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SU(2) gauge theory with Nf ¼ 24 massless fermions is noninteracting at long distances, i.e., it has an
infrared fixed point at vanishing coupling. With massive fermions, the fermions are expected to decouple at
energy scales below the fermion mass, and the infrared behavior is that of confining SU(2) pure gauge
theory. We demonstrate this behavior nonperturbatively with lattice Monte Carlo simulations by measuring
the gradient flow running coupling.
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Introduction.—Non-Abelian gauge field theories are at
the core of the standard model of particle physics, as well as
many of its extensions. The behavior of these theories is
largely dictated by their fermionic matter content. Because
of their applications in beyond standard model scenarios,
asymptotically-free theories with an infrared fixed point
[1–4] have recently attracted attention. On the lattice, the
properties of these types of theories have been studied for
SU(2) gauge theory with matter fields in the fundamental
[5–9] or adjoint [10–18] representation.
Much less is known about the dynamics of theories that

are not asymptotically-free, i.e., where the coupling con-
stant does not vanish at high energies. For SUðNÞ gauge
theory with fundamental representation Dirac fermions this
happens when the number of fermions Nf is larger than
11N=2. While these theories are not directly relevant for the
standard model, they pose a challenge for our under-
standing of the gauge field dynamics and the applicability
of lattice computation methods.
More concretely, let us consider the evolution of the

coupling constant in SU(2) gauge theory with Nf ¼ 24
Dirac fermions. If fermions are massless, the theory is
noninteracting at long distances, i.e., it has an infrared (IR)
fixed point at vanishing coupling [19,20]. At shorter
distances (high energy) the coupling is expected to grow
until it diverges at an ultraviolet (UV) Landau pole. This
conclusion is supported by our earlier study of the
evolution of the coupling with massless fermions [21].

A nonvanishing fermion massm introduces an additional
scale to the system. While the UV properties remain to a
large extent unaffected by this, the IR physics changes
dramatically: fermions are expected to decouple at energy
scales μ ≪ m (distance scales λ ≫ 1=m), and the theory
behaves like a confining pure gauge SU(2) theory with
coupling that grows in the infrared. Thus, the expectation is
that the coupling constant has a minimum near energy scale
μ ∼m (λ ∼ 1=m). In terms of the renormalization group
evolution, the gauge coupling is an irrelevant parameter and
the mass is a relevant parameter at this minimum.
In this Letter, we measure the evolution of the coupling

constant nonperturbatively on the lattice as the fermion mass
is varied. We observe unambiguously the fermion decou-
pling and the reversal of the coupling constant evolution.
The results agree well with the perturbative predictions in
background field momentum subtraction (BF-MOM)
[22,23] and massive gradient flow [24–26] schemes.
Together with the mass spectrum and scaling laws measured
in Ref. [30], this gives us a consistent nonperturbative
picture of the behavior of the theory from IR to UV scales.
Perturbative renormalization group evolution.—In a

mass-dependent renormalization scheme, the evolution of
the coupling constant g2 and the mass m are, in general,
determined by a pair of renormalization group (RG)
equations,

dg2

d logðλÞ ¼ −βðg2; λmÞ; ð1aÞ

d logðmÞ
d logðλÞ ¼ γðg2; λmÞ; ð1bÞ

where β and γ in (1) depend on λm ¼ m=μ, i.e., on λ
relative to the scale 1=m set by the fermion mass. In a
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perturbative expansion, the expressions for the mass-
dependent β and γ can be written as

βðg2; λmÞ ¼ −2g2
X∞

n¼0

βnðλmÞ
�

g2

ð4πÞ2
�

nþ1

; ð2aÞ

γðg2; λmÞ ¼
X∞

n¼0

γnðλmÞ
�

g2

ð4πÞ2
�

nþ1

: ð2bÞ

We employ the BF-MOM scheme in the Landau gauge
[22]. We use the two-loop result from [23], where the
fermion mass dependency in the BF-MOM scheme is
implemented in terms of a pole mass [31]. The two-loop
running coupling can therefore be determined form the beta
function alone, with the first two coefficients given by

