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We propose surface modulation of the equilibrium charge density as a technique to control and enhance,
via an external static potential, the free electron nonlinear response of heavily doped semiconductors.
Within a hydrodynamic perturbative approach, we predict a 2 order of magnitude boost of free electron
third-harmonic generation.
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Among the main challenges of modern applied physics,
the control and the concentration of light at the subwave-
length scale are of extreme importance for the realization of
integrated optical technologies, especially to reach opera-
tional efficiencies in devices based on nonlinear optical
effects, which otherwise would require high laser inten-
sities and long propagation distances in macroscopic non-
linear crystals. Toward the accomplishment of this purpose,
the study of the coupling of light with the collective
oscillation of free electrons (FEs) in materials characterized
by a high density of such carriers, i.e., plasmonics, has a
central role. Plasmonic nanoantennas have been commonly
used as local-field amplifiers in hybrid systems to enhance
optical nonlinearity from dielectric material placed in their
vicinity [1–4], however, the nonlinear response may also
arise directly from the plasmonic material itself, specifi-
cally from the dynamics of nonequilibrium FEs [5–11].
Notoriously, noble metals are the main constituents of
plasmonic devices in the visible spectrum. On the other
hand, heavily doped semiconductors (i.e., with charge
densities n0 ∼ 1019 − 1020 cm−3) have emerged as alter-
native materials for plasmonics in the near-infrared (NIR),
i.e., 0.8 < λ < 2 μm, and in the mid-infrared (MIR), i.e.,
2 < λ < 20 μm [12–16]. Being low-loss high-quality mate-
rials that can be compatible with standard microelectronics
fabrication processes, and being their optical response
tunable through electrical or optical doping, heavily doped
semiconductors offer a unique perspective for integrated
optical devices in the NIR and in the MIR [17–20].
Within this context, we have recently investigated the FE

nonlinear optical dynamics of heavily doped semiconduc-
tors, predicting that cascaded third-harmonic generation
(THG) due to second-harmonic signals can be as strong as
direct THG contributions, even when the second-harmonic
generation efficiency is zero, and showing that, when
coupled with plasmonic enhancement, FE nonlinearities
could be up to 2 orders of magnitude larger than conven-
tional semiconductor nonlinearities [21,22]. We employed

a hydrodynamic description that includes terms up to the
third order, usually negligible for noble metals. This
choice has been made taking into consideration that, within
the hydrodynamic formalism, the third-order response,
expressed through the third-order polarization vector Pð3Þ

NL,
is inversely proportional to the squared equilibrium charge

density, i.e., Pð3Þ
NL ∝ ð1=n20Þ. Indeed, doped semiconductors

with a plasma wavelength in the MIR have a charge density
(n0 ∼ 1019 cm−3) much lower than noble metals, such as
gold (n0 ∼ 1022 cm−3).Hence, FEnonlinearitesmaygrowas
much as 6 orders of magnitude, overcoming by far the
contributions originating in the crystal lattice nonlinear
susceptibility χð3Þ, which instead represents the dominant
third-order nonlinear source in gold due to the high concen-
tration of charge carriers. Moreover, the nonlinear active
volumes are expected to increase in semiconductors due to
their smaller effective masses [21].
A further step forward along this direction can be made if

another very important characteristic of hydrodynamic
nonlinearities is considered: they emerge predominantly
at the surface [23,24]. As a consequence, an induced
decrease of the electron density, in a small region of the
semiconductor very close to its surface, may be exploited to
increase the nonlinear response strength of the plasmonic
system. In doped semiconductors, such a modification of
the charge density can be obtained through the application
of an external bias, i.e., by means of field-effect modulation
[25–31]. Therefore, this technique may provide the unique
ability to externally and dynamically modulate the non-
linear coefficients of heavily doped semiconductors by a
simple setting of dc electric potential levels. In this Letter
we present a model for describing the influence of surface
charge depletion on FE nonlinearities and make quantita-
tive predictions about the role of field-effect modulation for
the control of the optical nonlinear response of heavily
doped semiconductors. Finally, we demonstrate a 2 order of
magnitude enhancement in THG from a doped InP grating
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resonant in the MIR, considering an external bias of the
order of 100 V=μm.
As in our previous works on FE nonlinearities [21,22],

for the representation of nonlinear and nonlocal FE
dynamics, we apply the quasiclassical formalism of the
hydrodynamic model in the limit of Thomas-Fermi
approximation [32–34]. Within this framework, the follow-
ing constitutive relation is employed to model the FE fluid
via two macroscopic variables, its charge density nðr; tÞ,
and its current density Jðr; tÞ ¼ −env, with vðr; tÞ being
the electron velocity field

