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It is generally admitted that in quantum mechanics, the electromagnetic potentials have physical
interpretations otherwise absent in classical physics as illustrated by the Aharonov-Bohm effect. In 1984,
Berry interpreted this effect as a geometrical phase factor. The same year, Wilczek and Zee generalized the
concept of Berry phases to degenerate levels and showed that a non-Abelian gauge field arises in these
systems. In sharp contrast with the Abelian case, spatially uniform non-Abelian gauge fields can induce
particle noninertial motion. We explore this intriguing phenomenon with a degenerated Fermionic atomic
gas subject to a two-dimensional synthetic SU(2) non-Abelian gauge field. We reveal the spin Hall nature
of the noninertial dynamic as well as its anisotropy in amplitude and frequency due to the spin texture of the
system. We finally draw the similarities and differences of the observed wave packet dynamic and the
celebrated Zitterbewegung effect of the relativistic Dirac equation.
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Since the pioneering work of Lin and co-workers on
synthetic magnetic fields [1], intensive works on quantum
simulators such as ultracold-gas platforms [2–7] or pho-
tonic circuits [8] have been carried out to generate and
explore artificial Abelian or non-Abelian gauge fields.
The overarching objective is to explore geometrical and
topological properties of quantum matter and materials. In
particular, thanks to the noncommutative nature of the
components of non-Abelian gauge fields, the eigenstates of
the Hamiltonian are characterized by a momentum-
dependent spin texture that leads to a myriad of phenomena
such as spin phase separations [9,10], topological Lifshitz
transitions in a degenerate Fermi gas [11], topological
phases in a Bose-Einstein condensate [12], or the
Josephson-like effect for interacting quantum gases [13].
The band structure, the spin texture, and the topology
properties of two-dimensional (2D) spin-orbit coupled
ultracold-atom systems have been reported in [14–16].
The coupling to a non-Abelian gauge field can take the

form of a spin-orbit coupling (SOC) Hamiltonian [2],

ĤSOC ¼ −p̂ · Â=m; ð1Þ

where p̂ is themomentumoperator of the particle,m itsmass,
and Â the non-Abelian gauge field operator acting in the

pseudospin space. For systems under SU(2) symmetry, the
wave packet dynamics of a SOC system is predicted to
exhibit an oscillatory behavior, similar to theZitterbewegung
of the Dirac equation, i.e., a trembling motion of a particle
associated with a quantum Rabi flopping of the pseudospin
[17–24]. The oscillatory behavior of the wave packet has
been experimentally studied in one-dimensional (1D) sys-
tems, where the SOC term reduces to a single component
gauge field [25–28]. In this context, it has been shown that the
Zitterbewegung is present if the total Hamiltonian includes a
scalar potential, which does not commute with the SOC
Hamiltonian [26]. In the Dirac equation the scalar term is
the mass operator of the particle-antiparticle system. In the
1D SOC Hamiltonians experimentally explored in photonic
platforms [25], trapped ions [26], and ultracold gases [27,28],
the scalar potential is a Zeeman-like term.
In this Letter, we report on studies of the atomic wave

packet dynamics in a two-dimensional (2D) spatially uni-
form SU(2) non-Abelian gauge field. As a key feature, the
wave packet shows oscillatory dynamics coming from the
SOC Hamiltonian only, i.e., without any scalar potentials.
The occurrence of the dynamics can be understood by
deriving the time evolution of the velocity operator v̂ ¼
ðp̂ − ÂÞ=m in the Heisenberg picture. It leads to a non-
inertial force depending on the particle momentum,
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m
dv̂
dt

¼ im
ℏ
½ĤSOC; v̂� ¼ −

i
mℏ

p̂ × ðÂ × ÂÞ: ð2Þ

Two important observations can be made from Eq. (2).
First, even for an uniform gauge field, the 2D dynamics is
strongly affected by the non-Abelian nature of the gauge
field since the velocity is no longer constant when (Â × Â)
is nonzero. Second, since the velocity component along the
momentum does not change in time, the nontrivial wave
packet dynamics occurs in the plane transverse to the
momentum. This locking of the dynamics at right angle of
the momentum is reminiscent of the spin Hall effect
[29,30]. Note that p̂ commutes with ĤSOC for spatially
uniform gauge fields and is then a constant of motion. In
this case, the plane of oscillations does not change with
time. Another striking feature that we will demonstrate later
is the anisotropy of the wave packet dynamic in momentum
space induced by the spin texture of the non-Abelian
Hamiltonian.
To generate our artificial non-Abelian gauge field, we

