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We address the many-body self-interaction in relation to polarons in density functional theory. Our study
provides (i) a unified theoretical framework encompassing many-body and one-body forms of self-
interaction and (ii) an efficient semilocal scheme for charge localization. Our theoretical formulation
establishes a quantitative connection between the many-body and one-body forms of self-interaction in
terms of electron screening, thereby conferring superiority to the concept of many-body self-interaction.
Our semilocal methodology involves the use of a weak localized potential and applies equally to electron
and hole polarons. We find that polarons free from many-body self-interaction have formation energies that
are robust with respect to the functional adopted.
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Electron self-interaction (SI) is a long-standing problem
in density functional theory (DFT) [1–7] and is particularly
critical in the description of polarons [8–14]. Polarons are
quasiparticles involving charge localization coupled with
self-induced lattice distortions. Since their prediction by
Landau [15] and Pekar [16] almost a century ago, polarons
have drawn a great deal of attention in physics, chemistry,
and materials science [14,17–20]. The polaron stability
results from the competition between the energy gain
associated with the charge localization and the energy
cost of the involved lattice distortions. Therefore, the
polaron localization and its formation energy are sensitively
affected by the description of the electron SI.
Various electronic-structure schemes have been introduced

over the years to address the SI [1–13].Most of these schemes
focus on removing the one-body SI, which arises from the
interactionof the excess chargewith itself [1,8,9,12,13].More
recently, on the basis of a property of the exact density
functional, the concept ofmany-body SI has been defined [2–
7,10,11] as the deviation from the piecewise linearity of the
total energy upon electron occupation [21]. At present, it
remains unclear which of these two descriptions of the SI
needs to be addressed in polaron physics.
While SI correction schemes may achieve polaron

localization, the resulting energetics differs dramatically
when addressing the many-body or the one-body SI. To
illustrate this difference, we consider the polaron stability
as obtained with the hybrid functional PBE0ðαÞ [22], which
includes a fraction α of Fock exchange. For a specific
α ¼ αk, the functional is piecewise linear upon electron
occupation and the many-body SI vanishes [10,11,23]. At
variance, setting α ¼ 1 removes the one-body SI like in
Hartree-Fock theory, apart from weaker correlation terms.
In the latter case, the polaron formation energy can deviate

by several electronvolts from the result achieved with
PBE0ðαkÞ, as illustrated in Fig. 1(a) for the hole polaron
in MgO. However, it should be remarked that the cancel-
lation of the many-body SI further guarantees an accurate
description of the band gap [23], which in turn gives defect
energy levels in good agreement with experiment and state-
of-the-art GW many-body calculations [24]. This strongly
suggests that one should correct for the many-body rather
than for the one-body SI.
In this context, it is of interest to investigate whether the

notion of many-body SI could enable the accurate model-
ing of polarons at the semilocal level of theory. Indeed,
such a semilocal scheme would bypass computationally
expensive structural relaxations at the hybrid-functional
level, which is particularly critical when using plane-wave
basis sets. This would allow for the widespread study of

(a) (b)

FIG. 1. (a) Formation energy as obtained with the hybrid
functional PBE0ðαÞ for the hole polaron in MgO. Negative
formation energies indicate polaron stability. The many-body and
the one-body self-interaction are suppressed at α ¼ αk and at
α ¼ 1, respectively. (b) Isodensity surface of the hole polaron at
5% of its maximum (Mg in pink, O in red). The hole polaron is
centered on an O atom, leading to longer bonds with neighboring
Mg atoms.
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polarons in large systems, in high-throughput searches
involving extensive databases of materials, or in molecular
dynamics evolving over long time periods.
In this Letter, we first elaborate a unified theoretical

framework that includes the concepts of many-body and
one-body self-interaction within the same formulation. In
this way, we find an analytical connection between the two
forms of self-interaction in terms of the electron screening.
The many-body self-interaction is shown to reduce to the
one-body self-interaction in the absence of electron
screening. This analysis demonstrates the preeminence
of the many-body self-interaction over the one-body self-
interaction. Next, we develop a semilocal scheme for
removing the many-body self-interaction of polarons in
density functional theory. Our approach leads to localiza-
tion of both electron and hole polarons through the addition
of a weak local potential to the Kohn-Sham Hamiltonian.
The calculated polaron formation energies are in close
agreement with the results obtained in this Letter from a
hybrid functional with vanishing many-body self-interac-
tion. This indicates that addressing the many-body self-
interaction leads to robust polaron formation energies with
respect to the functional adopted. As case studies, we take
the electron polaron in BiVO4 [25], the hole polaron in
MgO [26,27], and the hole trapped at the Al impurity in
α-SiO2 [8,26,28–30].
We are interested in deepening the concept of many-

body SI and in clarifying its relationship with one-body SI.
For this purpose, we focus on the class of hybrid

functionals PBE0ðαÞ, which can cover either form of SI
depending on α [Fig. 1(a)]. We denote EαðqÞ and ϵαpðqÞ
the total energy and the polaron level corresponding
to a fractional polaron charge q. The targeted piecewise
linear behavior is achieved at α ¼ αk and is such that
dEαkðqÞ=dq ¼ −ϵαkp [31]. Hence, we express the many-
body SI correction to the PBE0ðαÞ energy as

