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We present a fully passive method for implementing a quantum phase gate between two photons
traveling in a one-dimensional waveguide. The gate is based on chirally coupled emitters in a three level V
configuration, which only interact through the photon field without any external control fields. We describe
the (non)linear scattering of the emerging polariton states and show that for near resonant photons the
scattering dynamics directly implements a perfect control phase gate between the incoming photons in the
limit of many emitters. For a finite number of emitters we show that the dominant error mechanism can be
suppressed by a simple frequency filter at the cost of a minor reduction in the success probability. We verify
the results via comparison with exact scattering matrix theory and show that the fidelity can reach values
F ∼ 99% with a gate success probability of > 99% for as few as eight emitters.
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Introduction.—Light has great advantages as a carrier of
quantum information since it travels very fast. Furthermore,
light is largely invulnerable to decoherence even at room
temperature since photons are absorbed rather than deco-
hered. On the other hand, photons practically do not interact
with each other [1], which makes it highly challenging to
implement quantum gates, the key building blocks for
quantum information processing. Alternative strategies have
been introduced by combining sources of single or entangled
photons with measurement and feedback [2–5]. These
techniques are, however, inherently probabilistic and come
with a large overhead in resources [6–8]. One way to avoid
these complications is to achieve an indirect interaction via
coupling to nonlinear matter. There have been several ideas
for how to achieve gate operations in such systems: strong
coupling of photons to individual systems such as atoms in
optical cavities [9] or optomechanical resonators [10] can
induce phase gates with relatively high fidelity for small
phase shifts but not for large shifts due to pulse distortions.
These distortions can be avoided by mapping the photons
into excitations of optical cavities [11] or individual atoms,
either coupled towave guides [12] or optical cavities [13,14],
and subsequently scattering a second photon of the system.
Similarly, photons can be stored in ensembles of atoms either
in free space [15–21] or optical cavities [22]. Gates can then
be implemented by relying on direct interaction of the stored
excitations in optical lattices [15,18] or through scattering of
a second photon pulse and exploiting Rydberg interactions
[16,19,22] or stationary light effects [17,21]. Common to
these proposals, however, is that they rely on precisely timed
laser pulses for photon storage, which complicates their
implementation.
Photon gates not depending on precise timing of pulses

have been developed using counterpropagating pulses in

Rydberg electromagnetically induced transparency systems
[23] or through static cross-Kerr interactions between
emitters coupled to different one-dimensional waveguides
[24,25]. Inspired by the latter, we propose an experimentally
viable setup for implementing quantum gates based on
counterpropagating photons in waveguides chirally coupled
to quantum emitters, such that the emitters decay by only
emitting light in one direction [26,27]. Such couplings have
previously been demonstrated [28–32] and also used for
(non)linear operations [33,34]. Here, we exploit the chiral
coupling to achieve a simple implementation of a cascaded
quantum system [35–37] without the need for multiple Kerr
circulators or multiple arrays of chirally coupled emitters as
in Ref. [25]. We furthermore avoid any complication of
engineering interactions between emitters by basing our
setup on three level dipole emitters in the V configuration
coupled to a one-dimensional waveguide; see Fig. 1. This
configuration contains an inherent Kerr nonlinearity since
the emitter cannot be excited twice, and the only required
coupling is between the emitters and the photons. In contrast
to previous proposals, the assumed setup thus enables the

FIG. 1. Photonic phase gate for counterpropagating wave
packets in a one dimensional waveguide, coupled to three
level dipole emitters with distance d to the next neighbors. The
transition jgi → jei (jgi → jfi) in the three level systems
couples chirally to the right (left) traveling waveguide modes
with coupling rate ΓR (ΓL).

PHYSICAL REVIEW LETTERS 129, 130502 (2022)

0031-9007=22=129(13)=130502(7) 130502-1 © 2022 American Physical Society

https://orcid.org/0000-0003-3177-508X
https://orcid.org/0000-0003-1337-9163
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.130502&domain=pdf&date_stamp=2022-09-23
https://doi.org/10.1103/PhysRevLett.129.130502
https://doi.org/10.1103/PhysRevLett.129.130502
https://doi.org/10.1103/PhysRevLett.129.130502
https://doi.org/10.1103/PhysRevLett.129.130502


implementation of a gate completely passively without the
need for any control fields, Rydberg electromagnetically
induced transparency, or other interactions while still
promising excellent fidelity.
We will show that this setup implements any desired

