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The most well-known tool for studying contextuality in quantum computation is the n-qubit Stabilizer
state tableau representation. We provide an extension that not only describes the quantum state but is also
outcome deterministic. The extension enables a value assignment to exponentially many Pauli observables,
yet it remains quadratic in both memory and computational complexity. Furthermore, we show that the
mechanisms employed for contextuality and measurement disturbance are wholly separate. The model will
be useful for investigating the role of contextuality in n-qubit quantum computation.
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Contextuality is an important nonclassical property of
quantum mechanics (QM) that has been studied since the
1960s [1,2], whereas current progress in the area is
connected to quantum information processing. One tool
for studying this question is the stabilizer formalism [3]: in
particular, the stabilizer state tableau representation (SSTR)
[4], which captures the contextual behavior of the stabilizer
subtheory of quantum theory. This is widely used, both in
quantum error correction and as a starting point to study
properties of the quantum advantage. A typical question is
what needs to be added to stabilizer quantum theory to
achieve the quantum advantage?
However, SSTR is not an ontological model but rather a

representation of the quantum states in the stabilizer
subtheory: quadratic in memory and computational com-
plexity. An interesting question is if an ontological model
(more specifically, an outcome-deterministic model) can be
found that is also computationally efficient. This could then
be used to study properties of the quantum advantage as
compared to ontological models, rather than as compared to
stabilizer quantum mechanics.
The presently known outcome-deterministic models are

all either noncontextual or exponential in complexity.
Perhaps the most well known is Spekkens’ toy theory
(STT) [5] from 2007 that models qubits as existing in one
of four discrete ontic states, also linking predicted meas-
urement outcomes of Y to those of X and Z. Although
noncontextual, STT can still reproduce a number of
quantum phenomena. This served as the stepping stone
for the eight-state (cube) model [6,7], wherein an additional
degree of freedom is introduced for each qubit,

“decoupling” Y from X and Z. Another extension is
quantum simulation logic (QSL) [8,9]; see below. In
2019, Lillystone and Emerson [10] proposed a contextual
ψ-epistemic model of the stabilizer subtheory, which is
outcome deterministic but exponential in memory com-
plexity, owing to assigning an explicit phase value to each
Pauli operator. An alternate model was also proposed that
was quadratic in memory, but that model is no longer
outcome deterministic. In this Letter, we draw upon these
previous efforts in pursuit of our goal: an efficient, in terms
of both computational and memory complexity, contextual
outcome-deterministic model of the stabilizer subtheory.
We assume the reader is familiar with basics of linear

algebra, the stabilizer formalism, and quantum computation
[11]. The standard Pauli operators act on single qubits, on
coordinate form

I ¼
�
1 0

0 1

�
; X ¼

�
0 1

1 0

�
;

Y ¼
�
0 −i
i 0

�
; Z ¼

�
1 0

0 −1
�
: ð1Þ

The n-qubit Pauli group Pn consists of n-qubit Pauli
operators and their respective global phase �1 or �i.
Because iXZ ¼ Y, any element of Pn can be written as
P ¼ ip ⊗k ixkzkXxkZzk , where ðx; zÞ is a binary symplectic
vector, which is so named because the two elements P and
P0 commute iff the symplectic product

P · P0 ¼
X
k

xkz0k − x0kzk ð2Þ

equals 0 mod 2. The noncommutative group operation
Pþ P0 ¼ P00 gives, with xþ x0 ¼ x00 and zþ z0 ¼ z00,

P00 ¼ ipþp0⊗
k
ixkzkþx0kz

0
kXxkZzkXx0kZz0k

¼ ipþp0−P·P0⊗
k
ix

00
kz

00
kXx00kZz00k : ð3Þ
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This makes Pn modulo phase a symplectic vector space for
which a symplectic basis fMk;Ckgnk¼1 obeys Mj ·Mk ¼
Cj · Ck ¼ 0 mod 2 and Mj · Ck ¼ δjk mod 2. Expansion
of M ∈ Pn in this basis uses mk ¼ M · Ck mod 2, ck ¼
M ·Mk mod 2, and binary phases v and w:

