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Biomolecular self-assembly spatially segregates proteins with a limited number of binding sites
(valence) into condensates that coexist with a dilute phase. We develop a many-body lattice model for a
three-component system of proteins with fixed valence in a solvent. We compare the predictions of the
model to experimental phase diagrams that we measure in vivo, which allows us to vary specifically a
binding site’s affinity and valency. We find that the extent of phase separation varies exponentially with
affinity and increases with valency. Valency alone determines the symmetry of the phase diagram.
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Introduction.—Protein self-assembly plays a central role
both in health and disease [1]. Aberrant protein assembly
is associated with neurodegenerative diseases such as
Alzheimer’s or Huntington’s [2,3], type-II diabetes [4],
and others. Conversely, protein self-assembly into biomo-
lecular condensates can spatially localize biochemical
processes in membraneless, mesoscale compartments
[5,6]. These biomolecular condensates (BMCs) can com-
prise ribonucleic acids, nucleic acids, and various proteins
[5–8]. Examples of such BMCs include germline granules
[9,10], stress (responsive) granules [11–16], and chroma-
tin-bound condensates [17]. BMCs also display crucial
regulatory roles in various biological processes [1,5,18]
such as cell differentiation [19,20], centrosome assembly
[21,22], reaction kinetics [23], noise buffering [24–26], or
metabolic control [27]. Thus, general theoretical frame-
works that enable conceptualization and prediction of the
behavior of BMC systems are critical for comparison with
experiments to foster their control. These include under-
standing the concentrations, molecular interactions, and
temperature [5,18,28,29] under which biomolecules con-
densate instead of remaining dispersed, or assessing
whether the formation of a BMC is a quasiequilibrium
process [30] or whether it is driven by biochemical
reactions [21,22].
Quantitative analyses of in vivo cellular condensates are

difficult owing to the fact that one does not know all the
molecular species involved or the interactions among them.
Such uncertainty limits the ability to quantitatively predict
the properties of phase separation of cellular condensates.
For example, BMCs often comprise intrinsically disordered
proteins [5] for which the structural valency (number of
binding sites available per molecule), the effective valency
(number of sites that are sterically, simultaneously acces-
sible for intermolecular contacts) and the interaction energy

(affinity) between binding sites are typically unknown. In
that respect, synthetic systems help bridge this gap, as their
parameters are known by design. Indeed, the use of
synthetic systems in vitro enabled understanding the impact
of protein concentration, as well as interaction affinity on
phase separation [23,31]. We have developed a unique,
synthetic system based on interacting dimers and tetramers
that enforces intermolecular contacts, so that the structural
valency is equal to the effective valency [32]. The mod-
ularity of this system also allows one to vary the valency
parameter—for example, replacing tetramers with hexam-
ers, and changing the bond affinity, as we demonstrate in
this Letter.
Additionally, BMCs fundamentally differ from systems

studied in physics and physical chemistry, where one
usually considers isotropically interacting, small molecule
mixtures. In contrast, biomolecules are large, and in many
cases, interactions are constrained by their geometry and
the number and position of binding sites at their surface.
Simple models with nonspecific interactions predict phase
separation with a critical volume fraction of the order of
1=2 [33,34]. In contrast, for polymeric systems, Flory-
Huggins theory [35] predicts a critical concentration that
scales as N−1=2, where N is the polymerization index. For
large N, the system phase separates at very low polymer
volume fractions with a fractal-like polymeric ensemble. In
addition, for branched polymers, the classical theory of
gelation by Flory and Stockmayer [36–38] gives the
percolation threshold of the network, a geometric property.
However, our interest here is on the thermodynamic
phase separation that leads to condensate formation.
Reference [39] presents the effects of varying multivalency
on both phase separation and percolation. The latter, in
particular, highlights that valence is a critical parameter.
Our theory complements the existing approaches listed
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above: we focus on the primary physical mechanisms
relating phase separation to finite multivalency of rigid
proteins. Progress along this direction has come from
molecular-dynamics simulations of patchy particles
[40,41], the extension of Wertheim theory [42–45], and
lattice-based Monte Carlo simulations of model biological
proteins [46–48]. In this Letter, we develop a relatively
simple lattice model that automatically includes the excluded
volume effect and the multibody nature of finite valence.
This makes the theory amenable to analytical treatment and
facilitates comparison with experiments on the extent of
phase separation as a function of affinity and valence.
Our focus here is the phase separation into concentrated

