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We have experimentally realized an information engine consisting of an optically trapped, heavy bead in
water. The device raises the trap center after a favorable “up” thermal fluctuation, thereby increasing the
bead’s average gravitational potential energy. In the presence of measurement noise, poor feedback
decisions degrade its performance; below a critical signal-to-noise ratio, the engine shows a phase transition
and cannot store any gravitational energy. However, using Bayesian estimates of the bead’s position to
make feedback decisions can extract gravitational energy at all measurement noise strengths and has
maximum performance benefit at the critical signal-to-noise ratio.
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Information engines are a new class of engine that use
information as fuel to convert heat from a thermal bath into
useful energy. They exploit knowledge of thermal fluctua-
tions to apply feedback and extract energy from the thermal
bath, while paying costs required by the second law of
thermodynamics to process that information [1]. In the past
decade, information engines have been realized in a wide
range of physical systems [2–8]. For practical application,
it is important to understand how to maximize the engine’s
output [9,10] and efficiency [10–13]. In addition to
straightforward measures of performance such as speed
of operation or power imparted to a load, there are also
more subtle ones such as the ability to maximize informa-
tion transmission [14,15].
One obstacle that degrades the output of an information

engine is inaccurate information about the system that
arises from measurement noise. Since information engines
respond to measurements of thermal fluctuations, meas-
urement noise can lead to wrong feedback decisions.
Feedback actions chosen based on inaccurate measure-
ments reduce the work extracted from the surrounding
thermal bath and can even, at high noise levels, lead to a net
heating of the thermal bath [16].
Previous efforts to account for noisy measurements in

information engines have all used “naive” feedback algo-
rithms based directly on the most recent noisy measurement
[16,17]. Here, we show that such information engines, with
unidirectional ratchets, have a phase transition between
working and nonworking regimes: Below a critical level of
signal-to-noise ratio for measurements of the engine state, a
“pure” information engine—one that requires no work
input beyond that needed to run the measurement and
control apparatus—is not possible.
Although previous studies noted the degradation of

performance due to measurement noise, they did not
attempt to alter the feedback algorithm to compensate.
Yet theoretical studies have indicated that incorporating the

information contained in past measurements via optimal
feedback control could greatly improve the performance of
an information engine [17–20]. Indeed, experiments in
other areas of physics have used feedback that incorporates
Bayesian estimators to demonstrate spectacular results,
even in the presence of high measurement noise; significant
achievements include trapping a single fluorescent dye
molecule that is freely diffusing in water [21] and cooling a
nanoparticle to the quantum regime of dynamics [22,23].
In this Letter, we present an experimental realization of

an optimal Bayesian information engine that retains the
relevant memory of all past measurements in a single
summary statistic. Using the extra information from past
measurements and correctly compensating for delays in the
feedback loop via predictive estimates, we extract and store
significant amounts of energy, even in the presence of high
measurement noise.
Our implementation of the Bayesian filter uses the

optimal affine feedback control algorithm [24], at optimal
experimental parameters [10], to maximize the engine’s
rate of gravitational-energy storage. The relevant informa-
tion from past observations is used to minimize the
uncertainty in the bead’s position. This Bayesian informa-
tion engine extracts energy even at low signal-to-noise ratio
(SNR), avoiding the phase transition in the naive informa-
tion engine that leads to zero output. Under any conditions,
this engine extracts at least as much work as the naive
engine and reaches the maximal output power possible for
Gaussian information engines [25] subject to an affine
feedback rule.
Experimental setup.—Our information engine consists of

a 4-μm heavy bead trapped in a horizontally aligned optical
trap. Because of the surrounding heat bath, the bead’s
position fluctuates about an equilibrium average. The
heavy bead is also subject to gravity. The bead’s position
is measured with a sampling time ts ¼ 20 μs using the
scattered light from a detection laser.
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In the operation of the engine, an observed “up”
fluctuation increases the bead’s gravitational potential
energy and can be captured (“rectified”) by a quick feed-
back response that shifts up the trap position. The response
takes place after a one-time-step delay td ¼ ts ¼ 20 μs,
with the shift chosen so that the trap does zero work on the
bead. For this “pure” information engine, the work to run
the motor is associated only with the measuring device and
feedback controller, not the engine itself.
The optically trapped bead can be modeled by a spring-