use three quasiresonant, suitably polarized, laser beams; see
Fig. 1(a). These lasers operate on the ð1S0; Fg ¼ 9=2Þ →
ð3P1; Fe ¼ 9=2Þ intercombination line at 689 nm (fre-
quency linewidth Γ=2π ¼ 7.5 kHz) of the fermionic stron-
tium isotope 87Sr. They couple, in a tripod configuration,
three Zeeman bare ground states jai≡ jFg;mFi, with
a ¼ 1, 2, 3 and mF ¼ 5=2; 7=2; 9=2, respectively, to the
same excited state jei≡ jFe;mF ¼ 7=2i and with equal
Rabi frequencies Ω=2π ¼ 210 kHz, see Fig. 1(b) [31].
A bias magnetic field of 67 G along the x axis ensures
that the states outside the tripod remain spectators (the
Zeeman frequency shift of the excited state is around
7 MHz ≫ Ω=2π, Γ=2π [32]).

In the dressed-state picture, the internal Hamiltonian of
the tripod system has two bright states, coupled to the laser
fields, separated by � ffiffiffi

3
p

ℏΩ=2 from two degenerate zero-
energy dark states, see Fig. 1(c). The bright or dark state
energy separation being large enough, the quantum state of
the atoms remains and evolves in time in the dark state
manifold [31]. The dark states representation in the bare-
state basis reads

jD1i ¼
1
ffiffiffi
2

p ðe−2ikxj1i − e−ikðxþyÞj2iÞ; ð3Þ

jD2i ¼
1
ffiffiffi
6

p ðe−2ikxj1i þ e−ikðxþyÞj2i − 2j3iÞ; ð4Þ

where k is the tripod beams wave number.
For resonant excitation (δa ¼ 0), the Hamiltonian in the

2D dark-state manifold takes the form [2]

Ĥ0 ¼
ðp̂ − ÂÞ2

2m
þ Φ̂: ð5Þ

In the pseudospin representation of the dark-state mani-
fold, the vector and scalar gauge field potentials ðÂ; Φ̂Þ
are represented by 2 × 2 matrices with entries Âjk ¼
iℏhDjj∇Dki and Φ̂jk ¼ ½ℏ2h∇Djj∇Dki − ðÂ2Þjk�=2m
(j, k ¼ 1, 2) [2,33].
For quasiresonant excitation (jδaj ≪ Ω), the laser detun-

ing contribution in the dark-state manifold reduces to an
additional scalar matrix potential. We use it for two crucial
purposes: to cancel the scalar term Â2=2mþ Φ̂ obtained by
expanding the square in Eq. (5), and to perform a Galilean
transformation into an inertial frame moving at an arbitrary
velocity −v0 by adding a new term −v0 · Â (see Sec. C in
the Supplemental Material [33]). In this moving frame, and
up to inessential constant terms proportional to unity, the
Hamiltonian becomes

Ĥ ¼ q̂2

2m
−
q̂ · Â
m

; ð6Þ

where q̂ ¼ p̂þmv0. We get the expected SOC
Hamiltonian without scalar contribution to explore the
2D dynamical properties of this system. Note that the
noninertial dynamic is not affected by the discarded spin-
independent q̂2=ð2mÞ term [17].
We simulate the Hamiltonian of Eq. (6) using a de-

generate Fermi gas at a temperature T ¼ 30ð3Þ nK, with
T=TF ¼ 0.21ð4Þ, where TF ≈ 143 nK is the Fermi temper-
ature of our gas. After the cooling and preparation
sequences, the atoms are in the state j3i [33]. We switch
on the tripod beams to transfer adiabatically all atoms from
state j3i to one state in the dark-state manifold. For
v0 ¼ jv0j ¼ 0, we expect to populate the dark state jD2i
[33]. To assess the quality of the adiabatic transfer, we

(a) (b) (c)