and dilute regions in a three-component system of a solvent
and two proteins: one of which is divalent (dimer) and
another with a valence larger than two (multimer). The
multimers interact among themselves via the dimers, which
link two multimers as schematically shown in Fig. 1. The
geometric design of the proteins prevents intramolecular
binding, i.e., where two sites of a dimer bind on the same
multimer. Experimentally, we genetically encode such a
pair of proteins and monitor their expression and phase
separation in yeast cells, as described in Ref. [32]. Briefly,
the dimer and multimer each consists of three structured
domains fused by flexible linkers: the first domain is a
fluorescent reporter, the second confers multivalence by
homo-oligomerization, and the third mediates the affinity
or interaction strength (IS) between the dimer and the
multimer. Uniquely, both IS and the multimer valency can
be modulated by exchanging the IS-domain or multivalent-
domain with another exhibiting the desired property. The
dimer and tetramer are coexpressed in the cytoplasm of
yeast cells and undergo phase separation at high enough
concentrations. Protein concentration in the dilute phase is

quantified by fluorescence microscopy and is compared
with our theory. Theoretically, we predict the phase dia-
gram topology and symmetry (the axis of maximum phase
separation) for the association of such multimers linked (or
not) by dimers. We find that the phase boundaries enclosing
the coexisting regions form closed loops and crucially
depend on the valence and relative affinity, IS, between the
dimers and multimers (Fig. 2). We, therefore, focus on the
phase diagrams as a function of the dimer and multimer
concentrations at various interaction strengths (Fig. 2).
For these coexistence curves, the valence determines the
symmetry that depends on the multimer-dimer ratio
[Fig. 3(b)]; this is different from closed-loop phase dia-
grams in the temperature-solute concentration plane for
hydrogen-bonding systems [49,50]. In addition, our theory
predicts that the minima (minimum distance from the
origin), Δ, of the phase diagrams vary exponentially with
interaction strength, which is in agreement with experi-
mental data [Figs. 2(c)–2(f)]. We then elucidate the role of
multivalency in phase separation and how valency affects
the rate of decrease of the distance to the origin Δ with IS
[Fig. 3(c)]. Finally, we show within the theory and the
experiment that phase separation becomes more effective
(i.e., phase boundaries cover a larger region of the con-
centration space) at higher valence for a fixed interaction
strength [Figs. 3(d)–3(f)].
Theoretical model.—We formulate a statistical mechani-

cal description of the system of multimers and dimers,
which we solve within a mean-field approximation. Since
the focus of the experiments is on the topology and
symmetry of the phase diagrams as a global function of
the two concentrations at fixed temperature, the corrections
to mean-field theory are important only near the critical
points and therefore are not of interest here. Instead, we
focus on the experimentally important parameters of
compositions, valence, and interaction strengths. We des-
ignate the dimers by A and the multimers by B. The proteins
in the experiments are designed so that A and B interact as
lock and key [32,51]. Additionally, two interaction sites
of A cannot bend to interact with two sites of the same B
molecule due to the rigidity of A. Therefore, phase
separation proceeds through intermolecular associations
between A and B.
For concreteness, we first consider a particular example:

a dimer and a tetramer being the A and B particles,
respectively, and the rest of the system is considered as
a uniform (mostly aqueous, in the case of a cell) solvent S.
From the experiment, we find the phase separation to be
strongest (i.e., the concentration difference between the two
coexisting phases is largest) at the stoichiometric ratio of
interaction sites (volume fraction of molecules multiplied
by their valence) of A and B. To elucidate this within our
mean-field theory, we consider a lattice model where the A
molecules occupy only the bonds and the B molecules
occupy only the sites of the lattice. Solvent molecules, S,

R1

R2

Tetramer Dimer Solvent
(B) (A) (S)

(a) (b)

FIG. 1. Schematic description of the lattice model for a solution
of tetramers, dimers, and solvent. (a) Lattice model for the system
on a square lattice. Regions R1 and R2 show the same particles in
two different configurations: the configuration in R2 has higher
enthalpy owing to satisfied interactions between A and B and a
lower entropy as other configurations of A and B are restricted by
the interaction. The configuration in R1 has lower enthalpy and
higher entropy than R2. (b) Four possible complexes when the B
molecules are tetramers.
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can occupy either the bonds or sites as schematically shown
in Fig. 1(a). Ns and Nb denote the total number of sites
and bonds, respectively. Since the B molecules have four
interaction sites (q ¼ 4) each, we consider a square lattice,
where Nb ¼ 2Ns; to treat other valences, q, we use
different lattices (see Supplemental Material (SM) [52],
Sec. V). The system contains a total of NA

