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Biological materials, such as the actin cytoskeleton, exhibit remarkable structural adaptability to various
external stimuli by consuming different amounts of energy. In this Letter, we use methods from large
deviation theory to identify a thermodynamic control principle for structural transitions in a model
cytoskeletal network. Specifically, we demonstrate that biasing the dynamics with respect to the work done
by nonequilibrium components effectively renormalizes the interaction strength between such components,
which can eventually result in a morphological transition. Our work demonstrates how a thermodynamic
quantity can be used to renormalize effective interactions, which in turn can tune structure in a predictable
manner, suggesting a thermodynamic principle for the control of cytoskeletal structure and dynamics.
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The actin cytoskeleton is a paradigmatic example of an
adaptive biomaterial that regulates important biophysical
properties of the cell, such as its structural integrity,
motility, and signaling, by adopting various nonequilibrium
morphologies [1–3]. While there have been many efforts to
unravel the driving forces responsible for sustaining many
of these structures [1,4–9], a clear thermodynamic under-
standing of the underlying principles governing their
adaptive properties has remained elusive [10]. Here,
using tools from large deviation theory [11], we
provide evidence that a nonequilibrium thermodynamic
control framework can indeed predict and rationalize
adaptive structural transitions in cytoskeletal networks.
Specifically, the central question motivating our work is
this: Can we predict how a cytoskeletal network adapts its
structure to external conditions (e.g., conditions requiring
the formation of a contractile bundle) by controlling its
energy budget?
To answer this question, we introduce a model that

resembles in vitro biomaterials consisting of actin filaments
and molecular motors [Fig. 1(a)], and exhibits two well-
known phases of such assemblies: asters and bundles
[Fig. 1(b)] [2,4]. The core of the bundles is composed of
antiparallel actin strands resembling morphologies found in
stress fibers and cytokinetic rings [12,13]. The transition
between these two states can be achieved in our model by
modulating a material parameter related to the motor
stiffness. Our main result shows how, by controlling the
statistics of the rate of work done by the motors, the
cytoskeletal network can transition between asters and
bundles, thus generating configurations characteristic of
different microscopic material properties. Importantly, this
transition is achieved even when the microscopic makeup

of the cytoskeletal material (i.e., motor stiffness, motor
speed, filament concentrations) are all held fixed.
We obtain our results by building on recent theoretical

studies [11,14–17] based on large deviation theory [18,19]
and stochastic thermodynamics [17,20,21] and applying
them to our model actomyosin system. The framework of
large deviation theory provides a convenient way to control
the rate of work by applying a dynamical bias to an
ensemble of trajectories, namely a series of time realiza-
tions for the coordinates of motors and filaments.
Combining simulations with phenomenological theory,
we reveal that the configurations generated with such a
dynamical bias resemble those that would have been
generated with a specific renormalization of the micro-
scopic material properties. Specifically, for the regimes
investigated here, given a cytoskeletal biomaterial com-
posed of filaments and motors with a set stiffness and
biochemical makeup, we show how configurations char-
acteristic of different values of motor stiffness can be
accessed by simply modulating the statistics of the work
done by the motors.
Our results suggest that controlling the rate of work,

which could be achieved in practice by changing the
consumption of chemical fuel [22,23], can be regarded
as a basic design principle for the development of an
adaptive biomaterial. Below, we first introduce the micro-
scopic coarse-grained description of actomyosin networks
that we use in this Letter. Next, we introduce tools of large
deviation theory, such as trajectory biasing, that allow us to
probe the response of the system as the statistics of the
work done by the motor are tuned. Finally, our main results
in Fig. 2 demonstrate how a biomaterial can access different
classes of configurations, even though its microscopic
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makeup remains the same, when tuning the statistics of the
work done by molecular motors.
Inspired by the rich phase diagram exhibited by acto-

myosin systems both in vivo [24] and in vitro [2,4,25], we
study the organization of short polar filaments connected
by molecular motors using a coarse-grained platform,
CYTOSIM [26]. Actin filaments and motors are, respectively,
modeled as semiflexible polymers and Hookean springs
with filament binding sites at the two ends [Fig. 1(a)]. Each
motor head can bind to a filament and walk along its length
toward the barbed end. When both motor heads are bound,
the spring exerts a force f⃗m on the motor head in the
direction pointing from the motor head to the center of the
motor. The magnitude of f⃗m is determined by the motor
rigidity, k, and the length of the spring, l: jf⃗mj ¼ kl. This
force then modulates the loaded speed of each motor head
vm as [26]

vm ¼ v0ð1þ f⃗m · d̂=f0Þ; ð1Þ

where d̂ is the unit vector pointing from the motor head to
the barbed end of the filament, f0 and v0 are the friction
force and velocity constants, respectively. As the motor
heads walk along the filaments, they transmit the forces
originating from the motor springs, and in response, the
actin filaments can assemble into specific structures.
The phase diagram obtained by tuning the motor

rigidity k and the motor unloaded velocity v0 is described
in Figs. 1(c)–1(e). We characterize various regimes by
calculating the size of the largest cluster of the filament-
motor cluster [Fig. 1(d)], and its radius of gyration Rg