FIG. 1. (a) Real-space configuration of the tripod laser beams.
The three co-planar beams (red arrows) define the plane ðOx;OyÞ
orthogonal to the gravity pull. A 67 G bias magnetic field, applied
along Ox, allows us to isolate the tripod system among the
ð1S0; Fg ¼ 9=2Þ → ð3P1; Fe ¼ 9=2Þ Zeeman manifold of the
intercombination line. Counterpropagating beams 1 and 3 along
Ox have opposite circular polarizations and address σþ and σ−
transitions, respectively. The orthogonal beam 2 is linearly
polarized along Ox and addresses a π transition. (b) The tripod
laser beam a drives the transition jai ↔ jei with a detuning δa
(a ¼ 1, 2, 3). The resonant Rabi frequencies are all equal to
Ω=2π ¼ 210 kHz. (c) The internal dressed-state basis of the
system features two degenerate dark states (in blue) uncoupled to
the laser beams and two bright states (in red) shifted from the dark
states by � ffiffiffi

3
p

ℏΩ=2.
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abruptly switch off the tripod beams, let the atoms fall for
9 ms, record the fluorescence image of the gas that we use
for a direct measurement of the velocity distribution. As
expected from Eq. (4), we observe one velocity peak
centered at −2vrêx for state j1i, a second one at −vrðêx þ
êyÞ for state j2i, and a third one at the origin for state j3i;
see Fig. 2(a). By fitting each peak by a Gaussian distri-
bution, we measure the populations Pa, which agree at a
98% level with the expected values (1=6, 1=6, and 2=3)
inferred from Eq. (4). We also checked, by adiabatically
switching off the tripod lasers, that 95% of the population
returns back to state j3i. This result indicates a good control
of the quantum coherence during the state preparation [33].
With the tripod laser detunings, we now fix a certain

mean velocity v0 of the ultracold gas in the moving frame
that we characterize by its polar coordinates ðv0; θ0Þ in the
tripod laser plane. We let the system evolve in the gauge
fields for a time t and measure the bare state populations

PaðtÞ by the time-of-flight (TOF) technique. The experi-
mentally inferred momentum-averaged velocity in the labo-
ratory frame is simply vexpðtÞ¼−vr½ð2P1þP2ÞêxþP2êy�.
The observed temporal oscillations of the velocity, along
the x and y axis, are shown in Fig. 2(b) for v0 ¼ 4

ffiffiffi
2

p
vr and

θ0 ¼ 0.6π. They constitute the first experimental observa-
tion of the noninertial wave packet motion induced by a 2D
bulk non-Abelian gauge field on an ultracold gas, without
scalar potentials. The damping of the oscillations is due to
the finite momentum dispersion δp ∼ 0.4ℏk of our degen-
erate Fermi gas. The solid line in Fig. 2(b) is the theoretical
prediction obtained without any fitting parameters by
numerically integrating the velocity operator evolutions
in the Heisenberg picture, including the finite ramping
sequence of the tripod beams, and averaging over the initial
momentum distribution [33]. The dashed lines in Fig. 2(b)
are the theoretical predictions for a wave packet in the
gauge fields without any laser ramping stage in the dark
state jD2i and with well-defined momentum q ¼ mv0. The
mean velocity in the laboratory frame of this plane-wave
model reads [17]

vðtÞ ¼ vru1ðθ0Þ þ vrfðθ0Þ cosωtêθ0 ; ð7Þ

where the last term captures the noninertial effect with

fðθ0Þ ¼
cos θ0 − sin θ0
2ð2þ cos 2θ0Þ

; ð8Þ

and

ω ¼ 2kv0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos 2θ0

p
: ð9Þ

The complete derivation of Eqs. (7)–(9) and the expression
for u1ðθ0Þ can be found in Ref. [33]. As shown in Fig. 2(b),
when the boost momentum mv0 is large compared to the
momentum dispersion of the gas, δp ≪ mv0, the oscillatory
motion at short time is well captured by the plane-wave
model, whereas its amplitude is slightly overestimated
because of the finite ramping time in the experiment [33].
We will now confront our experimental data to the plane-
wave model only.
The other central results of this Letter are the obser-

vation of the spin-Hall nature and anisotropy of the 2D
motion in momentum space. For this purpose, we vary the
mean momentum of the gas in the moving frame via the
tripod laser detunings [33]. We will now discuss these
phenomena in detail. At first, we recall that Eqs. (2) and
(7) indicate that the oscillation motion is a manifestation
of a spin Hall effect. As such, the velocity oscillation is
locked along a direction perpendicular to the momentum
q, as it is shown in Fig. 3(a) for v0 ¼ 4

