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In a turbulent fluid, the time-reversal symmetry is explicitly broken by viscosity, and spontaneously
broken in the inviscid limit. Recently, Drivas [J. Nonlinear Sci. 29, 65 (2019).] proved the equivalence of
two different local indicators of time irreversibility: (i) an Eulerian one, based on regularity properties of the
velocity field [Duchon and Robert, Nonlinearity 13, 249 (2000).]; (ii) a Lagrangian one, based on
symmetry properties of the trajectories under time reversal [Jucha et al., Phys. Rev. Lett. 113, 054501
(2014).]. We test this equivalence in a turbulent Von Kármán experiment at a resolution of the order of the
Kolmogorov scale using a high resolution 4D-PTV technique. We use the equivalence to perform the first
joined Eulerian-Lagrangian exploration of the dynamics leading to time irreversibility, and find that it is
linked with vortex interaction, suggesting a link between irreversibility and singularity.
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In a viscous fluid, the energy dissipation is the signature
of the breaking of the time-reversal symmetry t → −t,
u → −u, where u is the velocity. This symmetry of the
Navier-Stokes equations is explicitly broken by viscosity.
Yet, in the limit of large Reynolds numbers, when the flow
becomes turbulent, the nondimensional energy dissipation
per unit mass becomes independent of the viscosity,
meaning that the time-reversal symmetry is spontaneously
broken. In classical equilibrium physics, spontaneous
symmetry breaking is generally associated with singular-
ities of the free energy. Viscous fluids are by nature out of
equilibrium, so that no free energy can be a priori defined,
and the physical origin of the spontaneous time-reversal
symmetry breaking is still the subject of active research. In
1949, Onsager conjectured that this phenomenon could be
triggered by the roughness of the velocity field, provided
the flow is characterized by a Hölder exponent smaller or
equal to 1=3 [1–3]. In 2000, Duchon and Robert used an
Eulerian energy balance to prove the conjecture for weak
solutions of the Navier-Stokes equations [4]. This frame-
work highlights a scalar quantity, DðuÞ, that only depends
on the local velocity field and is the small scale limit of
the energy flux through scale. DðuÞ produces local non-
viscous dissipation, in space and time, provided the
velocity is singular enough. Being zero at the location
of the regular velocity field, such a scalar therefore plays
the role of an effective Eulerian “order parameter” for the
time-reversal symmetry breaking. One may then add the
viscous contribution to dissipation to get the total local
energy dissipation.

Turbulence dynamics can also be considered following
fluid particles trajectories. This is the so-called Lagrangian
framework [5–7]. It is usually not straightforward to find the
Lagrangian counterpart of Eulerian properties. In the case of
time-reversal symmetry breaking, it has long been thought
that the correct quantity was the instantaneous power P ¼
u · du=dt [8,9]. However, such single-point statistics is not
sensitive to the energy flux through scale [8,10], which is
believed to be a fundamental hallmark of irreversibility [11].
A relevant Lagrangian two point scalar quantity can be built
using the symmetry property of the two-particle dispersion
as a function of time [12]. Indeed, at short times, forward or
backward time particle dispersion is different when time
symmetry is broken [13,14]. Thus the difference between
short time forward and backward two-particle dispersion
corresponds to a Lagrangian effective order parameter of the
time-reversal breaking [12,14–16].
An important step in the direction of understanding the

building of irreversibility in turbulent flow was made
recently by Drivas [17], who proved under suitable limits
that the Eulerian and Lagrangian irreversibility indicators
converge to the same quantity ϵ, the local energy dissipa-
tion. This result is interesting because it provides two
different indicators, one Eulerian and one Lagrangian, that
discriminate between regions where the fluid is or is not
time irreversible. By tracking dynamically in time and
space such regions, one may then get hints of the physical
processes that are responsible for the symmetry breaking.
In this Letter, we first test the equivalence of the two
indicators on two different experimental setups of a von
Kármán turbulent flow allowing us to probe the turbulence
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roughly at the same measurement resolution but for two
different Reynolds numbers. This requires time and space
resolved simultaneous measurements of velocity fields and
particles trajectories, which is an experimental challenge.
We then use the equivalence to perform the first joined
Eulerian-Lagrangian exploration of the dynamics leading
to time irreversibility, and find that it is linked with vortex
interaction, suggesting a link between irreversibility and
singularity.
Experimental setups.—4D particle tracking velocimetry