mass system [Fig. 1(a)]. The true position of the bead is
estimated from a noisy measurement y. Measurement noise
is increased by reducing the intensity of the detection
laser beam.
Figure 1(b) shows a “naive” information engine that

directly uses a noisy measurement y to apply feedback. By
contrast, the “Bayesian” information engine bases its
feedback on the best estimate x̂ of the bead’s position
[Fig. 1(c)]. The bead’s position is estimated using a
Bayesian filter that explicitly models the measurement
noise and feedback delay [26].
The information engine can extract energy at high

measurement noise because feedback decisions based on
filtered estimates of the bead’s position are more likely to
ratchet to a “true” upward fluctuation rather than to
measurement noise.
Equations of motion.—The dynamics of the optically

trapped bead obey an overdamped Langevin equation,

γ _x ¼ −κ½xðtÞ − λðtÞ� −mgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ

p
ξðtÞ; ð1Þ

where xðtÞ is the position at time t of a bead of diameter d
and effective (buoyant) mass m in a trap of stiffness κ and
center λðtÞ. The friction coefficient is γ, and ξðtÞ is a
Gaussian random variable with zero mean and covariance
hξðtÞξðsÞi ¼ δðt − sÞ. We denote time derivatives by over-
dots. Scaling all lengths by the equilibrium position
standard deviation σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=κ
p

and times by the bead
relaxation time τr ¼ γ=κ gives the nondimensionalized
Langevin equation

_xðtÞ ¼ −½xðtÞ − λðtÞ� − δg þ
ffiffiffi
2

p
ξðtÞ ð2Þ

for scaled effective mass δg ≡mg=ðκσÞ.
Integrating Eq. (2) between measurements from t to

tþ ts gives the discrete dynamics

xkþ1 ¼ xke−ts þ ð1 − e−tsÞðλk − δgÞ þ σtsξk ð3Þ

for xk≡xðktsÞ and λk≡λðktsÞ. The variance σ2ts ≡ 1 − e−2ts

of thermal force fluctuations depends on the sampling
interval ts, and ξk is a Gaussian random variable with zero
mean and covariance hξkξni ¼ δkn.
The effect of measurement noise is modeled by a

measurement variable yk that is the sum of the bead’s true
position and additive white Gaussian noise,

yk ¼ xk þ σmνk; ð4Þ

with νk a Gaussian random variable with zero mean and
covariance hνkνni ¼ δkn. We also assume that the thermal
noise affecting the bead’s position is independent of the
measurement noise: hξkνni ¼ 0, for all k and n.
The trap position λk is updated at each time step using a

“ratcheting rule,”

λkþ1 ¼ λk þ Θðzk − λkÞ½α ðzk − λkÞ�; ð5Þ

where Θð·Þ denotes the Heaviside function, α the scalar
feedback gain, and zk ∈ fyk; x̂kþ1g the estimate of the
bead’s position (using either the naive measurement yk or
the Bayesian estimate x̂kþ1). Because of delays, both the
naive and Bayesian estimates of position use information
from yk but not ykþ1; however, the Bayesian estimate also
implicitly incorporates past information fyk−1; yk−2;…g
and uses the deterministic component of system dynamics
to predict ykþ1 (see Eq. (6) below).
Estimating the bead position.—Since the actual

bead position x fluctuates on a scale σ and the measurement
noise fluctuates on a scale σm, it is convenient to define a
signal-to-noise ratio SNR≡ σ=σm [27]. In the first
“naive” approach to designing feedback based on noisy
measurements, the feedback rule, Eq. (5), directly uses the
measurement yk to update the trap position λkþ1. Notice