β0ðλm0Þ ¼
11

3
CG −

4

3
TRNfb0ðxÞ; ð3aÞ

β1ðλm0Þ ¼
34

3
C2
G − TRNfb1ðxÞ; ð3bÞ

with x ¼ −1=ð2λm0Þ2 and m0 as the fermion pole mass.
For SU(2) gauge theory CG ¼ 2 and for fundamental
representation fermions TR ¼ 1=2. The expressions for
the coefficients b0ðxÞ and b1ðxÞ can be found in [23].
In Fig. 1 we illustrate the behavior of the two-loop

massive β function as function of the running coupling
(top) and the running coupling itself as a function of the
length scale (bottom). The evolution curves are obtained
by integrating Eq. (1a) numerically (see Supplemental
Material [26]) with (3), starting from initial values ðg2; λÞ ¼
ðg20; λ0Þ. As Eq. (1) depends merely on the product of
fermion pole mass m0 and length scale λ, we set λ0 ¼
1=ð2m0Þ. The different trajectories correspond to different
choices of g20.
We note that the β functions have zeroes at 2λm0 ≈ 1.

These correspond to local minima of the coupling, not to
fixed points, because βðg2; λm0Þ is vertical here. Our choice
of the initial value g20 is very close to the minimum value of
the coupling along the evolution curve.
As an example, the evolution curves with g20 ¼ 1.6 are

highlighted in Fig. 1. For comparison, the figures also show
the corresponding asymptotic cases of Nf ¼ 24 massless
fermions and pure gauge (infinitely heavy and therefore
completely decoupled fermions).
Lattice setup.—We simulate a SUð2Þ gauge theory

coupled to Nf ¼ 24 mass-degenerate dynamical fermions
in the fundamental representation. The corresponding
lattice action can be summarized as follows:

S ¼ SGðUÞ þ SFðVÞ þ cSWSSWðVÞ; ð4Þ

where U represents SU(2) gauge link matrix in the
fundamental representation, V is the corresponding

hypercubically truncated stout smeared link matrix (HEX
smearing) [32], SG is the Wilson gauge action, and SF and
SSW are, respectively, the Wilson fermion action and clover
term with Sheikholeslami-Wohlert coefficient cSW ¼ 1 [17].
Simulations are carried out using a hybrid Monte Carlo

(HMC) algorithm with leapfrog integrator and chronologi-
cal initial values for the fermion matrix inversion [33].
The HMC trajectories have unit length and the number of
leapfrog steps is set to yield acceptance rates above 80%.
The lattice quark mass is determined via the partially

conserved axial-vector current (PCAC) relation

amq ¼
ð∂�4 þ ∂4ÞfAðx4Þ

4fPðx4Þ
����
x4¼L=2

; ð5Þ

FIG. 1. Top: two-loop β functions for Nf ¼ 0 theory (blue,
short-dashed) and massless (red, long-dashed) and massive
(solid, black) Nf ¼ 24 theories. The massive running coupling
reaches the minimum value of g2 ¼ g20 ¼ 1.6 at 2m0λ0 ≈ 1.
Bottom: couplings g2 as functions of the length scale λ, obtained
by integrating the β and γ functions. The integration constants
have been set to match the asymptotic behavior. In both panels we
show the evolution when λ decreases or increases by a factor of
10. The solid gray lines show the curves for the massive Nf ¼ 24

theory for different values of g20. For g
2
0 > 1.6, g20 changes by

Δg20 ¼ 0.4 between successive curves, whereas for g20 < 1.6, g20
changes by Δg20 ¼ −0.2.
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where a is the lattice spacing, ∂4 and ∂
�
4 are forward and

backward lattice time-derivative operators, and fA and fP
are axial and pseudoscalar current correlation functions
[34]. Equation (5) receives an OðaÞ correction, but for
smeared quarks it is very small and we omit it here. The
bare quark mass from (5) is multiplicatively renormalized;
however, the renormalization is expected to vary little as the
coupling is changed (see, e.g., [35]), and for our purposes
the bare mass is sufficient [26].
We use the running coupling in the nonperturbative

gradient flow (GF) scheme [36–38]. In the continuum, it
can be written as function of length scale λ as [36]

g2GFðλÞ ¼
2π2λ4hEðλÞi
3ðN2 − 1Þ ; ð6Þ

with hEðλÞi being the flow-evolved gauge action at flow
time t ¼ λ2=8. On a lattice of size L4 with periodic
boundary conditions for the gauge field, we use

g2GFðλL; LÞ ¼
2π2λ4LhEðλL; LÞi

3ðN2 − 1Þ½1þ δL=aðλL=LÞ�
; ð7Þ

as an estimator for Eq. (6), with lattice flow scale λL. Here
hEðλL; LÞi is the expectation value of the clover energy
of the flow-evolved lattice gauge field after flow time
t ¼ λ2L=8, and