ffiffiffi
2

p
vr. Here, for

each value of θ0, we measure the Cartesian coordinates of
the oscillating component of the velocity and extract the
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FIG. 2. (a) Time-of-flight fluorescence image recorded at v0 ¼
0 after the system has been initialized in the dark state jD2i. The
ballistic time is 9 ms. As expected from Eq. (4), the measured
velocity distribution shows three peaks centered at v ¼ 0,
v ¼ −vrðêx þ êyÞ, and v ¼ −2vrêx (vr ¼ ℏk=m is the recoil
velocity). These peaks correspond to states j3i, j2i, and j1i,
respectively. (b) Temporal oscillations of the Cartesian coordi-
nates of the averaged velocity obtained for a boost velocity
ðv0 ¼ 4

ffiffiffi
2

p
vr; θ0 ¼ 0.6πÞ. The solid lines are obtained by nu-

merically integrating the time evolution of the system in the
gauge field, initialized in j3i. We include the 10 μs ramping stage
of the tripod beams and finite momentum distribution of our
fermionic gas at T ¼ 30ð3Þ nK ¼ 0.21ð4ÞTF. The dashed lines
correspond to the plane-wave model given by Eq. (7) at q ¼ mv0.
Conveniently the time origin is shifted to match the phase
oscillations with experimental signal. This time shift is justified
inasmuch as Eq. (7) does not incorporate the effect of the laser
ramping stage. Its value of about 5 μs is essentially half the
ramping duration. (c) Time-of-flight fluorescence images at times
t1 ¼ 18, t2 ¼ 30, t3 ¼ 42, and t4 ¼ 62 μs. These times are
indicated by vertical dotted lines in (b).
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direction of the motion. We note that the velocity
oscillation flips orientation at θ0 ¼ π=4 and θ0 ¼ 5π=4.
As we will see below, the amplitude vanishes at these
angles. The gray curve is the theoretical prediction from
the plane-wave model.
From the Cartesian coordinates of the velocities, we

compute the norm and extract the oscillation amplitude as a
function of θ0 that we compare to vrjfðθ0Þj as shown in
Fig. 3(b) for v0 ¼ 4

ffiffiffi
2

p
vr. Figure 3(c) shows how the

velocity amplitude varies with the boost amplitude v0 for
two fixed values of θ0. Whenmv0 is no longer significantly
larger than δp, finite momentum dispersion effects kick in
and the amplitude departs from the plane-wave model
predictions.
To understand the physical origin of the momentum

dependence of the velocity oscillations, we derive the local
spin textures S�ðθ0Þ ¼ hφ�jσ̂jφ�i ¼∓ S, associated to the

upper- and lower-energy eigenstates jφ�i of the SOC
Hamiltonian. We have [33]

Sx¼
ffiffiffi
3

p ðcosθ0−sinθ0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þcos2θ0

p ; Sz¼
ð3cosθ0þsinθ0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þcos2θ0

p ; ð10Þ

and Sy ¼ 0. In Fig. 3(d), we show the 3D representation
spin texture S− of the lower-energy branch. In the pseu-
dospin language, the initial state jD2i of our system is the
lower spin state. For θ0 ¼ π=4 and θ0 ¼ 5π=4, the spin
textures are alongOz since Sx ¼ 0 and the initial state jD2i
identifies with jφ−i and jφþi, respectively [light green
arrows in Fig. 3(d)]. As such, Rabi flopping of the
pseudospin cannot occur and the oscillations are sup-
pressed. At these angles, the off-diagonal components
of the SOC Hamiltonian vanish. In contrast, when
tan θ0 ¼ −3, so at angles θ0 ≈ 0.6π and θ0 ≈ 1.6π, Sz ¼
0 and the spin textures are along Ox [blue arrows in
Fig. 3(d)]. At these angles the diagonal terms of the SOC
Hamiltonian are equal, which corresponds to a resonant
excitation in the context of two-level systems. In this case,
jD2i has equal weights on jφ�i and the oscillation is large
though not the largest possible because of the θ0 depend-
ence in the denominator of fðθ0Þ.
It is known that a Dirac point is characterized by a