FIG. 1. Schematic information engine. (a) Noisy detector
measures position y of the bead, actually located at x. Ratchet
based on either (b) noisy position measurement y or (c) Bayesian
position estimate x̂ (blue dashed circle).
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that this method implicitly estimates the position xkþ1 by
yk. The naive method performs well at high SNR (≫ 1) but
poorly at low SNR (≪ 1), where a unidirectional ratchet
(implemented via the Heaviside function) often responds to
noise rather than actual bead movements.
In the second “filtering” approach, we improve the

estimate of xkþ1 by using a Fokker-Planck equation to
predict the position probability pðxkþ1Þ given pðxkÞ, which
is itself calculated from measurements up to yk−1. One then
updates (or “corrects”) the prediction for time kþ 1
by incorporating the measurement yk, using Bayes’ rule
[[28] Sec. III]. For systems evolving according to linear
dynamics and subject to Gaussian noise, pðxkÞ remains
Gaussian for all k (if pðx0Þ is initialized as Gaussian, see
Supplemental Material [[28] Sec. III]) and can be summa-
rized by update equations for the mean x̂k and variance. The
Bayesian filter is then known as the “predictive Kalman
filter,” and one finds [compare Eq. (3)] [34]

x̂kþ1 ¼ x̂ke−ts þ ð1 − e−tsÞðλk − δgÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
predict

þ L ðyk − x̂kÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
correct

; ð6Þ

where the scalar filter gain L “corrects” the naive prediction
using the difference between the previous estimate and
actual observation [[29] Ch. 8]. The gain L is chosen to
minimize the variance hðxk − x̂kÞ2i between the true posi-
tion and its estimate, and the resulting value is a function of
the SNR (see Supplemental Material [[28] Sec. IV,
Eqs. (S13) and (S14)]). The variance hðxk − x̂kÞ2i is always
less than that of the naive estimator [35] (see Supplemental
Material [[28] Sec. V]); it is optimal in that it incorporates
all relevant past information contained in the (long) time
series fyk; yk−1;…g, and no other unbiased estimator—
linear or not—has lower variance [36].
Engine thermodynamics.—Given an estimate of the

bead’s position, we infer the thermodynamic quantities
that characterize this engine’s performance. The rate at
which we extract gravitational energy (i.e., change in bead
free energy) during the time interval ½tk; tkþ1Þ is [24]

ΔFkþ1 ¼ δgðλkþ1 − λkÞ; ð7Þ

and the time-averaged rate of free-energy change (more
informally, the “output power”) is _F ¼ τ−1

P
k ΔFk, where

τ ¼ Nts is the total duration of an N-step protocol. We
estimate the incremental input work (of the trap on the
bead) as

ΔWkþ1 ¼
1

2
½ðykþ1 − λkþ1Þ2 − ðykþ1 − λkÞ2�; ð8Þ

which estimates input work based on the noisy measure-
ment yk and not on the true position xk. The Supplemental
Material [[28] Sec. VIII] shows that this input-work
estimator is unbiased—the work estimator’s mean is equal

to the actual average work value—as a result of feed-
back delay.
Results.—A “pure” information engine has zero input

trap power: _W ¼ τ−1
P

k ΔWk ¼ 0. Let α� denote the
particular value of the feedback gain α for which the trap
power is zero. For an “ideal” pure information engine, one
with error-free measurements and no feedback delays, the
trap work is zero at α� ¼ 2 [10,28]. Physically, this
corresponds to translating the trap to a position opposite
its minimum, so that the trap energy is unchanged.
Feedback delay and measurement noise reduce α�. For
our experimental conditions with delay of one time step and
SNR ¼ 11, _W ¼ 0 is satisfied at the lower feedback gain
α� ≈ 1.5 [Figs. 2(a) and 2(b)].
The Bayesian information engine applies feedback based

on the filtered predictive estimate of the bead’s position. As
such, it accounts in its internal model for feedback delays
and measurement noise.
Figure 2(a) shows the input trap power, at fixed SNR

