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A light scalar field framework of dark energy, sometimes referred to as quintessence, introduces a fifth
force between normal matter objects. Screening mechanisms, such as the chameleon model, allow the
scalar field to be almost massless on cosmological scales while simultaneously evading laboratory
constraints. We explore the ability of existing mechanical systems to directly detect the fifth force
associated with chameleons in an astrophysically viable regime where it could be dark energy. We provide
analytical expressions for the weakest accessible chameleon model parameters in terms of experimentally
tunable variables and apply our analysis to two mechanical systems: levitated microspheres and torsion
balances, showing that the current generation of these experiments have the sensitivity to rule out a
significant portion of the proposed chameleon parameter space. We also indicate regions of theoretically
well-motivated chameleon parameter space to guide future experimental work.
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Introduction.—Multiple cosmological measurements
[1–4] indicate the presence of a novel negative-pressure
fluid with a constant energy density that dominates the
energy budget of the Universe during the present epoch [5].
There is no consensus on the theoretical framework for the
composition, properties, or production mechanism of this
fluid, known as dark energy (DE), which could be
responsible for the observed accelerated expansion of the
Universe [6,7]. Theoretical approaches for building a DE
framework typically involve the introduction of light scalar
fields or modifications to general relativity [5–8]. In order
to explain the observed cosmic acceleration, both scenarios
must contend with new degrees of freedom mediating long-
range forces between standard model (SM) particles. A
variety of experiments have placed tight constraints on the
long-range fifth force between SM particles due to such
scalar fields. These constraints can be evaded by a class of
theories known as “screened-scalar” models [7,9–17] such
as the chameleon model.
In the chameleon model, the effective mass of the

chameleon field is dynamically modified by terms that
depend on the local matter density [7,10,18]. This allows
the scalar field to remain light on cosmic scales, yet heavy in
laboratory environments, where screening suppresses the
fifth force, evading detection. The strong dependence on the
local matter density causes the chameleon field and corre-
sponding force between twoobjects to be extremely sensitive
to the local geometry and surrounding environment.
Supplementing observational constraints on screened-

scalar models [19–29], the best laboratory constraints on
the chameleon model come from the Eöt-Wash torsion

pendulum [30,31] and atom interferometry experiments
[32]. The Eöt-Wash torsion pendulum is able to position
large source and test masses with micron separations,
providing excellent constraints on scalar field mediated
forces. However, these large masses make it difficult to
probe stronger chameleon coupling strengths because of
screening. Atom interferometry experiments can access a
complementary chameleon parameter space using smaller
test masses. However, they are limited to stronger coupling
strengths because the small masses result in a correspond-
ingly small chameleon force. Precision measurement
experiments with intermediate size masses are uniquely
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FIG. 1. Schematic of mechanical systems considered here to
detect the chameleon mediated force between matter. In both
cases, M1 is the gold source mass, while M2 is the mechanically
compliant test mass. We consider (a) torsion balance and
(b) optically levitated microspheres as sensors of chameleon
DE. The blue curves show the two-body chameleon field profile.
The levitated microsphere is enlarged to show detail.
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suited to fill the resulting gap in the existing chameleon
constraints. However, there is little theoretical guidance to
help design such experiments, particularly targeting the
astrophysically viable regime where the coupling between
chameleons and normal matter is comparable to or weaker
than that due to gravity.
In this Letter, we present a theoretical treatment of

mechanical systems as sensors of the fifth force associated
with chameleon DE. Considering spherically symmetric
masses, we provide analytical expressions for the weakest
accessible chameleon field phenomenology parameters
(such as the self-interaction strength and coupling to
normal matter) in terms of experimental parameters such
as size, distance between spheres, and the minimum
detectable force. Our expressions provide a straightforward
pathway to estimate the performance of existing devices
and scaling arguments useful for design considerations of
future devices, without the need for numerically intensive
solutions.
We then discuss two classes of spherical mechanical