(PTV) measurements were performed at the center of two
experiments: (i) a small von Kármán flow (SVK) with a
radius R ¼ 0.1 m and height 0.18 m [18,19]; (ii) a five time
bigger Giant von Karman (GVK) flow, with radius R ¼
0.5 m and same aspect ratio [20]. Both tanks were filled
with water (viscosity ν ≈ 10−6) maintained at a constant
T ¼ 20 C temperature. The flow is forced by two counter-
rotating impellers at frequency F ¼ 0.1 Hz located at the
upper and lower ends of the tank, resulting in a global
Reynolds number Re ¼ 2πR2F=ν. The average dissipation
rate ϵ was computed from the torque measurements
[21,22], to estimate the Kolmogorov length scale
η ¼ ðν3=ϵÞ1=4 and timescale τη ¼ ðν=ϵÞ1=2. The different
experimental parameters are summarized in Table I.
Imaging of a cuboid (40 × 40 × 6 mm3 for SVK and 50 ×
40 × 6 mm3 for GVK) is performed using four high-speed
cameras at the middle of both tanks. The volume is lighted
by a 30 mJ pulse high speed Nd-YLG laser. Neutrally
buoyant particles are added to the flow to act as tracers.
Each sequence of measurement is made of 3226 consecu-
tive time steps acquired with a acquisition frequency of
200 Hz for SVK and 1200 Hz for GVK. We perform
statistics over 30 such sequences. 4D-PTV data were
obtained through the DAVIS10 software using the “Shake-
the-Box” algorithm [23]. They provide positions and
trajectories in the volume per frame of about 49 000
particles in SVK and 70000 in GVK, resulting in a mean
interparticle distance of Δxp ≈ 1.8η for SVK and Δxp ≈
3.9η for GVK. Postprocessing was done using in-house
codes. Additional details including references [24–29] are
given in the Supplemental Material [30].
Lagrangian and Eulerian irreversibility indicators.—

From the data, we compute the Eulerian and Lagrangian
irreversibility indicators as follow. Starting from the
Lagrangian measurementsXt0;tðxÞ, representing the position
at time t of the particle that was at location x at time t0, we

compute the deviation δrXt0;tðxÞ ¼ Xt0;tðxþ rÞ −Xt0;tðxÞ.
With this, we define the following scale dependent quantities:

Δ�τ
l ðx; tÞ ¼

Z
dξ ϕlðξÞkδξXt;t�τðxÞ − δξXt;tðxÞk2; ð1Þ

where ϕðxÞ, can be any standard mollifier or smoothing
function compactly supported in the ball of radius l such
that

R
drϕðrÞ ¼ 1 and ϕlðrÞ ¼ l−3ϕðr=lÞ. In this Letter,

we used the local mean in the ball of radius l as mollifier.
The Lagrangian irreversibility indicator at scale τ and l
and at position x and time t is then given by I τ;l

L ðx; tÞ≡
ðΔ−τ

l − Δτ
lÞ=ð4τ3Þ. This indicator, first introduced by [17],

is a local version of the indicator of [12].
From the Eulerian velocity measurement, uðx; tÞ, we

compute the velocity increment over a displacement r
δru ¼ uðxþ r; tÞ − uðx; tÞ. With this, we construct the
following scale dependent quantities:

Dl
I ðx; tÞ ¼

1

4

Z
dξ∇φlðξÞ · δξuðδξuÞ2; ð2Þ

Dl
ν ðx; tÞ ¼

ν

2

Z
dξ∇2φlðξÞðδξuÞ2; ð3Þ

with φlðxÞ ¼ l−3φðx=lÞ, a Gaussian function. In the limit
l → 0, Dl

I ðx; tÞ tends to DðuÞ, the nonviscous contribution
to dissipation due to velocity roughness [4]. The Eulerian
irreversibility indicator at scale l and at position x and time
t is then given by Il

Eðx; tÞ≡Dl
I þDl

ν.
The Drivas theorem [17] then states that for any

sequence of weak solutions of the Navier-Stokes equation
indexed by viscosity, that converges strongly as ν → 0, we
have

lim
l→0

lim
Δx→0

lim
τ→0

lim
ν→0

I τ;l
L ðx; tÞ ¼ ϵðx; tÞ; ð4Þ

with ϵ being given by

ϵðx; tÞ ¼ lim
l→0

lim
Δx→0

lim
ν→0

Il
Eðx; tÞ: ð5Þ

Limits, measurement resolution, and probed scales.—
The Drivas equivalence is based on mathematical limits,
which obviously cannot be satisfied experimentally, because
viscosities and resolutions are necessarily finite. Physically,
sending first viscosity to zero means that we consider a

TABLE I. Table of parameters for the SVK and GVK. R is the radius of the tank, F the impeller rotating frequency, Re and Reλ the
global and Taylor Reynolds number, η and τη are the Kolmogorov length and time, Stτη the particle Stokes number,Δxp the measurement

resolution, lE and lL, the probed scales for Eulerian and Lagrangian indicators.