two-photon phase gate controlled by the energy of the
photons. If the photons are on resonance, the underlying
physics can be sketched quite easily: photons on resonance
receive a phase shift of π every time they scatter off an
emitter [38]. Because of the chiral coupling, the photons
cannot be reflected but rather travel from emitter to emitter.
This leads to an overall phase of ð−1ÞN accumulated by
photons leaving on the opposite side of the array with N the
number of emitters. If two counterpropagating photons are
inside the emitter chain at the same time, they have to pass
one another at some point but cannot simultaneously excite
the very emitter at which they cross, leading to an addi-
tional phase factor of (−1). In a time-binned superposition
where the late state of the right propagating photon arrives
simultaneously with the early state of the left propagating
photon (see Fig. 1), the emitter array therefore implements
the transformation

jearly; earlyi → jearly; earlyi
jlate; latei → jlate; latei

jearly; latei → jearly; latei
jlate; earlyi → −jlate; earlyi; ð1Þ

where the first (last) entry in the state refer to the right (left)
propagating photon. This creates a controlled Z-phase gate
flipping the sign in case of two photons being simulta-
neously in the system.
The description above relies on photons simultaneously

being resonant and inside the emitter chain. Fundamentally
this cannot be achieved with a single emitter. The finite size
of the photon wave packets thus leads to degradation of the
gates due to dispersion, a smeared out phase, and inelastic
scattering [9,10,39–46], which is the reason why similar
proposals only achieve high fidelities for small phases
[9,10]. Multiple emitters are thus required to ensure that
the photons meet each other inside the chain despite the large
time uncertainty from being narrow in frequency. In the
following, we give a concise analytical description of the
process, which enables us to address this and other imper-
fections that potentially compromise the fidelity of the gate.
System.—The system in question consists of a one-

dimensional waveguide coupled to many three level emit-
ters with next neighbor distance d; see Fig. 1. We consider
two counterpropagating photonic modes with field oper-
ators ERðzÞ and ELðzÞ, respectively, with commutation
relation ½ER=Lðz1Þ; E†

R=Lðz2Þ� ¼ cδðz1 − z2Þ, where c is the
group velocity of light in the waveguide (assumed identical
in both directions). Transitions between different levels of

an emitter are described by operators σðμÞab ¼ jaiμhbjμ.
Applying the rotating wave approximation, and rescaling
the photon energy by the transition energies so that all
energies are relative to resonance, we have the Hamiltonian
Htot ¼ Hp þHint with

Hp ¼ −iℏ
Z

dz½E†
RðzÞ∂zERðzÞ − E†

LðzÞ∂zELðzÞ� ð2Þ

and

Hint ¼
X
μ

½ERðzμÞσðμÞeg gR þ ELðzμÞσðμÞfg gL� þ H:c: ð3Þ

For our purposes we assume an identical coupling rate to
the left and right traveling modes gR ¼ gL ¼ g0. Further,
we assume the photons to travel quasi-instantaneously from
emitter to emitter relative to the lifetime of excitations. This
allows us to eliminate the photonic degrees of freedom [44]
and to describe the dynamics within the emitter array on
the level of polaritons, i.e., coupled light-matter states. The
effective Hamiltonian acting on the polaritons then reads

H ¼ −i
Γ0

2

X
μ

½σðμÞeg σ
ðμÞ
ge þ σðμÞfg σ

ðμÞ
gf �

− iΓ0

X
μ<ν

eik0jzμ−zνj½σðνÞeg σ
ðμÞ
ge þ σðμÞfg σ

ðνÞ
gf �; ð4Þ

with k0 the wave number at the resonance frequency and
Γ0 ¼ 2πg20 the decay rate of the emitter into the waveguide.
This effective Hamiltonian is non-Hermitian, reflecting that
excitations can leave the system at the edges.
We are interested in a setup including many emitters and

thus solve Eq. (4) in the limit of infinitely many interaction
sites, where we can neglect losses at the edges. For a single
excitation propagating to the right, this leads to a dispersion
relation,

ω1 ¼ ωðk1Þ ¼ −
Γ0

2

cos½ðk1 − k0Þd=2�
sin½ðk1 − k0Þd=2�

; ð5Þ

for the momentum state excited by σk1eg ¼
ffiffiffi
d

p P
μ e

ik1zμσμeg
[and analogously ω2 ¼ ωð−k2Þ for the left traveling one].
This results in an individual phase φl ¼ kNd accumulated
while passing the whole array of emitters, with

eiφl ¼
�
iωl þ Γ0=2
iωl − Γ0=2

�
N
; ð6Þ

where l ∈ 1, 2. This coincides with the exact result [41] for
finite chains of N emitters and gives a phase shift of ð−1ÞN
when on resonance (ωl ¼ 0).
In the case of two polaritons, we can solve the scatte-

ring problem by switching to center-of-mass momentum

PHYSICAL REVIEW LETTERS 129, 130502 (2022)