(¼ 11), as a function of feedback gain α. Despite the delay
and finite SNR, the input trap power is zero for feedback
gain α� ¼ 2, similar to that of the “ideal” pure information
engine. Figure 2(c) illustrates the operation of the Bayesian

(a)

(b) (c)

(d)

(e)

FIG. 2. Tuning the feedback gain α to set trap power _W ¼ 0.
(a) Trap power for naive (red) and Bayesian (blue) information
engines at fixed SNR ¼ 11. (b) Measured bead (yðtÞ, red) and
trap (λðtÞ, black) trajectories for the naive information engine at
SNR ¼ 11. (c) Measured bead (yðtÞ, light red), filtered bead
estimate (x̂ðtÞ, blue), and trap (λðtÞ, black) trajectories for the
Bayesian information engine at SNR ¼ 2. (b) and (c) have equal
scale bars and satisfy _W ¼ 0. (d) Critical feedback gain α� and
(e) corresponding input trap power, for naive (red) and Bayesian
(blue) information engines. Hollow red markers denote SNRs for
which α� > 0 could not be found using the procedure outlined in
(a). Solid red curve in (d) is from numerical simulation [[28]
Sec. VII]. Experiments here and in other figures have sampling
frequency τr=ts ¼ 41, trap stiffness κ ¼ 42 pN=μm, scaled ef-
fective mass δg ¼ 0.8, diffusion constant D ¼ 0.12 μm2=s, re-
laxation time τr ¼ 0.8 ms, and bead diameter 4 μm. Markers
denote experimental means, and error bars the standard errors of
the mean.
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filter with a trajectory of the Bayesian information engine at
lower SNR (¼ 2). In contrast to the naive information
engine, the trap ratchets only when the estimated position
(blue) crosses the trap center (black), and not necessarily
when the noisy measurement (light red) crosses the trap
center.
Next, we investigate how α� depends on SNR for the

naive and Bayesian information engines. For the naive
engine, α� decreases drastically at low SNR [Fig. 2(d)]. For
SNR≲ SNRc ¼ 0.7� 0.1, where SNRc denotes the criti-
cal vale of the SNR, a nonzero α� could not be found
experimentally using the procedure outlined in Fig. 2(a).
The Supplemental Material [[28] Sec. XI] shows that the
vanishing of α� corresponds to a kind of phase transition
between a regime where one can set _F > 0 while main-
taining _W ¼ 0 and a regime where one cannot.
By contrast, the critical feedback gain α� remains near 2

for the Bayesian engine [Fig. 2(d)]. The corresponding
measured input trap powers for both the naive and Bayesian
information engines are close to zero relative to the
maximumoutput power ( _Fmax ≈ 0.27kBT=τr) of the engine,
at all SNR [Fig. 2(e)].
Taking advantage of predictions in our estimation

algorithm thus simplifies the experiments, as it eliminates
the need to empirically tune the feedback gain, ensuring
that the zero-work condition is always satisfied at α ¼ 2.
Above, we saw that it also simplifies the work calculations
needed to realize a pure information engine, as the value
calculated directly from the noisy measurement is an
unbiased estimator of the true work.
Finally, Fig. 3(a) compares the performance of the naive

and Bayesian information engines, as quantified by the rate
of stored gravitational power _F while keeping _W ¼ 0. Both
output powers _F increase monotonically with SNR and
saturate at the same power level at high SNR (> 10).
Although the performance of Bayesian and naive

information engines is similar at low and high SNR, there
is a striking contrast at intermediate SNR≲ 1. Indeed, the
difference of output powers (Bayesian − naive), normal-
ized by _Fmax, significantly exceeds zero for 0.1 ≤ SNR ≤ 2

and reaches a maximum at SNR ≈ SNRc [Fig. 3(b)].
At high SNR, the Bayesian filter “trusts the observation”