0 Amolecules and
N0

B B molecules. Since the lattice is fully occupied,
conservation dictates that there must be ð2Ns − N0

AÞ S
molecules on the bonds and ðNs − N0

BÞ on the sites.
Modeling the experimental phase diagrams requires the

inclusion of many-body interactions to account for the
finite valency, even in mean-field theory [53,54]. To do so,
we proceed in two separate stages: first, the A and B
molecules associate with each other forming complexes,
and second, the complexes interact among themselves as
well as with the free B molecules (i.e., those not associated
with any A) leading to phase separation. To simplify the
problem and obtain physical insight, we use a mean-field
approximation where the complexes interact with the
average concentration of B molecules. For the particular
case of tetramers and dimers, there can be four different
complexes: Ci with i ¼ 1, 2, 3, 4, where Ci denotes a

configuration with i A molecules associated with one B
molecule as schematically shown in Fig. 1(b).
To illustrate the physical origin of the phase separation,

consider the two shaded regions R1 and R2 in Fig. 1(a):
they both contain the same number of particles: one A, two
B, and two S. When the attractive interaction dominates,
the configuration in R2 has lower free energy compared to
that in R1; in contrast, when entropy dominates, the
arrangement in R1 has lower free energy than that in
R2. In equilibrium, the system configuration is that which
minimizes its free energy: When the enthalpy term domi-
nates, it favors R2, and the system phase separates; on the
other hand, when the entropy term dominates, it favors R1,
and the system remains in a homogeneous, single phase.
After the complexes have formed, the dimensionless

concentration of free A molecules (the fraction of bonds
occupied by uncomplexed A molecules) is ρA ¼ NA=Nb,
where NA is the number of free A molecules. Similarly,
ρB ¼ NB=Ns is the dimensionless concentration of free B
molecules. This particular normalization uses the effective
concentrations of the interaction sites (i.e., actual concen-
trations multiplied by valence), which is the quantity that
we also use for analysis of the experiments. The effective
concentrations of the total (overall) A and B interaction
sites are ρ0A and ρ0B, respectively, and the concentrations of
the ith complex are γi. Then, the total free energy (see SM
[52], Sec. II, for details), f, per site, in units of kBT, where
kB is the Boltzmann constant and T, the temperature, is

f ¼ 2ρA ln ρA þ ρB ln ρB þ 2ð1 − ρ0AÞ lnð1 − ρ0AÞ
þ ð1 − ρ0BÞ lnð1 − ρ0BÞ þ γ1 lnð4γ1Þ þ γ2 lnð6γ2Þ
þ γ3 lnð4γ3Þ þ γ4 ln γ4 − Jðγ1 þ 2γ2 þ 3γ3 þ 4γ4Þ
− ðJ − JBBÞρ0Bðγ1 þ 2γ2 þ 3γ3 þ 4γ4Þ; ð1Þ

where the product iJ is the gain in binding energy (in units
of kBT) due to the formation of Ci. JBB is a parameter
governing the change in interaction when both sides of the
dimer, compared to only one of its sides, is attached to the
corresponding site on the B molecules. Here, we consider
JBB ¼ 0 and comment on nonzero JBB in the SM [52],
Sec. IX. Note that we have treated the solvent on the sites
and the bonds as two different states, since the volumes
occupied by A and B molecules can be different.
Modeling the effect of interaction strength on phase

separation.—Conservation of the A and B molecules res-
pectively implies that ρA ¼ ρ0A − ðγ1 − 2γ2 − 3γ3 − 4γ4Þ=2
and ρB ¼ ρ0B − γ1 − γ2 − γ3 − γ4, where the γi are the
concentrations of the complexes. For a given interaction
strength J, we first minimize f with respect to γis; this leads
to four equations that we solve simultaneously to obtain the
γis in terms of ρ0A and ρ0B, which then allows us to calculate
the phase diagrams (see SM [52], Sec. II). The phase
diagrams are functions of the interaction strength J, ρ0A

(a) (b)

(d) (f)(e)

(c)