M ¼ ð−1Þviw
�X

k

mkMk þ
X
k

ckCk

�
: ð4Þ

An n-qubit stabilizer state jψi is uniquely determined by
the subgroup SðjψiÞ ⊂ Pn that stabilizes jψi. Equivalently,
a stabilizer state can be obtained from j0i⊗n using only
Clifford-group gates (generated byHadamard, Phase or “S,”
and CNOT), possibly also including Pauli-group measure-
ments. The elements of a stabilizer subgroup are Hermitian
so they can be written as P ¼ ð−1Þv ⊗k ixkzkXxkZzk . Two
such elements commute so that they give P · P0 ¼ 0
mod 2 and

Pþ P0 ¼ P00 ¼ ð−1Þvþv0−P·P0=2 ⊗k ix
00
kz

00
kXx00kZz00k : ð5Þ

Aim for the model.—The overall goal here is naturally to
construct a model that reaches the known lower memory
bound [12], which is a number of classical bits quadratic in
the number of qubits, while being relatively simple to
understand. We will take inspiration from STT and use
elements of the representation of QSL. The latter is an
efficient (linear complexity, i.e., constant overhead)
classical simulation framework for quantum computation
that implements one single additional resource available in
quantum systems as compared to classical-bit computation:
that of an additional degree of freedom of each elementary
system. This allows for construction of quantumlike
oracles, and QSL captures enough of the quantum behavior
to run, for example, Simon’s algorithm and the Deutsch-
Jozsa algorithm within the oracle paradigm [9].
QSL (and STT) achieves this by keeping track of two

classical bits for each qubit in the model. The two bits are
associated with the computational degree of freedom z and
the phase degree of freedom x: in effect, modeling a qubit
using only four discrete states. Measuring X or Z returns
the corresponding bit, whereas measuring Y returns the
XOR (eXclusive-OR) of the x and z bits; and this makes
the output deterministic given the internal state of the
model. Randomization occurs as dictated by quantum
mechanics: Measuring X randomizes the z bit to zero or
one uniformly, and vice versa. Measuring Y randomizes the
x and z bits in such a way that their XOR is unchanged
(¼ y). Measurement outcomes are repeatable, and we
obtain measurement disturbance as it occurs in quantum
mechanics. Gates in QSL act on these bit values; for the
Clifford-group gates,

Hðzh; xhÞ ¼ ðxh; zhÞ; Sðzs; xsÞ ¼ ðzs ⊕ 1; xs ⊕ zsÞ;
CNOTðzc; zt; xc; xtÞ ¼ ðzc; zt ⊕ zc; xc ⊕ xt; xtÞ: ð6Þ

This makes phase kickback manifest in the CNOT gate,
and many quantum-mechanical identities are obeyed,

e.g., HXH ¼ Z and HZH ¼ X. However, some identities
fail; e.g., because the value of y is given by the XOR of
x and z in QSL, we obtain HYH ¼ Y rather than the
quantum-mechanical HYH ¼ −Y. One effect of this is that
QSL (and STT) are noncontextual. In this Letter, our aim is
to add contextuality.
A contextual ontological model.—The main feature of

QSL (and STT) is that it contains a value assignment to the
symplectic basis fZk;Xkgnk¼1, where Zk and Xk are one-
qubit Pauli operators acting on system k. QSL now gives
the outcome of a measurement M by mod 2 summing the
bit values of the symplectic basis elements contained inM.
Inspired by this, the new model will still contain a value

assignment to a symplectic basis for Pn but not necessarily
the basis used in QSL. We choose fMkg to be a basis for the
stabilizer group of the quantum state of the system so that
the phase (�1) of the elements gives the predicted outcome
of any Pauli measurement from that subgroup, correspond-
ing to the value assignment. This is not so different from
SSTR; but, for reasons that will become clear later, we will
call this stabilizer group the measurement context M.
The second half of the symplectic basis is now needed to