_Jþ γJ ¼ e2n
m

E −
μ0e
m

J ×H

þ 1

e

�
J
n
∇ · Jþ J ·∇ J

n

�
þ en

m
∇ δT½n�

δn
; ð1Þ

where time derivatives are expressed in dot notation, m is
the electron effective mass, e the elementary charge (in
absolute value), μ0 is the magnetic permeability of vacuum,
and γ is the damping rate. This equation portrays the many-
body nonlinear dynamics of the charge carriers under the
influence of external electric Eðr; tÞ and magnetic Hðr; tÞ
fields. Furthermore, the fermionic nature of FEs, which
cannot be compressed in an infinitesimally thin layer, is
accounted by means of the electron pressure term, where
T½n�, is the kinetic energy functional. On the other hand, we
neglect electron spill-out and apply hard-wall boundary
conditions.
Employing a perturbative approach, we can write the

charge density as a sum of a static and a dynamic term:

nðr; tÞ ¼ n0ðrÞ þ ndðr; tÞ; ð2Þ

where n0ðrÞ is the equilibrium state nonperturbed electron
charge density and nd ≪ n0 is the induced charge density,
representing perturbative corrections to the equilibrium
density. Similarly, the electric field and the kinetic func-
tional can be written as Eðr; tÞ ¼ E0ðrÞ þ Edðr; tÞ and
T½n�ðr; tÞ ¼ T0½n0ðrÞ� þ Td½nðr; tÞ�, respectively. As a con-
sequence, Eq. (1) can be split into a static and a dynamic
equation:

∇ δT0½n0�
δn0

þ eE0 ¼ 0 ð3aÞ

_Jþ γJ ¼ e2n
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þ 1
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n
∇ · Jþ J ·∇ J
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�
þ en

m
∇ δTd½n�

δn
: ð3bÞ

Equation (3a) coupled to the Poisson equation would give a
self-consistent expression for the equilibrium density and
the static electric field. However, we calculate n0ðrÞ by
means of the method described in the Supplemental

Material [35], which takes into account bands bending in
doped semiconductors within the parabolic band approxi-
mation [30,31,36]. Note that this method is equivalent to
solving Eq. (3a) for a proper expression of the static kinetic
functional T0½n0�. To solve the dynamic Eq. (3b), we
consider the kinetic energy functional within the Thomas-

Fermi approximation, i.e., ðδTd½n�=δnÞ ¼ 5
3
cTFðn2

3 − n
2
3

0Þ,
with cTF ¼ ðℏ2=mÞð3=10Þð3π2Þ2=3. Considering a Taylor

expansion up to the third order, we can rewrite n
2
3 − n

2
3
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n2=30 ½2

3
ðnd=n0Þ − 1

9
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after some algebra, the quantum pressure term becomes
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where βðrÞ2 ¼ ð10=9ÞðcTF=mÞn0ðrÞ2=3. Equation (3b) can
be then written in terms of the polarization field Pðr; tÞ, with
_P ¼ J, nd ¼ ð1=eÞ∇ · P, and n−1 ≃ n−10 ½1 − ðnd=n0Þ�, as

P̈þ γ _P ¼ n0e2

m
Eþ β2∇ð∇ · PÞ − 1

3

β2

n0
ð∇ · PÞ∇n0 þ SNL;

ð5Þ

where SNL ¼ Sð2Þ
NL þ Sð3Þ

NL includes second- and the third-
order nonlinear sources, respectively:

Sð2Þ
NL ¼ e

m
E∇ · P −

eμ0
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A development with respect to previous works [5,6,21] is
represented by the introduction of nonlinear contributions
proportional to ∇n0, by means of which we tackle the
nonzero gradient of the equilibrium density. In any case,
due to constructive interference between the nonlinear
sources in the near and far field [24], it is not straightforward
to make clear comparisons of the contributions and define
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the dominant one. The aforementioned new terms and all
the surface contributions, i.e., those proportional to ∇ · P,
describe nonlinear effects whose origin is at the surface of
the material. Consequently, hydrodynamic nonlinearities are
expected to be extremely sensitive to the changes of the
physical condition at the surface, such as a change in the
density n0.
At this point, if a time-harmonic dependence of the fields

is assumed, i.e., Fðr; tÞ ¼ P
j FjðrÞe−iωjt, with F ¼ E, H,

or P, combining Eqs. (5) and (6) with Maxwell’s equations,
the following system can be derived for each harmonic ωj:

∇ ×∇ ×Ej − ε
ω2
j

c2
Ej − ω2

i μ0ðPj þ PNL
ωj
Þ ¼ 0; ð7aÞ

β2∇ð∇ · PjÞ −
1

3

β2

n0
ð∇ · PjÞ∇n0 þ ðω2 þ iγωÞPj

¼ −
n0e2

m
Ej þ Sωj

; ð7bÞ

where local contributions from the semiconductor, both
linear, through the local permittivity ε, andnonlinear, through
the nonlinear polarization PNL