130502-2



K ¼ ðk1 þ k2Þ=2 and relative momentum q ¼ ðk1 − k2Þ=2,
as well as the center of mass z ¼ ðz1 þ z2Þ=2 and relative
position Δ ¼ z2 − z1 of the two excitations [46–48]. The
eigenstates of the Hamiltonian [Eq. (4)] with eigenenergies
ωq;K ¼ ω1 þ ω2 then read

jψq;Ki ¼
X
z;Δ

fðq;ΔÞe2iKzσ½ðz−Δ=2Þ=d�eg σ½ðzþΔ=2Þ=d�
fg j0i; ð7Þ

with

fðq;ΔÞ ¼
�
eiqΔ for Δ > 0

teleiqΔ þ tineiq
0Δ for Δ < 0:

ð8Þ

See Ref. [48] for details of this and the calculations below.
This expression describes elastic scattering with ampli-

tude

tel ¼ jteljeiφ1;2 ¼ 1 −
2Γ0ðΓ0 − iω1 − iω2Þ
Γ2
0 þ 2ω2

1 þ 2ω2
2

; ð9Þ

preserving the relative momentum q due to the chirality of
the process. In addition, we have an amplitude

tin ¼
2iΓ0ðω1 − ω2Þ2

ðω1 þ ω2 − Γ0ÞðΓ2
0 þ 2ω2

1 þ 2ω2
2Þ

ð10Þ

for scattering into a degenerate q0 with ωq;K ¼ ωq0;K. This
redistributes the energies of the outgoing photons

ω0
1 ¼

Γ2
0 þ 2ðω1 þ ω2Þω2

2ðω2 − ω1Þ

ω0
2 ¼ −

Γ2
0 þ 2ðω1 þ ω2Þω1

2ðω2 − ω1Þ
; ð11Þ

while preserving the total energy ω1 þ ω2 ¼ ω0
1 þ ω0

2. We
hence refer to it as inelastic scattering. Importantly, these
fulfill the continuity equation jtelj2 þ jtinj2vq0;K=vq;K ¼ 1

where vq;K ¼ ∂qωq;K .
From the scattering amplitudes [Eqs. (9) and (10)] we

observe that with both incoming photons on resonance
(ω1 ¼ ω2 ¼ 0) we get tel ¼ −1, tin ¼ 0 corresponding to a

perfect Z-phase gate as described in the introduction.
Further, by going off resonance while keeping
ω1 ¼ ω2 ¼ ω, we can ensure elastic scattering while
achieving any desired phase shift

tel ¼ eiφ1;2 ¼ iω − Γ0=2
iωþ Γ0=2

; ð12Þ

controlled by the energy of the photons in close analogy to
the single polariton phase shift [Eq. (6)].
In addition to the scattering phase, photons traveling to

the right (left) will also acquire phases φ1 (φ2) due to the
combination of propagation [Eq. (6)] and entering and
leaving the medium for which the mapping between
photons and polaritons is given in Refs. [46,48]. These
phases are the same for all components of the state and thus
only lead to an overall phase that can be ignored. The
inelastic component acquires a more complex phase, but
this will not influence the results below.
For the implementation of a gate, we wish to suppress the

inelastic scattering. For this reason we consider wave
packets centered around the same detuning ω, depending
on the desired phase shift. This (i) suppresses the amplitude
of inelastic scattering [Eq. (10)] and (ii) ensures that
inelastically scattered photons are far away in energy;
cf. Eq. (11). The latter makes it easy to filter out these
inelastic photons, allowing us to absorb the inelastic
scattering into a slightly decreased overall success rate
of the gate. We note that alternatively one could try to
maximize the inelastic scattering component by choosing
ω1 ¼ −ω2 ¼ Γ0=2, which produces tel ¼ 0; the result is an
energy swap between the two chiral modes, ω0