[Fig. 1(e), Sec. S1C of Supplemental Material [27] ]. Values
of Rg larger than half the length of a single filament indicate
elongated bundlelike structures. Long bundles form at large
k, and decreasing k reduces Rg until it reaches a plateau

value corresponding to a radial arrangement of filaments,
namely asters (Figs. S1 and S2). This trend is consistent
across different values of v0 (Fig. S2). Neither bundles
nor asters form when the unloaded motor velocity v0
exceeds a critical value, in which case a diffuse isotropic
phase is observed. Our asters and bundles share core
characteristics with those observed in experiments, such
as the antiparallel alignment of filaments in sarcomeric
bundles and stress fibers [31] and clusters of radial
filaments in vitro [1,32] (Fig. S1).
The rate of work due to the relative motion of the motor

on the actin filament is defined as

_w ¼
X
m

f⃗m · v⃗m; ð2Þ

where m runs over the number of motor heads [Fig. 1(a)].
In what follows, we focus on the range of v0 where the
bundle-aster transition occurs, which is associated with a
change of sign of the average rate of work h _wi [Fig. 1(c)].
In this regime, we aim to demonstrate that the transitions
and structural changes that can be achieved by modulating
the motor stiffness can equivalently be achieved, even when
the motor stiffness and other material properties are held
fixed, by modulating the statistics of _w using tools from
large deviation theory.
Specifically, we bias the trajectories generated in our

simulations according to the rate of work (using the cloning
algorithm [33,34]; see Sec. S1E) such that the probability
of biased trajectories reads

Pα ∝ P0e
α
R

τ

0
_wdt; ð3Þ

where P0 is the probability of the trajectory in the absence
of biasing, and τ is the duration of the trajectories. The
parameter α tunes the strength and direction of the bias.

(a)

(b)

(c) (d) (e)

FIG. 1. Structural transition between asters and bundles. (a) Schematic of two filaments (blue) connected by a motor (orange). The
motor is modeled as a Hookean spring with rigidity k. The motor force jf⃗mj is proportional to motor rigidity k. Each motor head (dark
orange) binds to one filament and moves toward the barbed (þ) end with velocity v⃗m [Eq. (1)]. When the motor is bound to two
filaments, the rate of work done by the motor spring ( _w) is computed as the sum of f⃗m · v⃗m over the two motor heads. (b) Tuning k
induces the structural transition between asters and bundles. (c) Color map of h _wi. Asters and bundles are respectively associated with
positive and negative values of h _wi. (d) Color map of the largest cluster size. A system with no cluster larger than 40 is considered to be
isotropic. (e) Color map of radius of gyration Rg, of the largest cluster. The boundary between the bundle and aster regions Rg ¼ 0.125.
The boundary of the isotropic region is the same as in (d).
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In practice, trajectory biasing against the rate of work _w can
be considered as a way to probe the response of the system
as the statistics of _w are tuned [19]. Besides, the specific
choice of exponential reweighting in Eq. (3) ensures that
the distance between original and biased dynamics, as
measured by the Kullback-Leibler divergence of their
respective trajectory probabilities, is minimal [19].
Below, we show that the configurations accessed when
tuning the statistics of _w resemble those that would have
naturally emerged in a material with a renormalized motor
rigidity k.
Before proceeding to our numerical results, we first

motivate how applying dynamical bias might impact
system properties by considering a minimal phenomeno-
logical model of an actomyosin network [35]. Focusing on
a simpler transition between an isotropic state and a state
with asters, we show in Sec. S2 that the dynamics of a
relevant order parameter, ψ , may be described in terms of
an effective free energy landscape F ðψÞ ¼ −aψ þ bψ2−
cψ3 þ dψ4, with fa; b; c; dg as phenomenological para-
meters. Importantly, the phenomenological termsb and c are
modulated by microscopic material constants such as k and
v0, which can explain how the transition from the isotropic
state to aster can be achieved by tuning the analogue of the
motor rigidity in the phenomenological model (Sec. S2).
Furthermore, we show how the application of a trajectory