systems: levitated microspheres and Cavendish-style tor-
sion balances. Both systems have demonstrated exceptional
sensitivity to weak forces [33–35] and there has been some
work considering microspheres as potential probes for
scalar and screened-scalar fields [36–39]. Using a novel
analytical treatment allowing us to consider systems with
larger masses, we show that for both mechanical systems,
the current generation of experiments have the sensitivity to
put new constraints in a region of interest to cosmology,
possibly ruling out chameleons as DE. We also present the
region of phenomenologically motivated chameleon DE
parameter space that future experiments could be optimized
to target.
Chameleon model.—The chameleon force between

two objects of masses M1 and M2 can be approximated
by [40,41]

FchamðxÞ ¼ 2α
GM1M2

x2
λ1λ2

�
Mp

M

�
2

; ð1Þ

where M is the chameleon-matter coupling, Mp is the
reduced Planck mass, x is the center of mass separation
distance, λ1;2 are the chameleon screening factors associ-
ated with each object, and α is a dimensionless factor (see
below). The screening factors are given by [41]

λi ¼
8<
:

1; ρiR2
i < 3Mϕbg;

≈
3Mϕbg

ρiR2
i

; ρiR2
i > 3Mϕbg;

ð2Þ

where ϕbg ¼ ðnMΛ4þn=ρbgÞ1=ðnþ1Þ is the background value
of the chameleon field, Ri and ρi are the radius and density
of the object. The background field value ϕbg depends on
the background density ρbg, the chameleon self-interaction

coupling Λ, and the power-law index n. The coupling
parameters M, Λ, and n, which come from the chameleon
equation of motion,

∇2ϕ ¼ −
Λ4þn

ϕnþ1
þ ρ

M
; ð3Þ

are the three independent parameters of the chameleon
model. As Eq. (2) demonstrates, with all other parameters
held fixed, a larger or more dense object will be screened
more relative to a smaller, less dense one. Additionally,
increasing the density surrounding an object will cause
more screening. It is this screening mechanism which
prevents observations of the chameleon force between
macroscopic objects.
The chameleon force between two objects derived in

Refs. [39–41] assumes a mass hierarchy between the source
and test mass such that the two-body field solution can
be approximated by a superposition of the respective one-
body solutions. We found that when both masses are of a
similar scale, this approximation breaks down. However,
this similar scale regime is of interest because, as shown
below, experiments operating in this regime can be used to
set new bounds on the chameleon parameter space.
In order to derive an expression for the chameleon

force that does not assume a mass hierarchy, we start
with a new ansatz approximating the two-body field
solution as the product of the one-body solutions,
ϕðxÞ ≈ ϕ1ðx − x1Þϕ2ðx − x2Þ=ϕbg. This approximation
bridges the gap in parameter space where the assumption
of approximate linearity in the equation of motion and two-
body solution breaks down. Instead, we choose to approx-
imately balance the nonlinear term with the source terms as
the zeroth order approximation which yielded the multi-
plicative form of the ansatz (see Supplemental Material for
more details [42]). Taking the same approximations used in
Ref. [41], we found a force expression that matched the
previous result (α ¼ 1) [39–41] except in the regime where
both spheres are strongly perturbing. In this case, our force
is smaller by a factor of α ¼ 1=6. To ensure the validity of
the proposed constraints below, the multiplicative ansatz
was compared with the numerical field solution over the
entire parameter space probed by the proposed torsion
balance system.
First, we consider chameleon DE models by fixing

Λ ¼ ΛDE ∼ 2.4 × 10−3 eV [3]. The free parameters are
the chameleon-matter couplingM and the power-law index
n. For laboratory scale experiments with a minimum force
sensitivity Fmin, setting Fcham ¼ Fmin yields an analytic
expression for the maximumM value that can be probed by
the experiment,