generate Pn. In SSTR, this is called destabilizer [4] and is
used to identifymeasurements forwhich the outcome should
be random. This is where our ontological model will deviate
fromSSTR. Similar to QSL, we here chooseCk conjugate to
Mk, filling out the symplectic basis, under the name
conjugate context C and use the same value assignment to
its elements, associating the phase to a (predicted) out-
come of any Pauli measurements from that subgroup.
Measurement in the model will use three distinct steps:
(A) Retrieve the measurement outcome v.—Expand M in
the symplectic basis as in Eq. (4), use v as outcome, and
ignore w because M is Hermitian. (B) Store ð−1ÞvM as a
basis element ofM.—Find k so thatM ·Mk ¼ ck ≠ 0mod
2. (i) If successful (M ∉ M), update the elementsMj (j ≠ k)
for whichM ·Mj ¼ cj ≠ 0mod 2 toMj þMk, and replace
Ck withMk. (ii) Otherwise (M ∈ M), find k so thatmk ≠ 0.
Then, replaceMk with ð−1ÞvM, and update the elements Cj

(j ≠ k) for which M · Cj ¼ mj ≠ 0 mod 2 to Cj þ Ck.
(C) Perform measurement disturbance.—Randomize the
phase for the possibly newCk. Step (A) gives a well-defined
deterministic map from bit values in the model to the
outcome v. Step (B) ensures that the measurement and
conjugate contexts remain a symplectic basis, having
updated Mk ¼ ð−1ÞvM. This makes step (C) implement
measurement disturbancewith minimal complexity because
only one fair coin toss is needed, mirroring themeasurement
disturbance as it occurs in QM.
We turn now to Clifford-group gate implementation,

which is straightforward: Apply the gates to all elements of
the symplectic basis, including the phase according to
QM identities. Here, in contrast to QSL, the Hadamard
gate acting on Y will indeed result in −Y. Clifford-group
gates preserve the commutation relations between Pauli
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operators, and so the symplectic basis will remain a
symplectic basis. In coordinates [4],

Hðzh;xh;rÞ¼ðxh;zh;r⊕xhzhÞ;
Sðzs;xs;rÞ¼ðzs⊕xs;xs;r⊕xszsÞ;

CNOTðzc;zt;xc;xt;rÞ
¼ ½zc;zt⊕ zc;xc⊕xt;xt;r⊕xcztðxt⊕ zc⊕1Þ�:

ð7Þ
The final part of the model is state preparation. First,

choose Mk so that they stabilize the initial state and
mutually commute. Second, choose mutually commuting
Ck, with random phase, that anticommute with the corre-
sponding Mk and commute with Mj, j ≠ k.
The model construction obeys the knowledge balance

principle of STT [5]: “If one has maximal knowledge, then
for every system, at every time, the amount of knowledge
one possesses about the ontic state of the system at that time
must equal the amount of knowledge one lacks.” Step (C)
of the measurement procedure ensures that this balance is
maintained.
State preparation can also be done using Clifford-group

gates on j0i⊗n, which is stabilized by Mk ¼ Zk; and one
good choice of conjugate context basis with random phases
rk (fair coin tosses) is Ck ¼ ð−1ÞrkXk. Alternatively, pick a
completely random initial state and perform measurement
and transformations to create the desired state. This latter
method reproduces the standard quantum-mechanical state-
ment “preparation is measurement.” (“Any measurement in
quantum theory can in fact only refer either to a fixation of
the initial state or to the test of such predictions, and it is
first the combination of measurements of both kinds which
constitutes a well-defined phenomenon” [13].) Any stabi-
lizer state can be prepared using either method.
Theorem 1. The model presented above is an onto-

logical model of the n-qubit stabilizer subtheory.
Proof.—It suffices to show that our model gives the same

predictions as SSTR [4]. As already observed, we can use
j0i⊗n [i.e., fZk; ð−1ÞrkXkgnk¼1] as the canonical initial state.
The only difference to the standard initial tableau of SSTR
is that our model uses random rk, whereas SSTR sets
rk ¼ 0 and then never uses these values. The application of
gates is identical to SSTR [see Eq. (7)], also implying that
basis elements Ck that have independent random phases
before a gate array have independent random phases after
the gate array.
Therefore, step (A) of the measurement procedure gives