ωj
are considered. Since a

coupling between different harmonics occurs through the
nonlinear contributionsPNL

ωj
and Sωj

, Eqs. (7) constitute a set
of coupled nonlinear differential equations, whose resolution
is not straightforward. For this reason, aswe expect harmonic
signals to be several orders of magnitude smaller than the
pump fields, we assume that the latter is not affected by the
nonlinear process (undepleted pump approximation), i.e.,
PNL
ω1

¼ Sω1
¼ 0. The system of Eqs. (7) reduces then to

separated sets of one-way coupled equations, one for each
harmonic. Moreover, since our goal is to study the impact of
surface depletion on FE nonlinearities, we neglect contribu-
tion from the background lattice, i.e., PNL

ω3
¼ 0. Indeed, we

have shown [21] that FE nonlinearities may be larger than
those coming from the bulk χð3Þ, especially when the
fundamental field (FF) wavelength is deep in the metallic
region of the semiconductor and for high angles of incidence,
even without surface charge modulation. As a consequence,
being the application of a static electric field very favorable
for hydrodynamic nonlinearities, it is safe to concentrate
the analysis on these contributions. In what follows, we
focus on direct FE THG, i.e., a third-order process where
three photons of energy ℏω combine to give a single photon
of energy 3ℏω, while we briefly discuss cascaded FE THG
in the Supplemental Material [35], where we report also
the expressions of the nonlinear sources, Sωj

, derived from
Eqs. (6).
In order to estimate the impact of surface charge

depletion on the FE nonlinear response of heavily doped
semiconductors, we first apply the developed formalism to
calculate the FE THG efficiency η of a semiconductor
slab. In particular, we solved Eqs. (7) numerically using the

finite-elements method within a customized frequency-
dependent two-dimensional implementation in COMSOL
Multiphysics [37]. The efficiency has been calculated by
normalizing the power of the generated signal to the input
power at the fundamental frequency, η ¼ IG=I0, where IG
is the generated intensity. As a consequence, for third-order
nonlinearities, η will scale with I20.
To accurately model the semiconductor’s linear response,

on top of the Drude-like dispersion described by Eq. (5), we
consider a local permittivity contribution, ε∞, such that,
neglecting nonlocal effects, we retrieve the usual dielectric
function εðωÞ ¼ ε∞ − ½ω2

P=ðω2 þ iγωÞ�, where ωP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½e2n0=ðε0mÞ�

p
is the plasma frequency of the semiconduc-

tor, being ε0 the dielectric constant of vacuum.The input field
is a TMplanewave impinging on the geometrywith a certain
angle of incidence θ [see Fig. 1(a)]. The slab is characterized
by an equilibrium charge density profile modulated in a
very small region at the top interface, as shown by the curves
in Fig. 1(b), calculated assuming the electric potential on
the surface of the semiconductor, as described in the
Supplemental Material [35]. The imposed boundary con-
ditions on the top surface of the semiconductor slab corre-
spond to an applied static electric field that can be up to
70 V=μm.

FIG. 1. Effects of surface charge depletion on the FE THG
efficiency η of a doped InP slab: (a) a TM plane wave impinging
on a semi-infinite geometry is considered; (b) equilibrium charge
density n0ðrÞ as a function of the distance d from the surface of
the slab for different levels of modulation (in V=μm); (c) related
η, normalized to the squared input intensity I20, as a function of the
angle of incidence θ; (d) enhancement factors ζ as a function of
the depletion factor δ in correspondence of the peak efficiencies
at θ ¼ 60.
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The material considered for this Letter is indium phos-
phide (InP), a direct band gap III-V semiconductor and a
low loss plasmonic material for the MIR region [19,38,39].
InP is, thanks to its intrinsic properties (m ¼ 0.078 me,
ε∞ ¼ 9.55 [19]), among the most promising semiconduc-
tors for the realization of integrated optical platforms based
on FE nonlinear dynamics [22]. Since we assume the value
of the equilibrium charge density in the bulk to be
nb ¼ 1019 cm−3, the simulated InP’s slab has a screened
plasma wavelength in the MIR, λ̃p ¼ 9.1 μm, where
λ̃p ¼ ð2πc=ω̃pÞ, with ω̃p ¼ ωp=

ffiffiffiffiffiffi
ε∞

p
being the screened

plasma frequency. Finally, γ ¼ 1 ps−1 has been assumed
dispersion-less [21]. Note that, given the dimension of the
system, the effects of the depletion region on the linear
properties of the semiconductor are not sensitive.
In Fig. 1(c), we report η of FE THG, normalized to the