Mmax

Mp
¼

�
32π2

9

Gρ1ρ2
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All parameters on the right side of the equation are in
Systeme International (SI) units including the surface
separation distance s. The minimum detectable force
Fmin may depend on the radius of the test mass. Where
M ¼ Mmax, both the source and test mass are unscreened
(λ1;2 ¼ 1) and the chameleon force is independent of n and
Λ. Additionally, the maximum n value can be found
numerically by solving the following equation,

Fmin ¼ 4πξ2
R1R2

ðsþ R1 þ R2Þ2
�

1

ℏc

�ðnmaxþ6Þ=ðnmaxþ2Þ

× ½nmaxðnmax þ 1ÞðΛDEÞ4þnmaxL2� 2
nmaxþ2: ð5Þ

Here, all parameters are in SI units. The dimensionless
factor ξ is a constant which characterizes the geometry of
the vacuum chamber. For a spherical vacuum chamber of
radius L, ξ ¼ 0.55 − 0.68, which was found numerically in
Ref. [44] in addition to other vacuum chamber geometries.
Beyond dark energy (i.e., Λ ≠ ΛDE), chameleon screen-

ing could hide scalar fields appearing in string theory
inspired scenarios beyond the standard model [45,46].
Focusing on n ≥ 1, analytic expressions can be found
for the maximum M and minimum Λ values that can be
probed by a particular experiment.Mmax is given by Eq. (4)
and Λmin by

Λmin ¼
�
Fmin

4πξ2
ðsþ R1 þ R2Þ2

R1R2

�
3=10

�
1

L

�
2=5 ðℏcÞ7=10

1.6 × 10−19
:

ð6Þ

Here, Λ is in eV, and all parameters on the right side of the
equation are in SI units.
Experiment.—Figure 1 illustrates a simplified schematic

for a general fifth force experiment. The force between two
masses is inferred by measuring the position of a test mass
M2 (modeled as a harmonic oscillator) with radius R2,
in response to the force exerted on it by a source mass M1

with radius R1. The position of the source mass is made to
oscillate to avoid low frequency noise, resulting in an
oscillating force signal FðtÞ on the test mass. With resonant
amplification and sufficiently low-noise displacement read-
out, a force measurement will be limited by thermome-
chanical noise in the oscillator.
A harmonic oscillator with dissipation Γ0 and effective

mass m0, operating at a finite temperature T, will have a
thermal force noise spectrum SthFFðfÞ ¼ 4kBTm0Γ0. We
have approximated the force signal as monochromatic, and
the signal to noise ratio for a coherent signal over stochastic
noise can be improved by averaging down the variance in
the noise floor over a longer measurement time τ, so that
the thermally limited minimum detectable force is

Fmin ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SthFF=τ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBTm0Γ0=τ

p
: ð7Þ

While this expression holds irrespective of the source or
test mass geometries, we consider the specific case of
spherical masses, for which an analytical expression for the
force due to a chameleon field is provided by Eq. (1).
Multiple existing force sensors with spherical test masses

are capable of performing thermally limited force mea-
surements, achieving low enough sensitivities to probe
chameleon dark energy models [31,35,47–51]. In Figs. 2
and 3, we plot the estimated constraints that can be set on
chameleon models by two classes of sensors: optically
levitated microspheres and torsion balances.
The blue shaded regions in Figs. 2 and 3 demonstrate the

estimated reach of levitated microspheres, where the test
mass is a silica sphere with radius R2 ¼ 5 μm that is
confined within a harmonic potential via optical trapping.
Such sensors operating in high vacuum have been shown to
achieve attonewton=