R (m) F (Hz) Re Reλ η (mm) τη (ms) Stτη Fa (Hz) Δxp=η lE=η lL=η

SVK 0.1 0.1 6300 82 0.30 92 6.7 × 10−5 200 1.8 3.6 10
GVK 0.5 0.1 157000 352 0.14 18 8.1 × 10−5 1200 3.9 10 10
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situation where the velocity field is not regularized by
viscosity [31], so that we are in the inertial range, which
ends at a scale of the order 3 to 10 Kolmogorov scales.
Therefore, we apply the following procedure: we first set
the viscosity, then set the spatial resolution at a value
Δx=η ∈ ½3; 10�, and then choose the smallest value of l >
Δx ensuring either convergence of Lagrangian statistics, or
sufficient denoising of the Eulerian quantities. It means
replacing the triple limits liml→0limΔx→0limν→0 in Eqs. (4)
and (5) by limðl=RÞ→0=l>Δx;Δx=η∈½3;10�. Given the Lagrangian
and Eulerian resolution in each device, we used lE ¼ 3.6η
for SVK and lE ¼ 10η for GVK while we obtained good
statistical convergency for lL ¼ 10η in both SVK and
GVK. Note that by going from the small experiment SVK to
the large one, GVK, besides achieving a highest Reynolds
number, we also achieve a ratio l=R five time smaller,
therefore improving the limit. Finally, to meet the τ → 0
limit, we use a fitting procedure: at each position and each
time, we compute (Δ−τ

l − Δτ
l) for several τ ¼ nΔt, with

n ∈ f0;…; 10g and Δt ¼ 1=Fa. We then fit the function
(Δ−τ

l − Δτ
l) by Aðx; tÞτ3, and get I0;l

L ðx; tÞ ¼ Aðx; tÞ=4.
The fit was done on 11Δt to only keep trajectories of a
least 21 time steps, thus limiting the noise due do erroneous
smaller trajectories. In the sequel, we omit the time
dependency of the Lagrangian criterion since we only focus
at times t → 0.
Instantaneous comparison and statistical analysis.—

Figures 1(a) and 1(b) show an instantaneous comparison
of both Eulerian and Lagrangian irreversibility criteria in
the middle plane of our measurement volume taken from
our SVK dataset. The Lagrangian criterion is interpolated
linearly on the same mesh as the Eulerian criterion. There is
a clear correlation between the two indicators, with the
same spatial structures of intense irreversible and dissipa-
tive events, as well as the same range of values. The
Lagrangian criterion is however more noisy, probably due
to the sparse and inhomogeneous nature of the Lagrangian
data. Furthermore, while two filters are applied for the
Eulerian criterion, (B spline and the mollifier φl), only one
is used in the Lagrangian case (ϕl).

A statistical comparison is provided in Fig. 1(c) showing
Lagrangian and Eulerian PDFs for both SVK and GVK
datasets. For positive values, the PDFs of both irreversibility
criteria are quite similar. The Lagrangian criterion has
stronger negative values than the Eulerian criterion for both
flow cases. For SVK, the probed scale of the Eulerian
indicator is quite close to the dissipative range, where the
positive Dl

ν term dominates explaining the low probability
of negative Eulerian events—mostly due to noise. In
comparison, this probability is higher for GVK where the
probed scale is closer to the inertial range with stronger
(upscale or downscale) interscale transfer. In both cases, the
Lagrangian indicator has a higher probability of negative
events. The Lagrangian criterion is, however, skewed
towards positive values, a signature of turbulence irrevers-
ibility in average. Negative events corresponds to situations
where forward dispersion is larger than backward
dispersion. We have checked that such events correspond
to meaningful trajectories, associated with trajectories
around vortices or near stagnation points. Examples are
provided in the Supplemental movies and in Fig. 3. Negative
events nevertheless are forbidden by the Drivas theorem in
the sense that the limit ν → 0, l → 0, of the Eulerian
dissipation—the limit of the Lagrangian indicator—should
remain positive. This observation does not change when we
go to a higher Reynolds number by increasing the size of our
experiment, i.e., increasing the inertial range. We can then
infer that negative events are caused by our finite value of
viscosity, which sets an interesting constraints on the
geometry of coherent structures in turbulence, see below.
Finally, both indicators, though at roughly the same probed
scale, increase in intensity with the Reynolds number. This
is a signature of the multifractal character of the energy
dissipation [31], resulting in a power-law increase of the
variance with Reλ, that was already observed for Lagrangian
power [8]. Additional measurements are needed to quantify
the corresponding exponent.
A finer test of the equivalence between irreversibility

indicators is via the joint PDFs [Figs. 2(a) and 2(aa)]. Both
joint PDFs are skewed towards the x ¼ y axis for positive