the same predictions as SSTR: if M ∈ M, the outcome v
obtained from Eq. (4) equals the total rowsum of SSTR
because both realize the group operation in Pn; and, if
M ∉ M, the outcome v will be random because it contains
one or more independent fair coin tosses. Step (B) updates
the basis fMk;Ckgnk¼1. No update is done in SSTR if
M ∈ M, whereas our model changes basis elements but
neither M nor the value assignment for Pn; so, future
predictions remain unchanged. If M ∉ M, the state update

of step (B) is identical to SSTR, with the caveat that SSTR
only handles one-qubit Z measurements (see the update
rules for case 1 on p. 4 of [4]), but this restriction can be
removed. The final step [step (C)] implements measure-
ment disturbance, which is needed in our model to maintain
random independent phases for all Ck so that predictions
for later measurement outcomes are also exactly the same
as for SSTR. ▪
Memory and computational complexity.—Storing the two

contexts requires 4n2 þ 2n bits. Keeping track of interim
operators and indices during measurement updating
requires, at most, 6nþ 2n log nþ lognþ 4 bits for a
maximum concurrent memory cost of 4n2 þ 8nþ
2n log nþ lognþ 4 bits. Themodel is quadratic inmemory
complexity, reaching the lower bound in Ref. [12] for
classical models that simulate quantum contextuality.
Initializing the model and applying k gates require, at

most, 4nþ 2þ 16kn operations. Expanding M according
to Eq. (4) requires 6n2 þ 4n operations. Updating the
symplectic basis requires 4n2 − n operations because we
may make use of many of the calculations carried out when
expanding M. Finally, randomizing the phase of one
operator requires two operations. Thus, for k gates and l
measurements, the number of operations required is equal
to 4nþ 2þ 16knþ lð10n2 þ 3nþ 2Þ: The model is com-
putationally efficient. Note that, for algorithms that reduce
to a decision problem (where we can encode the phase
value of n − 1 qubits into ancilla qubits using consecutive
CNOT gates), the model is indeed quadratic in computa-
tional complexity, in the same way as SSTR.
Examples of contextual behavior.—From here on, we

suppress the tensor notation; i.e., XXYZ should be read as
X ⊗ X ⊗ Y ⊗ Z. The standard example is the Peres-
Mermin (PM) square [2,14–18]:

ZI IZ ZZ

IX XI XX

ZX XZ YY

ð8Þ

A model that assigns noncontextual values to phases will
give an even number of rows and columns that yield
measurement outcomes that sum to 1 mod 2, whereas QM
predicts an odd number of such rows and columns, namely,
the rightmost column only. A value assignment therefore
needs to be contextual (depend on measurement context;
here, meaning row or column) to give QM behavior.
The PM square is state independent; but, for pur-

poses of demonstration, let us here assume we begin in
the state j00i so that state preparation in our model gives
the symplectic basis fZI; IZ;XI;−IXg (random phases 0,
1 drawn by the authors). From this starting state, let us look
at measurement sequences ZZ;XX;YY and ZX;XZ;YY;
the first sequence starts with ZZ. (A) We have M1þ
M2 ¼ ZI þ IZ ¼ ZZ ¼ M, and so v ¼ 0. (B) Case ii.
All ck ¼ 0 and m1 ¼ 1; so, update the basis to
fZZ; IZ;XI;−IX þ XI ¼ −XXg. (C) Randomize the
phase of C1: fZZ; IZ;�XI;−XXg.
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Then, measure XX. (A) We have C2 ¼ −XX ¼ −M,
and so v ¼ 1. (B) Case i. c2 ¼ 1; update to
fZZ;−XX;�XI; IZg. (C) Randomize the phase of
C2: fZZ;−XX;�XI;�IZg.
Measurement of YY will findM1þM2¼ZZþð−XXÞ¼