ΔEαðqÞ ¼ ðEαð0Þ − qϵαkp Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

linear

− EαðqÞ
|fflffl{zfflffl}

convex or concave

; ð1Þ

which represents the deviation from the piecewise linearity
of the PBE0ðαÞ total energy as a function of the fractional
charge.
Here, we focus on correcting the functional with α ¼ 0

corresponding to the semilocal Perdew-Burke-Ernzerhof
(PBE) level of theory [32]. The many-body-SI corrections
can be generalized to a generic PBE0ðαÞ hybrid functional
[33]. The energy E0 þ ΔE0jmb is piecewise linear as a
function of q, as illustrated in Fig. 2(a) for the hole polaron
in MgO. The respective polaron level is constant and
assumes the value ϵαkp [Fig. 2(b)]. We reelaborate Eq. (1)
by taking the polaron level ϵαpðqÞ to depend linearly on both
α [11,23,34–38] and q [6,39]. This allows us to define a
fractional charge qk such that ϵαkp ¼ ϵαpðqkÞ, irrespective of
α [33]. In particular, ϵαkp ¼ ϵ0pðqkÞ [Fig. 2(b)]. Moreover,
through Janak’s theorem [31], the total energy E0ðqÞ is thus
quadratic in q, leading to [33]

ΔE0ðqÞjmb ¼ −½ðq − qkÞ2 − q2k�
�

EH

�
dn
dq

�

þ 1

2

X

σσ0

Z

drdr0
δ2Exc½n↑; n↓�
δnσðrÞδnσ0 ðr0Þ

dnσðrÞ
dq

dnσ0 ðrÞ
dq

�

; ð2Þ

where EH is the Hartree energy, Exc the exchange-corre-
lation energy, nσ the total density in the spin channel σ, and
n ¼ n↑ þ n↓. In Eq. (2), the electron screening is ac-
counted for through the derivatives dnσðqÞ=dq, which
represent the response of the electronic structure to the
variation of the polaron charge (Fig. 3).

To establish a connection between the many-body and
one-body forms of SI, we remark that the one-body SI
corrections to E0ðqÞ can be defined from energy differences
between the cases α ¼ 1 (Hartree-Fock–like) and α ¼ 0
(PBE). Using the generalization of Eq. (2) to the PBE0ðαÞ
functional, we find [33]

ΔE0ðqÞjob ¼
1

αk
ΔE0ðqÞjmb; ð3Þ

which reveals that the many-body SI and the one-body SI
are related to each other through αk. This hints at a deep
connection with the electron screening, as represented by
the high-frequency dielectric constant ε∞. Since the asymp-
totic potential of the exact functional is given by −1=ðε∞rÞ
[7,40], one infers αk ≃ 1=ε∞ [41,42]. This is further
supported by the accurate band gaps achieved with the
functional PBE0ð1=ε∞Þ for a large variety of materials
[23,43,44] upon proper consideration of effects due to
thermal vibrations, spin-orbit coupling, electron-hole

(a) (b)

FIG. 2. Many-body self-interaction corrected (a) total energy
and (b) polaron level as a function of the charge q, in comparison
with the PBE values, obtained for the geometry and wave
functions of a localized hole polaron in MgO.
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interaction, and magnetic ordering [45–47]. Hence,
ΔE0jmb ≃ ΔE0job=ε∞, which quantifies the relative mag-
nitude of these SI energies. Moreover this relation carries
similarity with the necessity of including the dielectric
constant in the Coulomb kernel when correcting the exciton
binding energy in Hartree-Fock theory [48,49]. This sup-
ports the deeper physical significance of the many-body SI
with respect to the one-body SI. The role of the screening in
the SI can be further highlighted when turning off the
response of the valence electrons to the polaron charge.
Indeed, when neglecting the variation of the valence wave
functions with q and the weaker correlation terms, one
finds that the piecewise linearity is satisfied for αbarek ¼ 1