FIG. 1. Instantaneous snapshots of Eulerian (a) and interpolated-Lagrangian (b) irreversible criteria normalized by the mean energy
dissipation ϵ, computed in the middle plane of the measurement volume of our SVK dataset. (c) PDFs of Lagrangian and Eulerian
irreversible criteria for SVK and GVK.
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values of Eulerian and Lagrangian irreversibility indicators,
which shows that the two indicators tend to be equivalent
for positive values. This trend is even more visible when
comparing the indicators maxima of each 3D snapshots as
shown in Figs. 2(b) and 2(bb). Furthermore, strong negative
Lagrangian criteria are also relatively well correlated to
positive Eulerian criteria of the same absolute intensity as
seen in Figs. 2(c) and 2(cc). Such a correlation is not
predicted by the Drivas theorem but confirms that highly
irreversible Lagrangian trajectories occur at the locations of
large Eulerian dissipation.
Discussion.—Our measurements show that, at a fixed

resolution slightly above the Kolmogorov length scale, there
is a clear correlation between Eulerian and Lagrangian
irreversibility indicators when both are positive. This result
does not change when increasing the Reynolds number from
one order of magnitude. This result provides the first
experimental confirmation of the Drivas theorem, and pro-
vides an interpretation of dissipation in terms of short time
asymmetry between forward and backward pair dispersion.
Whether such interpretation extends to asymmetry over a
longer time scale and ballistic cascade phenomenology [32]
is an open question. Our findings open a new perspective
regarding the understanding of the building of the irrevers-
ibility. Indeed, we may combine both the Lagrangian and
Eulerian criterion to understand where and how irreversible
events form, and which particle trajectories are responsible
for them. We then define a criterion to select a set I of
strongly irreversible Lagrangian trajectories based on a

thresholding procedure: a trajectory is in the set I if it
includes a times t such that jIl

Lðxn; tÞj ≥ T�. The selected
trajectories are compared with isosurfaces of strong Eulerian
irreversibility in Fig. 3. This particular event is the most
intense event that we have over more than 96 000 snapshots
corresponding to about 7000τη. The event corresponds to the
interaction of two vortices at the edge of our measurement
domain. The Eulerian irreversible areas can be seen at the

FIG. 2. Joint PDF of Lagrangian and Eulerian irreversibility indicators for SVK (a) and GVK (d). The dotted line has equation y ¼ x.
Joint PDF of Lagrangian and Eulerian maxima found at each snapshot for SVK (b) and GVK (e). Joint PDF of snapshot minima of the
Lagrangian criterion and the corresponding value of the Eulerian criterion at the same position for SVK (c) and GVK (f).

FIG. 3. 3D visualization of Eulerian irreversibility isosurfaces
(in red) at T� ≈ 6ϵ and highly irreversible trajectories selected
from the Lagrangian criterion with T� ≈ 10ϵ. This event was
taken from the SVK dataset. There are 19 time steps plotted for
each trajectory. Positive Lagrangian indicators are showed in
black as negative values are coded in blue-green. For represen-
tation purposes, the Lagrangian indicator was fitted on trajectory
segments of 5Δt. The Lagrangian scale is lL ¼ 10η and the
Eulerian scale is lE ¼ 3.8η.
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edges of vortices or inside them, while the Lagrangian
trajectories wind up around the vortices. We can also see
a jet of flow from below interacting with the two vortices and
separating in two directions, creating a stagnation point and a
strong irreversible event, which is positive in the Eulerian
framework, but negative in the Lagrangian framework as seen
in Fig. 3. These events being bound to vanish in the inviscid
limit, this sets interesting constrains about vortices inter-
actions. We have observed similar features for at least the five
strongest events in the SVK dataset. Temporal animations
are provided in the Supplemental Material [30]. In any case,
the correlation between highly irreversible Lagrangian and
Eulerian areas, and vortex interaction suggests a possible
link between irreversibility and singularity. Indeed, the close
interaction of vortices frequently leads to vortex reconnec-
tion. High resolution numerical simulations [33] or ideal
models of vortex reconnection based on Biot-Savart formula
show the building of a singularity or quasisingularity at the
location of vortex interaction [34,35]. The spontaneous
breaking of irreversibility may then be interpreted as a
nonequilibrium phase transition, mediated by a (quasi)
singularity of the field itself. Whether this translates into a
singularity of a suitable large deviation function (the non-
equilibrium equivalent of a free energy) is an interesting open
question.
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