1 ¼ ω2 and
ω0
2 ¼ ω1. Potentially this dynamics could also be used to

implement quantum protocols.
Numerical verification.—The analytical results pre-

sented above describe the dynamics of an infinite chain.
To investigate the performance for a finite chain, we
compare our results to exact scattering matrices derived
from input-output theory [44]. In Fig. 2, we show the result
of this for two Gaussian input states with widths
σ ¼ 0.05Γ0. Naturally, our approximation is worst for
setups with very few emitters. Especially the high prob-
ability for inelastic scattering, as prominently indicated

FIG. 2. Real part of the two-dimensional output state of an initial two-dimensional Gaussian statewithwidth σ ¼ 0.05Γ0 for bothω1 and
ω2. For different emitter numbers (1,6,12) we compare our analytical approximation (left) with exact scattering matrix results (right).
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by the “jets” emerging on the sides of the initial state in
Fig. 2, limits the performance of the gate with few emitters.
These jets are completely gone for 12 emitters and
furthermore the output states coincide quantitatively with
the analytical results. In the latter case, the energy regions
(sparsely) populated by inelastic scattering lie outside of
the plotted area and are thus easily filtered out by frequency
filters. The oscillations arise from the phase [Eq. (6)]
accumulated by each photon.
Fidelity.—To characterize the performance of the gate

operation we exploit the Choi-Jamiolkowski isomorphism
[49,50] and consider the input states to be maximally
entangled states:

jΦi ∼ ðj00i12 þ j11i12Þ ⊗ ðj00i34 þ j11i34Þ: ð13Þ

Here, the gate only affects the qubits 1 and 3 while 2 and 4
denote auxiliary systems. The Choi-Jamiolkowski fidelity
is then the overlap between the actual output state and the
ideal gate operation, F ¼ jhΦidealjΦoutij2. The fidelity will
depend on which wave function we choose for the ideal
state. Here, we consider the mode functions for the
computational basis states j0i and j1i to be the dispersed
states of the photons traversing the array individually,
i.e., multiplying the input 2D wave function with
eiNðkðω1Þþkðω2Þ−2k0Þd. In principle higher fidelity could be
obtained by carefully optimizing this reference state.
With this choice the fidelity for perfect chirality is

given by

F ¼ 1

4ð3þ tnormÞ
j3þ e−iαtavj2 ð14Þ

for a desired phase α, obtained by adjusting φ1;2 in
Eq. (12), and

tav ¼
Z

dω1dω2jψ1ðω1Þj2jψ2ðω2Þj2telðω1;ω2Þ

tnorm ¼
Z

dω1dω2jψ1ðω1Þj2jψ2ðω2Þj2jtelðω1;ω2Þj2: ð15Þ

Here, the normalization in the denominator corrects for the
success probability of the gate, assuming large detuning of
the inelastic scattering so that it can be filtered out and
herald any failing of the gate.
Z-phase gate.—As discussed above, the scattering phase

approaches minus unity if both photons are on resonance
leading to perfect gate operation. This is illustrated in
Figs. 3(a) and 3(b), where we show fidelity and success
probability for an initial Gaussian distribution on resonance
and varying width. As shown with lines in the figure, the
analytical results for infinite chains rapidly approach the
ideal limit as the incident states become narrow in fre-
quency. For finite chains, we have excellent agreement as
long as the pulses are sufficiently short in time (wide in

frequency). As the pulses become wider in time, however,
they can no longer fit inside the medium for a finite number
of emitters. This leads to an optimal width of the incident
pulses and a higher fidelity for a larger number of emitters.
As a specific example, for 12 emitters and an initial width
of σ ¼ 0.05Γ0, a pulse width comparable to one recently
used for a related quantum dot experiment with a single
emitter [51], we have a near perfect fidelity F ¼ 99.48%
with only a minor reduction in success probability of the
whole gate R ¼ ð3þ tnormÞ=4 ¼ 99.51%.
If inelastic scattering events are not filtered out, we

obtain a success probability of unity but the infidelity is
higher. As shown by the dashed line in Fig. 3(a), 1 − F is
doubled in the limit of many emitters. The breakdown for
finite emitters occurs at the same pulse width. Overall this
thus leads to a factor of 2 increase in infidelity.
The performance of the gate relies on the chirality of the

setup. To investigate this we assume that photons are emi-
tted to the side or opposite to the intended direction in the
waveguide at rates ΓS and ΓB, respectively. The forward
coupling is then characterized by a coupling efficiency β¼
ðΓ0þΓBÞ=Γtot and directionality D¼ðΓ0−ΓBÞ=ðΓ0þΓBÞ,
where Γtot ¼ Γ0 þ ΓS þ ΓB. For the perfectly chiral case