[33]. In the absence of electron screening, the many-body
SI thus coincides with the one-body SI [Eq. (3)]. This
analysis clarifies the relationship between the two forms of
SI in terms of the electron screening conferring superiority
to the notion of many-body SI. Comparisons with previous
forms of SI [5,12,13] can be found in Ref. [33].
Next, we aim to address the many-body SI at the

semilocal level of theory through self-consistent calcula-
tions. However, the variational minimization of the
functional E0 þ ΔE0jmb carries limitations. First, it would
require the knowledge of the parameter qk, which is
inherently related to the hybrid functional formulation.
Second, polaron localization would not be guaranteed
because the SI of the valence band states would remain
uncorrected. This results in a competition between local-
ized and delocalized states, which can prevent polaron
localization. To overcome these limitations, we assume that

polaron stabilization can be achieved through the addition
of a weak local potential in the Kohn-Sham Hamiltonian.
This directly targets the energy separation between the
localized and the delocalized states, which are generally in
close energetic competition [50,51]. For each spin channel
σ, we denote this potential as Vγ

σ, where γ regulates its
strength. This leads to the Kohn-Sham equations

ðH0
σ þ Vγ

σÞψγ
iσ ¼ ϵγiσψ

γ
iσ; ð4Þ

where H0
σ is the semilocal PBE Hamiltonian [32], and ψγ

iσ
and ϵγiσ are the resulting wave functions and energy levels,
respectively. We denote Q the integer polaron charge.
Hence, for electron polarons Q ¼ −1, while for hole
polarons Q ¼ þ1. Self-consistent electronic and structural
relaxations lead to the polaron geometry Rγ

Q and to the
polaron energy level ϵγp corresponding to the highest-
occupied (lowest unoccupied) state in the case of electron
(hole) polaron.
We find that an expression of Vγ

σ favoring polaron
localization is given by

Vγ
σðqÞ ¼ qγ

∂VxcσðqÞ
∂q

; ð5Þ

where Vxcσ is the exchange-correlation potential in the spin
channel σ. In Eq. (5), we introduce a dependence on the
fractional polaron charge q such that one recovers the PBE
functional for q ¼ 0. The potential Vγ

σ features several
convenient aspects. In particular, the electronic structure
and the structural relaxations can be achieved through the
use of standard algorithms and the computational overhead
with respect to PBE calculations is negligible [33]. The
localization of electron and hole polarons is achieved in an
equivalent way, since the same potential Vγ

σ applies to all
states.
To correct themany-body SI of the polaron, we determine

a suitable value for γ, denoted γk. Through Janak’s theorem
[31], this is achieved by imposing the condition of constant
energy level upon varying polaron occupation,

d
dq

ϵγpðqÞ
�
�
�
�
γ¼γk

¼ 0: ð6Þ

In the search for γk, γ and Rγ
Q are varied self-consistently

until the condition in Eq. (6) is satisfied. The polaron
formation energy is defined as [52,53]

Eγ
fðQÞ ¼ EγðQÞ − Eγ

refð0Þ þQϵγb; ð7Þ

whereEγðQÞ andEγ
refð0Þ are the total energies of the polaron

and of the pristine system, respectively, and ϵγb is the band
edge corresponding to the delocalized state. For γ ¼ γk, the
total energy at fixed Rγk

Q is piecewise linear upon polaron
occupation:

(b) (c)

(a)

FIG. 3. (a) Polaron density np and (b) and (c) variation of the
valence-electron densities n↑val and n↓val upon occupation f of
the hole polaron state in MgO. The densities are integrated over
the z direction and plotted in the xy plane. For hole polarons in
the spin channel ↓; n↑ ¼ n↑val and n↓ ¼ n↓val − np.
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EγkðQÞ ¼ Eγkð0Þ −Qϵγkp : ð8Þ

Thus, the polaron formation energy at γ ¼ γk is given by

Eγk
f ðQÞ ¼ Qðϵγkb − ϵγkp Þ þ ½Eγkð0Þ − Eγk

refð0Þ�: ð9Þ

The first and the second termon the right-hand side of Eq. (9)
correspond to the gain from electron localization and to the
cost from lattice distortions, respectively.We remark that ϵγkb ,
Eγkð0Þ, and Eγk

refð0Þ coincide with their respective PBE
quantities because of the vanishing prefactor q in the
potential of Eq. (5).
We apply our semilocal scheme to the three case

systems. The electronic-structure is obtained within a
plane-wave density functional approach, in which core-
valence interactions are described by pseudopotentials [54],
as implemented in the QUANTUM ESPRESSO suite [55]. We
use 96-atom, 64-atom, and 72-atom supercells for BiVO4,
MgO, and α-SiO2, respectively. The lattice parameters are
optimized at the PBE level [32] for the pristine systems. We
sample the Brillouin zone at the Γ point and set the energy
cutoff to 100 Ry in all cases. All total energies and polaron
levels are corrected for finite-size effects through a scheme
that properly accounts for ionic polarizations [27]. To
simplify the notation, these corrections are implicitly
assumed throughout our Letter. The calculations yield
localized polarons for γ above a threshold value in all
cases. We find γk by performing structural relaxations for
several values of γ until Eq. (6) is satisfied. This gives
γk ¼ 1.80, 1.96, and 2.40 for BiVO4, MgO, and α-SiO2,
respectively. As illustrated in Fig. 4(a) for the hole polaron
in MgO, the potential Vγk