ffiffiffiffiffiffi
Hz

p
force sensitivities [50]. For

simplicity, we assume gas damping (due to collisions with
the surrounding gas molecules) as the dominant dissipation
mechanism giving rise to thermomechanical noise. In a
vacuum chamber at pressure 10−6 mbar and temperature
T ¼ 300 K, we estimate Γ0 ≈ 10−4 s−1 from an expression
in Ref. [37] for gas damping. This yields a thermally
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FIG. 2. Projected constraints from levitated microspheres (blue)
and torsion balances (orange) as chameleon dark energy detec-
tors, where the chameleon self-coupling is fixed at Λ ¼ ΛDE. In
this plot, we consider a microsphere system with R1 ¼ 5 μm,
s ¼ 0.5 mm, and Fmin ¼ 10−21 N, and a torsion balance system
with R1 ¼ 0.1 mm, s ¼ 0.6 mm, and Fmin ¼ 4 × 10−18 N. For
both systems, the solid (dashed) black line corresponds to source
a mass with R1 ¼ 1 mm (0.1 mm). The multiplicative ansatz and
force expression are used to generate the torsion balance curves in
the region where the additive ansatz breaks down. Existing
constraints from Ref. [16], which include results from
Refs. [24,26,30,32], are shown in gray. See Ref. [42] for a
qualitative description of chameleon constraint plots.
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limited force sensitivity of 10−18 N=
ffiffiffiffiffiffi
Hz

p
, and a minimum

detectable force of 10−21 N for a τ ¼ 2 week measurement.
To supplement the projected constraints from levitated

microspheres, we also consider torsion balances, whose
larger test masses enable them to probe weaker chameleon-
matter couplings (larger M). A simple Cavendish-style
torsion balance [35] consists of equally sized spheres,
connected by a rod of negligible mass, which is suspended
at its center by a torsion fiber and placed in a vacuum
chamber. One of the spheres serves as the test mass M2,
while the balance as a whole forms a harmonic oscillator
with effective mass m0 ≈ 2M2 and quality factor
Q0 ¼ 2πf0=Γ0. Westphal et al. [35] have demonstrated
that such torsion balances have the ability to make measu-
rements near the thermal limit, achieving piconewton=

ffiffiffiffiffiffi
Hz

p
force sensitivity. In Figs. 2 and 3, the orange regions
correspond to the estimated constraints that can be set on
chameleon models by torsion balances operating at pres-
sure 10−6 mbar and temperature T ¼ 300 K, assuming a
quality factor of Q0 ¼ 10 and a torsional resonance

frequency of f0 ¼ 5 mHz. In Fig. 2 (Fig. 3) we consider
a gold test mass R2 ¼ 0.1 mm (R2 ¼ 1 mm), achieving a
thermally limited force sensitivity of 4 × 10−15 N=

ffiffiffiffiffiffi
Hz

p
(10−13 N=

ffiffiffiffiffiffi
Hz

p
) and a minimum detectable force of

4 × 10−18 N (10−16 N) for a τ ¼ 2 week measurement.
For both systems, we assume gold source masses, with

various radii labeled in Figs. 2 and 3. The surface
separation distances s between the test and source masses
(see figure captions for values) are chosen such that
Casimir forces are negligible relative to Fmin.
A common component in torsion balance experiments is

an electromagnetic shield placed between the source and
test masses [31,35]. These shields can also be used to
control Casimir forces which are relevant for the geometries
proposed here [39,52]. However, this shield will introduce
further screening of the chameleon force which can be
estimated analytically [30] or calculated numerically.
These experimental limitations can be overcome through

better force sensitivity or improved design. For example,
integration times upward of 1 month can be achieved
presently [50] or in the near future for these systems. For
fixed s and R2,Mmax is a monotonically increasing function
of R1, indicating that larger source masses are needed to
probe weaker chameleon-matter coupling strengths.
However, when fixing the same parameters, Λmin can be
minimized by a particular choice for R1. This behavior is
illustrated in Fig. 3; Λmin has been optimized for the light
blue and light orange regions by varying R1 with fixed s
and R2.
It is important to note that the geometries proposed here

