b). The

initial state of putting Nb bosons on one site overlaps with
all FBSs [perturbed Eq. (4)] in different ðk;lÞ sectors; they
interfere destructively everywhere except for the unit cell
r ¼ 0, resulting in a real-space localization. As such, two
scar DTCs localized in different regions will take time to
sense the presence of and affect each other ϕ2nolðnol −
1Þt0 ∼ 1 by interactions, giving rise to the characteristic
timescale t0 to observe DTCs before decays. Here nol is the
density overlap for two scar DTCs hypothetically left alone
in a lattice. Then, one can predict that larger distance gives
a smaller density overlap nol, which prolongs the scar DTC
lifetime. Such expectations are verified numerically in the
Supplemental Material [54] for two lattice settings relevant
to the Berkeley platform. It confirms the possibility of
observing DTC signatures with finite filling fractions over
the experimentally accessible time, and further points out
theoretically the controlling parameter for the DTC lifetime
therein: the distance of initially populated cells.
Conclusion.—We show a distinct DTC phenomenon

enforced by the analytically discovered FBSs. Its intrinsic
Floquet and many-body nature stabilize spectral pairings
against translation-invariant bilinear perturbations. More-
over, the new scheme of checking Floquet emergent degen-
eracy and scar spectral pairing indicates a possible procedure
to unveil the long-sought universal mechanism behind clean
DTCs in arbitrary dimensions. It is also tantalizing to
incorporate more intricate crystalline spacegroup sym-
metries aside from translations into designing DTCs with
unique structures and phenomena in clean systems.
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