winding number that can take two values�1 [40]. From the
plane-wave model, this topological number reads W ¼
ð2πÞ−1 H ðS ×∇θ0SÞydθ0 ¼ 1. Seen as a mapping from a
circle (θ0 angle) to another circle (angle ζ of S), this reflects
the homotopy group of the circle π1ðS1Þ ¼ Z [see insets in
Fig. 3(d)]. It indicates that a spin texture S is found along a
given direction only twice when θ0 is circled around 2π. In
particular, this given direction can be the initial spin
orientation hD2jσ̂jD2i, explaining why the oscillation
amplitude should vanish at least 2 times along a general
loop encircling the Dirac point.
The angular frequency ω ∝ kv0, see Eq. (9) quantifies

the energy difference between the upper- and lower-energy
branches of the Hamiltonian [17]. By varying the boost
velocity v0, the oscillation can be tuned to a suitable
frequency scale where it can be easily detected, for
example, in the kHz range as shown in Fig. 2(b). The
linear v0 dependence at fixed θ0, predicted by Eq. (9), is
shown in Fig. 4(a). Keeping now v0 fixed and circling θ0
around 2π, the trigonometric variation in Eq. (9) is well
reproduced; see Fig. 4(b).
In conclusion, we have reported on the first experimental

observation of a 2D noninertial dynamics in an ultracold
atomic gas subject to a non-Abelian SU(2) gauge field. This
result is consistent with predictions of Refs. [18,19]. We
have analyzed in detail the anisotropy of the wave packet
motion in momentum space, relating it to a spin-Hall
effect. The oscillatory behavior is caused by an interference
effect between two spin eigenvalues with different velo-
cities. In a similar way, Schrödinger has interpreted the
Zitterbewegung as interference occurring between the

(a) (c)

(d)(b)

FIG. 3. Direction and amplitude of the wave packet oscillation
and spin texture. (a) The oscillatory velocity direction η as
function of θ0. The blue points are the experimental data whereas
the grey plain curve represents the plane-wave model prediction.
The inset shows the direction locking of the oscillation at
η ¼ θ0 � π=2. (b) Velocity oscillation amplitude as a function
of the boost velocity polar angle θ0 for v0 ¼ 4

ffiffiffi
2

p
vr (points). The

solid gray line is the plane-wave prediction jfðθ0Þj of Eq. (8).
(c) Velocity oscillation amplitude as a function of v0 at angles
θ0 ¼ 0.6π (green points) and θ0 ¼ 0.75π (magenta points). The
green and magenta solid lines are the theoretical predictions from
the plane-wave model. The data points in (a), (b), and (c) are
obtained with a damped-sinusoidal fit function representing the
time evolution of the mean velocity of the atoms [see example in
Fig. 2(b)]. All error bars represent 1 standard deviation of
uncertainty. (d) Spin texture S of the lower energy branch
(arrows), Eq. (10), along a circle in the ðOx;OyÞ momentum
plane centered at the Dirac point. The spin orientation lies in the
ðOx;OzÞ plane, and the color code corresponds to the amplitude
of the Sx component. The central inset shows the evolution of the
angle ζ of the spin texture in a Bloch sphere representation as a
function of θ0. The angle ζ is defined with respect to the initial
spin orientation hD2jσ̂jD2i; see example on the top-left inset,
where θ0 ¼ 3π=2 and ζ ¼ π=3.
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positive an negative energy of a relativistic particle [41]. In
both cases, the oscillation roots in the presence of two
noncommutating terms in the Hamiltonian. For the 1D
Zitterbewegung effect, the mass term does not commute
with the spin-orbit component, whereas for the 2D non-
Abelian gauge field, the noncommutation occurs between
the two spin-orbit components.
Our scheme can be extended to SUðNÞ systems with

N > 2 [42]. There, we expect several oscillations frequen-
cies to enter the noninertial dynamics as the different
energy branches will not be necessary equally spaced.
Very generally, the oscillatory motion would measure the
energy differences between these different branches and
can develop into a powerful spectroscopic tool to map the
energy-branch diagram of such multi-level systems [43], in
alternative to other existing methods such as rf spectros-
copy [15,16,44], Bloch oscillation [45,46], and Fourier
transform spectroscopy [47–50]. One could even think of
performing selective excitation among energy branches by
a clever choice of initial states. Finally, the exact nature of
noninertial motion in the presence of dynamic gauge fields
seems a promising avenue to explore in the future [51,52].
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