δNðcÞ ¼
� ffiffiffi

π
p

c
XN=2−1

n¼−N=2

e−½Nc sinðπn=NÞ�2
�

4

−
π2c4

3
− 1 ð8Þ

is a finite volume and finite lattice spacing correction for
hEðλL; LÞi. Equation (8) is obtained from the correspond-
ing expression in [39] by replacing continuum with lattice
momenta (cf. [40]). The flow is governed by the Lüscher-
Weisz action [41].
To relate the GF scheme from Eq. (6) to the BF-MOM

scheme from Fig. 1, we make use of the quark-mass-
dependent one-loop expression for hEðλÞi from [24] to
derive [25] the leading coefficient of a perturbative expan-
sion of the mass-dependent GF scheme beta function

β0;GFðg2GF; λmÞ ¼ β0 þ
4

3
TRNfx

dΩ1qðxÞ
dx

; ð9Þ

where β0 is the (universal) leading coefficient of the
massless MS scheme, x ¼ −1=ð2mλÞ2, and Ω1q is given
in [24], or with our conventions in the Supplemental
Material [26]. As the renormalization group equations (1)
do not fix the overall scale in either scheme, their respective
scales λGF and λBFM should be related by a rescaling of the
form λGF ¼ ρsλBFM. To determine ρs, we require that, for a
given quark mass, the behavior of the running coupling
near the corresponding decoupling point (where the beta

function changes sign) is as similar as possible [26] in the
two schemes. At the one-loop level, this leads to the
matching criterion

β0;BFMðλ0m0Þ ¼ β0;GFðλ0m0ρsÞ; ð10Þ

where β0;BFM is the leading BF-MOM beta function
coefficient from Eq. (2), and λ0 ¼ 1=ð2m0Þ is the approxi-
mate decoupling scale in the BF-MOM scheme. This yields

ρs ¼ 2.5359…: ð11Þ
Results.—Most of our analysis is done using ensembles

of lattices of size V ¼ L4, L ¼ 48a, with smaller lattices
used for finite size analysis. These ensembles were used
for the spectrum analysis in [30]. The bare lattice gauge
coupling is parametrized with β ¼ 4=g20;lat, and we use
values β ¼ 0.25, 0.001, and −0.25. Because Wilson fer-
mions induce a positive shift in effective β [42,43], very
small and even negative values of β are needed to
compensate for this effect with large numbers of fermions.
The simulation parameters and the measured PCAC quark
masses are listed in Table I.
In Fig. 2 we show examples of g2GFðλLÞ for β ¼

0.25; 0.001 and three different values of mq, each. The
switch from the light quark behavior (left column), where
the coupling decreases with distance, to the heavy quark
behavior (right column) with increasing coupling is evi-
dent. We compare with the two-loop perturbation theory by
fitting g20 and λ0m0 to match g2GF. In effect, the fit procedure
achieves the relative multiplicative renormalization
between λm0 in BF-MOM scheme and λLmq on the lattice.
For concreteness, we set λ0 ¼ a so that λ ¼ λL and

determine the pair ðg20; m2
0Þ corresponding to a given pair

ðβ; mqÞ by a least-squares fit. The fit is carried out over the
range λL=a ∈ ½4.8; 20�. Thus, on a given lattice, we are able
to follow the evolution of the coupling over a scale factor of
4. The fit between the lattice data and the perturbative
coupling is, in general, very good, well within the statistical
error of each g2GF curve, with the exception of the largest
couplings g2GF ≳ 10. The fit parameters are listed in Table I.
We have checked the finite volume effects by analyzing

g2GF on lattices with L=a ¼ 32, 40, and 48. The volume
dependence is small and for λL=L ∈ ½0.1; 0.4� within the
statistical errors; an example of this is shown in Fig. 3.
Thus, we do the final analysis using only the largest volume
results.
From Table I we can observe that amqrs ∼ λ0m0 with