and returns an estimate close to the instantaneous meas-
urement, corrected for the expected bias due to the time
delay. Since this bias is small for frequent measurements,
both engines have similar performance and extract all the
favorable thermal fluctuations, saturating at the maximum
output power _Fmax ≈ 0.27. At low SNR, the measurements
are so noisy that they exceed the scale of the trap. The
Bayesian information engine then extracts negligible power
[[28] Sec. IX], while the naive engine extracts zero power.
Therefore, at SNR ≫ 1 and ≪ 1, the difference of output
powers ( _FB − _FN) tends to zero. But at intermediate SNR,
the effective noise averaging in the Bayesian (Kalman)
filter produces more accurate estimates, leading to better
feedback decisions and thus improved engine performance.

To understand why the naive information engine shows a
phase transition at a critical signal-to-noise ratio, we
numerically solve a self-consistent equation for the SNR
at which trap power vanishes. Enforcing the condition that
α� ¼ 0 is the unique solution (see Supplemental Material
[[28] Sec. X]), we find SNRc ≈ 0.64, consistent with both
numerical simulations and experiments.
We also find that the phase transition arises from the

biased estimate of the bead’s position from the noisy
measurements. This bias has two origins: the delay due
to feedback latency and the failure of the naive measure-
ment to account for the fact that fluctuations above
threshold are rare while noise fluctuations of either sign
are equally likely. Because fluctuations up to the threshold
are rare, the bead is usually below the observed value
whenever an apparent threshold crossing is observed.
By contrast, a phase transition does not occur for the

Bayesian information engine. The Bayesian filter gives an
unbiased prediction of the bead’s position, accounting for
both feedback delay and the “prior” associated with
observations near the threshold. As a result, the bead is
equally likely to be on either side of the predicted position,
allowing one to tune for zero trap power and extract at least
some power at any SNR value (see Supplemental Material
[[28] Sec. XII]).
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FIG. 3. Performance of the information engines. (a) Output
power of naive (red) and Bayesian (blue) information engines as a
function of SNR. Hollow red markers denote output power at
α� ¼ 0. (b) Difference of output work extraction rates for the
Bayesian (B) and naive (N) engines scaled by the maximum rate
( _Fmax ¼ 0.27). The difference peaks at SNR ¼ SNRc ≈ 0.7
(vertical dashed lines). Markers denote experimental means,
solid curves the numerical simulations [[28] Sec. VII]. Error
bars denote (a) standard error of the mean and (b) propagated
standard error of the mean from (a).
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Conclusion.—Information engines that decide whether
to ratchet using single noisy measurements have a phase
transition at a critical signal-to-noise ratio SNRc and cannot
function for SNR < SNRc. By contrast, if its feedback uses
a Bayesian estimate of bead position that incorporates prior
measurements, an information engine can operate at all
values of SNR. The maximum performance benefit over the
naive engine occurs at the critical value SNRc.
The ability to increase the performance of an information

engine at low SNR is important for experimental inves-
tigations of motor mechanisms that use fluorescent probes
[37]. In such applications, lower light intensities for
monitoring fluorescent probes reduce photobleaching
and allow longer measurements of motor behavior.
In addition, using a filtering algorithm to reduce the

required accuracy of information while maintaining a given
performance may decrease the thermodynamic costs of
processing position measurements. Generally, a lower
measurement accuracy reduces the minimum thermody-
namic (Landauer) costs of running the controller [16,38].
However, keeping a memory of past observations should
increase those costs, as these costs are related to the mutual
information the memory stores about the particle position.
Storing more measurements results in more information
and hence greater costs. In particular, the Bayesian filter
uses recursive update relations to implicitly incorporate
information from all past measurements. Alternative filters
using a finite number of measurements to make an unbiased
position estimate would use less information but lead to
engines with lower outputs. Further work is needed to
compare the efficiency of a feedback strategy that incor-
porates a memory of past measurements with one based
purely on the most recent measurement. Such studies could
evaluate the potential performance trade-offs encountered
when varying the measurement accuracy.
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