(a)

(c)

(d)

(b)

FIG. 3. (a) Infidelity 1 − F and (b) probability of (heralded)
gate failure as a function of the width σ of an incident Gaussian
pulse for a perfectly chiral setup. The solid line is for in infinite
chain while the dark symbols represent numerical results for
4 (diamonds), 8 (squares), and 12 (circles) emitters. The dashed
line and lighter symbols in (a) result from not filtering out the
inelastic scattering. (c) Imperfect coupling: results assuming that
photons are emitted backward or to the side at identical rates rate
ΓB ¼ ΓS ¼ 0.01Γ0. The success probability decays exponentially
with the number of emitters while the fidelity still increases. We
chose k0d ¼ π to avoid Bragg scattering (see main text). (d) Gate
operation for arbitrary phase φ by going off resonance [Eq. (12)].
The plot shows the lowest achievable infidelity for different
numbers of 4, 8, and 12 emitters using the same symbols as in (a).
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β ¼ 1, D ¼ 1 the positions of the emitters are completely
irrelevant, but when ΓB ≠ 0 interference between scattering
events introduces a dependence on the exact placement. To
minimize the effect of backscattering we assume k0d ¼ nπ
with n ∈ Z. (Note that although this is equal to the usual
condition for Bragg scattering, the strong chiral coupling
modifies the Bragg condition to occur at k0 ¼ π=2þ nπ for
our setup on resonance.) In Fig. 3(c) we present numeri-
cally optimized results for a varying number of emitters
and ΓS ¼ ΓB ¼ 0.01Γtot corresponding to β ¼ 0.99 and
D ¼ 0.98. As seen in the figure, nonperfect chirality
reduces the success probability but the fidelity is almost
unaffected. In practice this means that one will have to use a
limited number of emitters for imperfect coupling, but it
does not prevent the application of the gate.
To investigate the effect of other imperfections we

consider a proof of concept realization with N ¼ 4 emitters
and parameters corresponding to state of the art experi-
ments with directionality and couplings of D ¼ 0.98 [52]
and β ¼ 0.98 [53], respectively. In theory even higher
values are possible [27]. The full details are presented in
Ref. [48]. As an example we incorporate an average
fluctuation of Γtot with width σΓtot;dB ¼ 1.2 dB and of the
resonance energy at each emitter with width σΔ ¼ 0.2Γtot.
We also implement random distances d between emitters
and show that any mismatch in the pulse timing can be
neglected for typical delay lines [48]. We average all
fluctuating parameters over 103 realizations, resulting in
F > 0.92 and R > 0.51. For comparison, in linear optics,
controlled phase gates are fundamentally limited by
R ≤ 1=9 [54].
P-phase gate.—The proposed setup is ideally suited to

induce a complete phase change by working on resonance,
which suppresses inelastic scattering and minimizes the
influence of finite numbers of emitters. According to
Eqs. (10) and (12), we can achieve a phase gate with an
arbitrary phase α by going off resonance with

ω1 ¼ ω2 ¼
i
2

1þ eiα

1 − eiα
ð16Þ

while simultaneously suppressing inelastic scattering.
According to the analytical approximation, assuming
infinitely many emitters, this indeed leads to a perfect gate
operation for any values of α.
In reality, moving away from resonance jeopardizes the

approximation of having many emitters since off-resonant
photons interact less strongly with each emitter. This leads
to a higher group velocity, which in turn means that we
have to choose pulses more narrow in time to localize the
pulses inside the medium. This shifts the optimum pulse
length to larger widths σ in frequency for a finite number of
emitters. In Fig. 3(d) we show the fidelity for different
numbers of emitters and gate phases maximized over the
energy width of the input states. As seen in the figure, the

infidelity increases as we go away from α ¼ π until it again
decreases as we approach α → 0, where the gates do
nothing. For N > 10 the infidelity is, however, on the
permille scale for all values of α.
Conclusion.—We have presented a simple, completely

passive approach to implement a gate between two pho-
tons. While the gate has ideal performance in the limit of
many emitters it shows excellent behavior even for a
limited number of emitters. The rapidly evolving field of
chiral quantum optics promises proof of principle experi-
ments with only a couple of emitters, which would already
suffice to reach fidelities above 90%. The developed photon
gate could immediately be applied to facilitate photonic
based quantum information processing, e.g., it allows the
implementation of efficient Bell-state measurements for
photons, thereby enhancing the communication rate of
ensemble based quantum repeaters [55].
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