YY¼M; so, v ¼ 0, making the outcomes from the right-
most column of Eq. (8) total 0 ⊕ 1 ⊕ 0 ¼ 1 as QM
predicts.
Restarting from the initial state fZI; IZ;XI;−IXg, the

second sequence starts with ZX. (A) We have M1 þ C2 ¼
ZI þ ð−IXÞ ¼ −ZX ¼ −M, and so v ¼ 1. (B) Case i.
c2 ¼ 1; update to fZI;−ZX;XI þ IZ ¼ XZ; IZg.
(C) Randomize the phase of C2: fZI;−ZX;XZ;�IZg.
Then, measure XZ. (A) We have C1 ¼ XZ ¼ M,

and so v ¼ 0. (B) Case i. c1 ¼ 1; update to
fXZ;−ZX;ZI;�IZg. (C) Randomize the phase of C1:
fXZ;−ZX;�ZI;�IZg. Here, measurement of YY will
find M1 þM2 ¼ XZ þ ð−ZXÞ ¼ −YY ¼ −M; so, v ¼ 1,
making the outcomes from the bottom row of Eq. (8) total
1 ⊕ 0 ⊕ 1 ¼ 0 as QM predicts.
The measurement outcomes of ZZ, XX, ZX, and XZ are

as one would expect from the initial state. But, importantly,
the measurement outcome of YY depends deterministically
on what measurements are performed together with YY: the
so-calledmeasurement context. Themodel stores performed
measurements in M, hence the name. The map to the
measurement outcome of YY is completely deterministic,
given the initial state, but depends on what measurements
are performed before YY; so, the model is contextual, which
is what enables it to reproduce the QM contextual behavior.
Note that although the chosen order of measurements may
influence the outcomes, this influence is deterministic; and
for commuting measurements, the associated measurement
disturbances do not change the outcomes.
Another example is the Greenberger-Horne-Zeilinger

(GHZ) paradox that uses an entangled state of three qu-
bits with stabilizer-group generators, e.g., −XYY, −YXY,
and −YYX; another stabilizer is XXX ¼ ð−XYYÞþ
ð−YXYÞ þ ð−YYXÞ. These encode the correlations of
the GHZ paradox, which are such that an ontological
model (in the terminology used in this Letter) can only
reproduce these correlations if the measurement outcome at
one qubit depends on what measurements are performed on
the other qubits [19]. In this situation, such influences are
usually called nonlocal. In our model, the GHZ state below
uses three random phases a ¼ ð−1Þr, b ¼ ð−1Þs, and
c ¼ ð−1Þt; and single system measurements give, e.g.,

f−XYY;−YXY;−YYX; aYII; bIYI; cIIYg
⟶
M¼Y1faYII;−YXY;−YYX;�XYY; bIYI; cIIYg
⟶
M¼Y2faYII; bIYI;−YYX;�XYY;�YXY; cIIYg
⟶
M¼X3faYII; bIYI;−abIIX;�cXYI;�cYXI;�IIYg: ð9Þ

The binary outcomes sum to r ⊕ s ⊕ ð1 ⊕ r ⊕ sÞ ¼ 1,
and so give the expected anticorrelation. Another choice of
measurement sequence gives

f−XYY;−YXY;−YYX; aYII; bIYI; cIIYg
⟶
M¼X1f−XYY;−bcXII; IZZ;−aIXY;�YXY; cIIYg
⟶
M¼X2f−acIXI;−bcXII; XXX;�XYY;�YXY; cIIYg
⟶
M¼X3f−acIXI;−bcXII; abIIX;�cXYI;�cYXI;�IIYg:

ð10Þ
The outcomes sum to ð1 ⊕ r ⊕ tÞ ⊕ ð1 ⊕ s ⊕ tÞ ⊕
ðr ⊕ sÞ ¼ 0, and so give the expected correlation. The
model is nonlocal because the measurement X3 gives the
outcome 1 ⊕ r ⊕ s in the first case but r ⊕ s in the second.
Our final example is the quantum shallow circuits

algorithm [20], which always succeeds when run by our
model: a fact which follows immediately from Theorem 1
because the algorithm only uses (a subset of) the Clifford
gates. We demonstrate the behavior for the problem
instance