rs ≈ 0.4–0.5 in all cases where the fit is reliable (at very
smallmq the fit becomes compatible with a vanishing quark
mass). This suggests that the relative scale renormalization
between the lattice and the BF-MOM scheme is approx-
imately constant in the studied range and the rescaling
factor rs ¼ 1=ρs can be considered compatible with
Eq. (11) with the given systematic uncertainties.
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FIG. 2. The measured gradient flow running coupling (green bands), obtained on a V ¼ ð48aÞ4 lattice at β ∈ f0.25; 0.001g at three
quark masses mq, to which two-loop running coupling is fitted (solid black line). The gradient flow length scale λL is shown in interval
λL=a ∈ ½4.8; 20�. In comparison, the matched pure gauge SU(2) (blue dotted line) and Nf ¼ 24, mq ¼ 0 (red dashed line) couplings are
also shown.

TABLE I. Simulation parameters, PCAC quark mass, fitted g20 and m0 (where fit was possible), ratio
rs ¼ λ0m0=ðamqÞ, HMC acceptance (Acc.), and the total number of gauge configurations used in the analysis.
The indicated uncertainties are statistical (Stat.) ones.

β κ amq g20 λ0m0 rs Acc. Stat.

−0.25 0.1309 0.0202(1) 1.783(2) 0.010(1) 0.50 0.91 1.3 × 103

−0.25 0.129 0.1001(1) 2.002(4) 0.052(1) 0.52 0.91 2.9 × 103

−0.25 0.1277 0.1608(1) 2.192(6) 0.083(1) 0.52 0.9 3.0 × 103

−0.25 0.1263 0.2266(1) 2.47(2) 0.111(2) 0.49 0.91 3.2 × 103

−0.25 0.125 0.3013(2) 2.74(3) 0.156(3) 0.52 0.91 3.3 × 103

−0.25 0.123 0.4546(3) 4.05(4) 0.203(3) 0.45 0.91 3.5 × 103

0.001 0.1299 0.0170(1) 1.664(2) 0.016(1) 0.94 0.92 2.1 × 103

0.001 0.129 0.0517(1) 1.760(2) 0.022(1) 0.43 0.93 1.3 × 103

0.001 0.125 0.2179(1) 2.191(6) 0.105(1) 0.48 0.92 3.2 × 103

0.001 0.12 0.5074(3) 3.44(5) 0.239(5) 0.47 0.93 3.6 × 103

0.25 0.129 0.0151(1) 1.573(2) 0.011(1) 0.73 0.91 1.9 × 103

0.25 0.125 0.1658(1) 1.929(5) 0.068(1) 0.41 0.93 2.9 × 103

0.25 0.12 0.3853(1) 2.49(2) 0.170(3) 0.44 0.93 3.6 × 103

0.25 0.115 0.7534(7) � � � � � � � � � 0.94 3.4 × 103
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In Fig. 4 we plot all measurements of g2GF against
2mqλL=ρs, with ρs from Eq. (11), overlaid with the
perturbative g2 from Fig. 1. There are no fitted parameters.
The lattice data follow the two-loop perturbative curves
remarkably well, independent of the value of β. We have
verified that the two-loop BF-MOM running coupling
should be a good approximation to the perturbative massive
RG running coupling [26]. There are cases where simu-
lation results with different β and mq fall on curves that
are very close to each other. Since different values of
β and mq imply, in general, different lattice spacings, this

demonstrates that the results scale when the lattice spacing
is varied. In contrast to the asymptotically-free lattice QCD,
the lattice spacing becomes smaller when β is decreased,
and the theory does not have a continuum limit because of
the UV Landau pole.
Conclusions.—Using SU(2) gauge theory with Nf ¼ 24

fermions of mass m, we have presented a clear non-
perturbative demonstration of the decoupling of fermions
at distance scale ∼1=m. At the same time, the behavior of
the theory changes dramatically: at smaller distances, the
theory behaves as IR trivial, nonasymptotically-free theory,
with coupling decreasing with distance, whereas at longer
distances it behaves like pure gauge SU(2) theory with
increasing coupling. Together with the study of the exci-
tation spectrum in this theory [30], this provides a con-
sistent nonperturbative description of the behavior of the
theory from IR to UV scales.
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