bias eα
R

τ

0
gðψÞdt results in dynamics that, at small noise, are

equivalent to those generated by an effective free energy
landscape [34,36] but with renormalized phenomenological
constants (Sec. S2B). The probability distributions gener-
ated by biasing with various values of α are shown in
Fig. 2(a).
This simple perturbative analysis reveals how an appli-

cation of the bias can renormalize the phenomenological

constants b and c, effectively altering the motor rigidity.
It also reveals how structural transitions obtained by tuning
k might also be achieved by tuning α. This phenomeno-
logical model makes it reasonable to speculate that biasing
the statistics of _w in our coarse-grained simulations might
effectively change the motor spring stiffness, opening up a
different route to a structural transition. To confirm this
intuition, we report in Figs. 2(b) and 2(c) snapshots of the
structure obtained in the biased dynamics without changing
motor rigidity k (Sec. S1E), along with those of unbiased
simulations with varying k. The similarity between these
structural changes shows that biasing against _w alone is
indeed sufficient to induce the filament-motor system to
move across the bundle-aster phase boundary. It also
suggests that biasing as in Eq. (3) might be effectively
equivalent to modulating motor rigidity.
To quantify the effect of biasing on structure, we measure

the relative alignment of filaments through the order param-
eter sin θ, where θ is the angle between neighboring
filaments. We evaluate the order parameter by averaging
sin θ over the nearest neighbors for each filament (Sec. S1F).
The distribution, Pðsin θÞ, is shown for all filaments in the
largest filament-motor cluster [Fig. 2(d)]. For bundles at
largek, the peak at sin θ ≈ 0.25 reflects parallel orientationof
filaments.Thedistribution shifts toward larger valuesof sin θ
as k decreases and the filaments rearrange into an aster. This
order parameter sin θ is related to the radius of gyration Rg

used to illustrate structural changes in Fig. 1(e), but they are
not equivalent. sin θ is more sensitive to the aster-bundle
transition (Sec. S1F). Therefore, we use sin θ to quantify the
effect of biasing. For each biasing parameter α, we define
the effective motor rigidity keff by matching the distribution
Pðsin θÞ measured in the biased dynamics with the distri-
butions obtained in the unbiased dynamics at k ¼ keff .

(a) (b)

(c)

(d) (e)

FIG. 2. Dynamical bias effectively renormalizes the motor rigidity k. (a) Probability distribution obtained by biasing the dynamics
of a given order parameter ψ (with free energy F ðψÞ ¼ −aψ þ bψ2 − cψ3 þ dψ4) with respect to ψ . Parameters:
a ¼ 4d ¼ −b ¼ −30c ¼ 1. Biasing parameter: α ¼ 0 (unbiased dynamics, blue), 0.005 (green), 0.1 (orange), and 0.3 (purple).
(b) Snapshots of unbiased simulations with changing motor rigidity k. (c) Snapshots of biased simulations with fixed motor rigidity
k ¼ 3. (d) The statistics of structures from biased dynamics match that from an unbiased simulation at a different k. The order parameter
sin θ is calculated from angles between neighboring filaments and averaged across nearest neighbors. Matching the distribution of sin θ
from biased (black lines with the error bar shown with gray area) and unbiased simulations (red and blue) results in defining an effective
rigidity keff. (e) Effective rigidity keff as a function of bias parameter α at v0 ¼ 0.8 (black), 1.0 (magenta), and 1.2 (green). The two green
curves correspond to k ¼ 3 and 2.8 analyzed for v0 ¼ 1.2. Filled points are obtained by matching structures from biased and unbiased
simulations. Hollow points are analytical predictions derived from the two-state model [Eq. (7)].
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In practice, this matching is done by minimizing the
divergence between these two distributions (Sec. S1G),
leading to a very good agreement between them
[Fig. 2(d)]. Repeating this operation for different values
of bias parameter α and unloaded motor velocity v0, we
obtain Fig. 2(e), which recapitulates the effect on the system
structure of biasing the dynamics. This correspondence
confirms that the effect of biasing against the rate of work
is indeed fully accounted for as an effective change of motor
rigidity, all other parameters being equal.
Finally, since varying motor rigidity k at fixed velocity

v0 leads to a transition between two distinct morphological
states, asters and bundles, we aim at constructing a two-
state model that, although minimal, is sufficient to ration-
alize quantitatively the effect of dynamical bias. We begin
by assuming that the dynamics associatedwith the transition
can be described by a master equation _P ¼ WP, where P is
the column vector with elements fPaster; Pbundleg, and W is
the transition rate matrix:

W ¼
�−Rab Rba

Rab −Rba

�
: ð4Þ

The entries Rab and Rba are meant to model the transition
rates from aster to bundle and from bundle to aster,
respectively. We express these rates using the Arrhenius
law, Rab ¼ A exp½−βεbundle� and Rba ¼ A exp½−βεaster�,
where the energies of aster and bundle states are given by
εaster and εbundle, respectively, andA is anArrheniusprefactor.
For convenience, we work in units such that A ¼ 1 and
β ¼ 1=ðkBTÞ ¼ 1, and we set εbundle ¼ 0. To quantitatively
connect this two-level picture with the simulation results of
CYTOSIM, we relate energy levels to distributions by

εaster ¼ − ln
Paster

1 − Paster
; ð5Þ

where Paster is extracted from numerical data asR
1
sin θc

Pðsin θÞd sin θ with the choice sin θc ¼ 0.6; see
Fig. 2(d).
The effect of applying a dynamical bias with respect to _w

is then recapitulated in terms of the master equation
_PðαÞ ¼ WðαÞPðαÞ. The transition matrix WðαÞ reads

WðαÞ ¼
�−Rab þ α _waster Rba

Rab −Rba þ α _wbundle

�
; ð6Þ

where _waster and _wbundle are the rate of work for the aster and
bundle states, respectively. The biased transition matrix is
known as a “tilted” matrix, and is constructed based on the
principles of large deviation theory [18,37] (Sec. S3A). We
show that, to leading order in the bias α (Sec. S3B), the

effective energy level in biased dynamics εðαÞaster can be
expressed as [17]

εðαÞaster ≈ εaster − α
ð _waster − _wbundleÞ

1þ Rba
: ð7Þ

Equation (7) hence predicts how the energy barriers may be
modified due to biasing α. This equation can be used to
obtain a prediction for keff as a function of α by substituting
the estimate of the modified barrier into Eq. (5) and looking
up the value of k at which the estimate of Paster best matches
the modified barrier height. The quantity _waster − _wbundle in
Eq. (7) is best estimated from numerical values of h _wi close
to the aster-bundle transition. To generalize this relation to
regions away from the transition, we look to the meaning of
_waster and _wbundle in our two-state model. Specifically, these
quantities are meant to denote the typical values of _w in the
regimes of high and low sin θ, respectively. Since away
from this transition, the distribution Pðsin θÞ is dominated
by either the bundle or the aster phase, the difference in the
typical values of _w at high and low sin θ is reduced. To
effectively capture this reduction, we assume that, to
leading order, _waster − _wbundle is proportional to the slope
of the _w versus k curve, with the proportionality constant as
a fitting parameter. This assumption, along with numerical
estimates of εaster for a range of k values, enable us to
predict how keff changes with the biasing parameter α
(Sec. S3). Our prediction is in good agreement with keff
obtained numerically by directly matching the structure
distributions taken from the biased and unbiased dynamics
[Fig. 2(e)]. This agreement shows that our two-state model,
although providing an oversimplified picture of the under-
lying dynamics, indeed captures the effective modulation of
motor rigidity due to biasing the dynamics with respect to
the rate of work.
A feature of probing the response of the system to _w

modulation in this manner (using the tools of large
deviation theory) is that we do not provide any explicit
protocol for how to perturb the energy consumption. We
envision that experiments can be done by deploying active
components such as light-sensitive motors [6,8], or by
fueling the system with different adenosine triphosphate
supplies [22,23], which might provide a physical route for
achieving such a perturbation. Our central results hence
suggest a new route for the modulation of cytoskeletal
material properties through the regulation of underlying
energy consumption.
The ideas presented here are complementary to existing

hydrodynamic treatments of actomyosin networks [38,39].
These seminal works have shown how various actomyosin
phases may be accessed by tuning phenomenological
parameters, which in turn affects energy consumption
(although in a way that can prove difficult to predict).
Instead, our results reveal that directly tuning energy
consumption, now in a much more predictable manner,
is also a route to inducing structural transitions. While we
focus here on the connection between _w and network
structure, our work may also provide a road map for
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understanding how cytoskeletal networks adapt to chang-
ing external stress conditions. Indeed, when the motor head
velocity is a constant, _w is simply proportional to the force
exerted by motors along the axis of the actin filament
[Eq. (2)]. In these regimes, tuning the statistics of _w is
equivalent to tuning the axial forces exerted on the
filaments. From a biological perspective, our work paves
the way toward a thermodynamic understanding of the
control principles regulating the cytoskeleton, to rationalize
both how it adapts its structure to external cues [6,8] and
how spontaneous flows can form as a result of internal
activity [40].
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