σ opposes the effect of the
electrostatic potential Velec generated by the polaron, thus
favoring polaron localization. This potential Vγk

σ is indeed
weak compared to Velec. The resulting bond lengths and
formation energies are given in Table I.
It is of interest to investigate the robustness of the

polaron properties upon correcting the many-body SI
within different electronic-structure schemes. For this
purpose, we consider polarons free from many-body SI

as obtained with the hybrid functional PBE0ðαkÞ. Similarly
to Eq. (6), αk then satisfies the following condition [21,23]:

d
dq

ϵαpðqÞ
�
�
�
�
α¼αk

¼ 0: ð10Þ

In the search for αk, α and the corresponding polaron
geometry Rα

Q are varied self-consistently until Eq. (10) is
satisfied. Analogously to Eq. (9), the polaron formation
energy at α ¼ αk is expressed as

Eαk
f ðQÞ ¼ Qðϵαkb − ϵαkp Þ þ ½Eαkð0Þ − Eαk

refð0Þ�: ð11Þ

We find αk ¼ 0.14, 0.34, and 0.45 for BiVO4, MgO, and
α-SiO2, respectively. The corresponding formation energies
are reported in Table I.
The polaron densities obtained with the semilocal and

hybrid functional schemes are very similar [Fig. 4(b)].
Accordingly, a close correspondence is also found for the
polaron structures (Table I). All bond lengths differ by less
than 0.03 Å, with the exception of the weak Al-O bond in
α-SiO2 differing by 0.12 Å. The variations in formation
energies amount to 0.19, 0.03, and 0.36 eV for BiVO4,
MgO, and α-SiO2 (Table I), corresponding to 5.6%, 0.4%,
and 3.4% of their respective band gaps. This quantitative
agreement is highly satisfactory in consideration of the
large variations of Eα

f with α found in Fig. 1(a). It can be
shown that this result stems from the fact that the polaron
state and the respective band states belong to the same
electron manifold [33]. This analysis supports that address-
ing the many-body SI confers robustness to the polaron
properties irrespective of the functional adopted.
In conclusion, our Letter addresses the many-body self-

interaction in relation to polarons in density functional
theory. First, we derive a unified formulation for the many-
body and one-body self-interaction, thereby revealing an
analytical connection between the two forms of self-
interaction in terms of the electron screening. This analysis
confers conceptual superiority to the many-body self-
interaction over the one-body self-interaction. Second,
taking advantage of the notion of many-body self-inter-
action, we develop a scheme for achieving localized
polarons at the semilocal level of theory. Moreover, we

(b)(a)

FIG. 4. (a) The potential Vγk
σpðQÞ and the electrostatic potential

Velec generated by the polaron charge, averaged over xy planes,
for the hole polaron in MgO. (b) Polaron densities integrated over
xy planes obtained with schemes free from many-body self-
interaction.

TABLE I. Relevant bond lengths (V-O, Mg-O, short/long Al-O)
and polaron formation energies obtained with semilocal and
hybrid functional schemes free from many-body self-interaction.
Bond lengths in Å, energies in eV.

Bond lengths Formation energy

Semilocal Hybrid Semilocal Hybrid

BiVO4 1.82 1.80 −0.44 −0.63
MgO 2.23 2.20 −0.50 −0.53
α-SiO2 1.71=2.03 1.69=1.91 −2.75 −3.11
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find that polarons free from many-body self-interaction
have formation energies that are robust with respect to the
functional adopted. Hence, the present study leads to
significant developments to the long-standing problem of
self-interaction, from both the conceptual and the meth-
odological point of view.

The present semilocal scheme is available for incorpo-
ration into the next official release of the QUANTUM

ESPRESSO suite [55].

This work has been realized in relation to the National
Center of Competence in Research (NCCR) “Materials’
Revolution: Computational Design and Discovery of Novel
Materials (MARVEL)” of the SNSF (Grant No. 182892).
The calculations have been performed at the Swiss National
Supercomputing Centre (CSCS) (grant under projects ID
s1122 and mr25). Material associated with this paper can
be found on Materials Cloud [56].
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