do not set new constraints for unscreened scalar fields
(Yukawa 5th forces). Unscreened scalar fields can evade
experimental detection only through their large masses and
subsequent exponential suppression which results in an
extremely short range force. Thus, in order to detect these
scalars, large masses at very small separation distances are
required. Screened scalars, on the other hand, are generally
very light in low density regions and can therefore have a
significantly longer range force which scales as 1=r2.
Rather than small separation distances, the key in designing
experiments to search for screened scalars is to prevent
screening of the source and test masses. This can be
controlled by various parameters such as density, geometry,
and size of the source and test masses, as well as the
vacuum chamber size and pressure.
Cosmological and naturalness constraints.—Beyond the

addition of a new force, introducing a new particle to the
standard model can impact cosmological models and
physics in the early Universe. For example, in Ref. [53]
it was shown that for sufficiently strong matter-coupling
(small M), the chameleon may disrupt big bang nucleo-
synthesis. For chameleons with matter couplings weaker
than log10ðM=MpÞ≳ −0.26, this breakdown can be
avoided only for certain initial conditions [53].
Requiring the chameleon to behave as vacuum energy in
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FIG. 3. Projected constraints from levitated microspheres (blue)
and torsion balances (orange) as chameleon dark energy detec-
tors, where the power-law index is fixed at n ¼ 1. In this plot, we
consider a microsphere system with R2 ¼ 5 μm, s ¼ 3 mm, and
Fmin ¼ 10−21 N, and a torsion balance system with R2 ¼ 1 mm,
s ¼ 6 mm, and Fmin ¼ 10−16 N. For torsion balances, the dashed
(dotted) black line corresponds to a source mass with R1 ¼ 7 mm
(5 cm). The multiplicative ansatz and force expression are used to
generate the torsion balance curves in the region where the
additive ansatz breaks down. For microspheres, the solid (dashed)
black line corresponds to a source mass with R1 ¼ 3 mm (7 mm).
The horizontal black dashed line indicates the dark energy scale
Λ ¼ ΛDE. Existing constraints from Ref. [16], which include
results from Refs. [30,32], are shown in gray.
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the current epoch places a bound on the weakest allowable
matter-coupling. In Ref. [11] it was shown that the
chameleon will follow an attractor solution provided the
conditionm2=H2 ≫ 1, wherem is the chameleon mass and
H is the Hubble parameter. For fixed n and Λ, this places a
bound on the maximum value ofM. Thus, only a particular
region of parameter space is cosmologically well motivated
with small quantum corrections. The range of parameter
space satisfying both these constraints is indicated by the
green region in Fig. 4. However, modified chameleon
models such as the Dirac-Born-Infeld chameleon [15,54]
may be feasible outside of this restricted parameter space.
As indicated in Fig. 4, the projected constraints for the

systems considered here overlap significantly with the
green region of interest. Such experiments can be further
optimized using Eqs. (4)–(6). For instance, using a larger
test mass would allow probing deeper into the green region
in Fig. 4. This may be accomplished via magnetic levitation
of the test mass [57–60], albeit with design considerations
to avoid technical noise and screening due to the nearby
matter. However, such a complicated geometry would
necessarily require a numerical approach as the presence
of additional nearby matter would invalidate the analytic
treatment considered here.
Conclusion.—Current generation mechanical systems

have the sensitivity to rule out significant portions of
chameleon parameter space and cast doubt on the feasibil-
ity of chameleon dark energy. For inverse power-law
models, only weakly coupled (gravitational strength) cha-
meleons have viable early cosmological evolution [53]. On
the other hand, it has been shown that the n ¼ −4 model is
cosmologically safe [61]. Future work will extend predicted
constraints for these mechanical systems to negative n

chameleon models and other screened scalar fields. We will
also explore using mechanical systems with reduced
geometries (such as disks, membranes, or strings), as
DE detectors as the chameleon force may be enhanced
between nonspherical objects [62].
Beyond DE and modified gravity theories, screening

mechanisms can also be utilized to hide scalar fields coming
from string theory. Mechanical systems are particularly well
suited to search for such screened-scalar fields. Size, geom-
etry, and material flexibility coupled with excellent force
sensitivity makes them an ideal experimental platform for
optimized searches for a variety of screening mechanisms.
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