FIG. 2. (a) Phase diagram for a solution of tetramers, dimers,
and solvent. The dotted line denotes the binodal and the end
points of the tie lines (in light blue) are the concentrations of the
concentrated (dashed) and dilute (dotted) phases. The yellow
dashed line is the spinodal that gives the limit of metastability.
The two red stars denote the two critical points where the tie line
length vanishes and the two coexisting phases become identical.
(b) Binodal for solutions of tetramers, dimers, and solvent at two
different values of the interaction strength, J, show stronger phase
separation (larger area of the two-phase region and larger
differences in concentrations of the two coexisting phases) at
larger J. (c) The minimum distanceΔ of the phase boundary from
the origin as a function of interaction strength J. The line is the
theory and the symbols (with error bars) are experimental data.
We note that the data point for the highest interaction strength
(purple) overestimates Δ because the corresponding concentra-
tions of A and B in the dilute phase reach a value below the
detection limit of the microscope. (d)–(f) Experimental phase
diagrams for the dimer-tetramer system with different interaction
strengths (affinities) (J ¼ − logðISÞ in units of kBT).
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and ρ0B, and therefore are three-dimensional. We plot the
phase diagrams in the two-dimensional plane of the given
effective concentrations, ρ0A and ρ0B, at a fixed value of J.
There is no phase separation at small values of J; as J
increases and crosses a certain value (depending on
valence), phase separation occurs. We find a closed-loop
phase diagram with two critical points as shown for J ¼ 2.6
in Fig. 2(a). The outer boundary, marked by the dotted line,
is the binodal, and the dashed line is the spinodal. Phase
separation occurs inside the binodal region where dense
(red) and dilute (blue) regions coexist in equilibrium,
whereas outside this boundary, the system remains homo-
geneous. The two stars mark the critical points where the
concentrations of dense and dilute regions become iden-
tical. The lines connecting the dense and the dilute regions
are the tie lines, whose end points are the effective
concentrations of two coexisting regions. If the interaction
strengths and overall concentrations are such that the
effective concentrations are within the spinodal region,
the uniform, mixed state is unstable, and phase separation
occurs via spinodal decomposition along the tie lines. On
the other hand, if the system lies between the spinodal and
the binodal regions, phase separation proceeds through
nucleation and growth [33,39,55].
Figure 2(b) shows the binodal phase diagrams for the

tetramer-dimer system at two different values of J;

increasing J leads to more effective phase separation (as
defined above). For a quantitative comparison of theory and
experiment, we define Δ, the minimum distance of the
dilute region of the binodal from the origin, as a function of
different J and the corresponding experimentally varied
affinity. In a two-component system, Δ decreases expo-
nentially with J when J ≫ 1 (see SM [52], Sec. VI); we
expect and observe a similar behavior for the three-
component system. We plot Δ derived from the numerical
solution of the theory (line) and from the experiment
(symbols; see SM [52], Sec. I) in Fig. 2(c). The exper-
imental uncertainty in both the affinity (corresponding to
the interaction strength, J) and the measured effective
concentrations are shown in the figure. Note that the
concentrations at the largest affinities in experiments are
at the limits of our experimental resolution. The agreement
in Fig. 2(c) is close given the experimental uncertainties.
We also show the experimental phase diagrams at three
different affinities (interaction strengths IS, measured in
units of M, where J ¼ − logðISÞ in units of kBT). The
points in Figs. 2(d)–2(f) are the effective concentrations of
interaction sites of dimers and tetramers for cells that do not
exhibit a visible condensate in them; thus, the data from the
many cells with different protein concentrations depicts the
part of the binodal that delineates the dilute phase [32].
Although the theoretical phase diagram is a closed loop, a

quantitative measurement of the concentration in the dense
phase is challenging due to the limited axial resolution of
the microscope, inner filter effects, and foster energy
transfer. Therefore, we compared only the dilute region
of the measured phase diagrams with the theory. In the
experimental system, A andB interact with an affinity on the
order of 100 nM or ∼15kBT [32]. The numerical solution of
the theory at such affinities is impractically slow (see SM
[52], Sec. VII) and we did not calculate the entire phase
diagram. However, we discuss in the SM [52] and show in
Fig. 3 that the extreme regions of the phase diagram (those
that connect largest tie lines) can be calculated even for large
values of J. We saw in Fig. 2 that the shapes of the phase
diagrams for the dilute region, and the trend with increasing
J, are similar to the situation at smaller values of J. (See,
however, SM [52], Sec. IV, for a comment on the difference
of the shapes of phase diagrams in theory and experiments.)
When the affinity is high, the system will use more A
molecules to associate the B molecules, as schematically
shown in Fig. 1(a). As shown in the SM [52] (Fig. S3), when
the affinity of A to B is weak, the likelihood of complex
formation is low, and most of Amolecules are free; whereas,
for high affinity, the probability is high, and most of the A
molecules are incorporated into complexes. These com-
plexes then interact with the free B particles or other
complexes to yield the dense phase.
We expect maximal phase separation when the effective