fðxÞ ¼ xTAx mod 4; with A¼

0
B@
0 1 1

1 1 0

1 0 1

1
CA: ð11Þ

The task is to find z so that fðxÞ ¼ 2z · x mod 4 on the
subset of vectors where Ax ¼ 0 mod 2. The algorithm uses
the circuit in Fig. 1, and our model gives

fZII;IZI;IIZ;aXII;bIXI;cIIXg
⟶
HHHfXII;IXI;IIX;aZII;bIZI;cIIZg
⟶
CZ12fXZI;ZXI;IIX;aZII;bIZI;cIIZg
⟶
CZ13fXZZ;ZXI;ZIX;aZII;bIZI;cIIZg
⟶
ISS fXZZ;ZYI;ZIY;aZII;bIZI;cIIZg
⟶
HHHfZXX;−XYI;−XIY;aXII;bIXI;cIIXg
⟶
M¼Z1fZXX;bcZII;IYY;−aIYI;�XYI;cIIXg
⟶
M¼Z2f−abIZI;bcZII;−ZZZ;�IYI;∓aXII;cIIXg
⟶
M¼Z3f−abIZI;bcZII;acIIZ;�IYI;∓aXII;�IIXg: ð12Þ

FIG. 1. The quantum shallow circuits algorithm for the problem
instance of Eq. (11).
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Note that gates have a bounded fan-in in our model. The
measurement output, both from our model and from QM, is
one of the solutions with equal probability:

z¼

0
B@

s⊕ t

1⊕ r⊕ s

r⊕ t

1
CA∈

8<
:
0
B@
1

0

0

1
CA;

0
B@
0

1

0

1
CA;

0
B@
0

0

1

1
CA;

0
B@
1

1

1

1
CA
9=
;: ð13Þ

Conclusion.—We have presented an efficient contextual
ontological model of stabilizer quantum mechanics.
Previously proposed models all lack at least one of the
properties of efficiency, contextuality, and outcome deter-
minism; see Table I for a comparison. In addition, our
model is ψ-ontic. Unlike Spekkens’ toy theory [5] and
quantum simulation logic [9], our model implements
contextuality for the stabilizer subtheory, and is thus able
to successfully run algorithms relying on that quantum
resource, such as the quantum shallow circuits algorithm as
shown above. In contrast to the models by Lillystone and
Emerson [10], our model combines outcome determinism
and efficiency.
Outcome determinism is an important difference to the

stabilizer state tableau representation [4], but note that this
is more than a mere philosophical issue because it can also
be utilized in the analysis of quantum algorithms. The
stabilizer state tableau representation efficiently stores the
stabilizer group of a single stabilizer state and enables
efficient use of Clifford-group gates and Pauli measure-
ments so that we can follow a single quantum state as it is
transformed, one gate after another, and subsequently
measured. Our model additionally treats the conjugate
context on almost the same footing, storing it alongside
the measurement context (that stores the stabilizer group of
some selected state). There are then several choices of
stabilizer group possible in our model using elements from
both contexts so that our model enables us to simulta-
neously follow the behavior of all of these exponentially
many quantum states as they are transformed, one gate after
another, and subsequently measured.

The model can be implemented and used in practical
applications for thousands of qubits on a modern classical
computer, for example, using Python [21]. That the model
can follow exponentially many quantum states using
quadratic classical resources is a direct consequence of
the model structure, the many possible stabilizer choices,
and outcome determinism. It is our belief that this remark-
able property should prove quite helpful in enhancing our
understanding of quantum algorithms.
A second property of the model is equally intriguing to

us: The mechanism governing contextuality is entirely
separated from that ensuring measurement disturbance.
They are two distinct steps in the measurement update
process, with no interaction between them. The exact
ramifications of this are, at least to us, difficult to foresee;
but, we strongly believe this provides a very promising
venue to explore further.
Finally, because our model successfully reproduces the

contextual behavior of the stabilizer subtheory while
reaching the theoretical lower memory bound, it severely
limits how much of the quantum advantage can arise from
stabilizer contextuality alone. At the very least, it suggests
that to attribute the quantum advantage to contextuality, one
will need to delve further into the structure of contextuality
itself, beyond the stabilizer subtheory.
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