squared input intensity I20, as a function of θ for the five
different n0ðrÞ profiles of plot b, at a FF wavelength
λFF ¼ 12 μm, while, in Fig. 1(d), we show its enhancement
factor ζ ¼ η=η0 (where η0 is the THG efficiency obtained
with no applied potential) in correspondence of the peak
efficiencies (i.e., for θ ¼ 60°), as a function of the depletion
factor δ ¼ nb=nsurf0 , where nsurf0 is the value of n0 for d ¼ 0.
Here, the angular dispersion of η is typical of third-order FE
THG, i.e., it is null at normal incidence and grows with θ,
peaking at a high angle of incidence. The reason is that, for
θ ¼ 0°, the electric field is parallel to the slab; as a result
there cannot be charge oscillations of the charge carriers in
the finite dimension of the slab [21]. Instead, the important
feature emerging from Fig. 1 is the boost of FE THG
because of the localized diminution of n0ðrÞ in a very thin
region (∼10 nm) in proximity of the surface of the doped
semiconductor. Indeed, as it can be observed more clearly
in Fig. 1(d), the enhancement factor of THG can be larger
than 1 order of magnitude for δ ≈ 25, i.e., for nsurf0 about 25
times smaller than nb.
As a next step, it may be interesting to employ our

hydrodynamic formalism with the aim of studying the
possible impact of charge depletion on the nonlinear
response of a nanopatterned semiconductor slab character-
ized by a localized plasmon resonance in the MIR. We
consider an infinite array of subwavelength grooves (a
grating) portrayed in Fig. 2(a), a structure that supports
plasmonic resonances and allows us to couple virtually all
incident energy into the active material at normal incidence
and locally enhance the pump field [40], and, as a conse-
quence, to have nonzero FE THG already for θ ¼ 0°. The
pattern has been designed as a function of the parameter a, h,
and d, in order to be resonant in theMIR for a TM-polarized
excitation, obtaining a resonance around λFF ¼ 12.2 μm,
i.e., where the reflectance is almost zero. The doped semi-
conductor and the boundary conditions are the same con-
sidered for the simple slab. The difference is that now the
regionof charge depletion follows the contour of the grooves,

as depicted in Fig. 2(b). To study the nonlinear properties of
the grating, we report in Fig. 2(c) the normalized efficiencies
of FE THG, in this case as a function of λFF, in proximity of
the resonance and at normal incidence, showing a compari-
son of the undepleted case with that of maximum modula-
tion. In all cases, the maximum efficiency reached is about 5
orders of magnitude larger that obtained for the simple slab.
Finally, in Fig. 2(d), we portray ζ in correspondence of the
peak efficiencies of plot (c), as a function of the depletion
factor. Here, an enhancement of the efficiency when the
depth of the region of depletion increases can be put in
evidence also for thegrating.Nevertheless, in Fig. 2(d), ζ is in
all cases larger if compared to the same points in Fig. 1(d),
reaching ζ ≈ 70. The peak efficiency of direct THG is larger
than 10−5 if an input intensity of 10 MW=cm2 is assumed.

FIG. 2. Effects of surface charge depletion on the FE THG
efficiency η of a doped InP semi-infinite grating: (a) the structure
and its reflectance R at normal incidence for nb ¼ 1019 cm−3,
d ¼ 1 μm, a ¼ 150 nm, h ¼ 500 nm. The orange and the light
blue shadows evidence the considered range of variation of λFF
and that of the corresponding λTH, respectively. (b) n0ðrÞ along
the grooves contour in the case of maximum depletion of
Fig. 1(b); (c) normalized efficiencies of THG as a function of
λFF in the proximity of the resonance, at normal incidence, in the
case of zero and maximum modulation (in V=μm); (d) related
enhancement factors ζ as a function of the depletion factor δ in
correspondence of the peak efficiencies at λFF ¼ 12.2 μm.
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In conclusion, in order to evaluate the impact of surface
charge depletion on the FE nonlinear response of heavily
doped semiconductors, we have introduced a hydrody-
namic perturbative approach that takes into account the
nonzero gradient of n0ðrÞ. We have employed our method
to study THG in a simple slab and in a resonant grating of
doped InP, showing a boost of the efficiency of generation
caused by the localized diminution of n0ðrÞ on the surface
of the material, and predicting an enhancement of the THG
up to 2 orders of magnitude with an applied external static
bias of 70 V=μm. Our Letter highlights the role of field-
effect gated modulation as a ground-breaking tool to
externally and dynamically control the nonlinear coeffi-
cients of heavily doped semiconductors, opening a new
route toward the development of integrated nonlinear optics
at MIR frequencies.
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