concentrations of interaction sites for the two species are
equal. To test this hypothesis, we plot the phase diagrams

FIG. 3. (a) The symmetry axis of the phase diagrams for phase
separation of tetramers and dimers lies along the zero of the
abscissa for asymptotically large J. This shows that phase
separation is strongest at the stoichiometric ratio (of the effective
concentrations). (b) Comparison of the value of the minimal
concentration, Δ, obtained from the full model (points) and
simplified model (lines) along the symmetry axis. (c) Theoretical
phase diagram for both tetramers and dimers and hexamers and
dimers, both with J ¼ 4.0 shows stronger phase separation for the
hexamers. (d)–(f) Experimental phase diagrams for the same
interaction strength and different valence (d) Phase diagram for a
dimer-tetramer system (e) Phase diagram for a dimer-hexamer
system. (f) Experimental data from panels (d) and (e) are overlaid.
Axes correspond to concentration of interaction sites and dotted
lines are approximate phase boundaries.
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for a mixture of dimers and tetramers at several values of J
as functions of ρ0A − ρ0B vs ρ0A þ ρ0B in Fig. 3(a). As J
increases, we expect the symmetry line, i.e., the tie line of
maximal phase separation, to lie on the zero of the abscissa,
which we indeed observe [Fig. 3(a)]. If stoichiometry
determines the maximal extent of phase separation, Δ
should lie along this symmetry axis. To test this hypothesis,
we approximate ρ0A ¼ ρ0B and solve the phase diagrams
along this symmetry axis (see SM [52], Sec. VIII). Δ
obtained using this simple approximation agrees well with
the numerical results of the complete theory [Fig. 3(b)].
Effect of valency.—We now discuss the role of multi-

valency. For concreteness, we consider two different
systems: tetramers or hexamers, both with dimers and
solvent (see SM [52], Sec. V). All other parameters being
equal, we find that the system with hexameric B molecules
shows a larger region of phase separation, compared with
tetramers, as shown in Fig. 3(c) for J ¼ 4.0. To compare the
theory with experiments, we measured the phase diagrams
for both systems: tetramers or hexamers with dimers; the
phase diagrams are shown in Figs. 3(d)–3(f) and exper-
imental details are given in the SM [52]. Consistent with
theory, phase separation is more effective for the hexamers
than the tetramers at a given interaction strength, and a
similar effect was observed using three structurally distinct
hexameric scaffolds (Fig. S1 and SM [52], Sec. I). Note that
the trivial factor that accounts for a larger number of
interaction sites per multimer is accounted for in these plots
as we consider concentrations of interaction sites, not
concentrations of B molecules. The system with larger
valence shows stronger phase separation due to the avail-
ability of more complexes, which increases the interaction
energy per particle. Smaller values of Δ with increasing
multivalency q at a fixed J [Fig. 3(c)] are also consistent
with the experimental results.
In summary, we have presented a simple theory that

predicts phase separation in a three-component system of
multivalent proteins where one of the components is
dimeric and the other has a higher valence. While we have
shown the results for tetramers and hexamers, and
octamers, the theoretical approach can be extended to
other systems. The theory is motivated by and compared
with experiments on cytoplasmic phase separation within
yeast cells where the phase separating proteins are synthetic
and foreign to those cells [32]. Since these proteins are not
expected to interact with the intrinsic proteins of the cells,
the experimental system allows quantitative control over
the interaction strengths and valency of the system com-
pared with cellular protein condensates, which can have
any number of additional unknown components. In most
cases of intracellular phase separation, the knowledge on
protein-protein interactions is incomplete; our experimental
system, along with the analytical theory, should be viewed
as a step toward a quantitative understanding of the phase
separation process in vivo.
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