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Cavity optomechanical systems make possible the fine manipulation of mechanical degrees of freedom
with light, adding functionality and having broad appeal in photonic technologies. We show that distinct
mechanical modes can be exploited with a temporally modulated Floquet drive to steer between distinct
steady states induced by changes of cavity radiation pressure. We investigate the additional influence of the
thermo-optic nonlinearity on these dynamics and find that it can suppress or amplify the control mechanism
in contrast to its often performance-limiting character. Our results provide new techniques for the
characterization of thermal properties of optomechanical systems and their control, sensing and

computational applications.
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Introduction.—Cavity optomechanics employs optical
forces to exert control over optical fields and mechanical
motion in mechanical systems and is a rapidly growing
research field with much recent progress [1]. Proto-
typically, an optomechanical system consists of a single
mode of the electromagnetic radiation field, e.g., within a
high-finesse optical cavity [2], interacting with the motion
of a harmonic oscillator by means of the radiation pressure
force [3]. The optomechanical interaction has been used to
cool the motion of the mechanical system down to its
ground state [4,5] and generate quantum entanglement
between mechanical oscillators [6,7]. Through this same
interaction, it is also possible to transfer energy from the
optical field into the mechanical oscillator; this leads to
self-sustained oscillations and lies at the heart of synchro-
nization phenomena in optomechanics [8—18].

Such systems may also find technological use; synchro-
nized optomechanical arrays, for example, could act as
on-chip frequency sources [15]. Moreover, mechanical fre-
quency combs [19], proof-of-concept isolators and direc-
tional amplifiers for microwave radiation [20-23], and
bidirectional conversion between microwave and optical
light [24] have all been shown. Control of the optome-
chanical bistability [25,26] holds technological potential
as it provides the means to put mechanical elements
controllably into distinct mechanical states. Bistable sys-
tems based on optomechanical [27,28] or other [29-31]
nonlinearities can act as memory cells for nanomechanical
computing, and recently attracted attention in experimental
demonstrations of dissipative phase transitions [32,33].
Control over the optomechanical bistability beyond that
provided by a uniform drive is of fundamental use as the
latter sets limits to the achievable entanglement [34] and
enhanced coupling strengths [35].
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The study of time-varying optical driving in optome-
chanics is well established [36] and gained momentum
driven by theoretical advances in the Floquet approach
[37,38]. It enables nonreciprocal transfer of phonons [39],
leading to topological transport of phonons via synthetic
gauge fields [40—42], allows quantum states to be transferred
from one mechanical element to another [43], and entan-
glement between such elements [6]. Further studies inves-
tigated effects on quantum mechanical properties of
mechanical motion [44] and the characterization of the
cavity’s thermal properties exploiting Floquet techniques
[45-48]. Floquet driving has recently proven to overcome
mode-competition resulting in mode-locked lasing of non-
degenerate modes [49].

In this Letter, we extend the spectral mean field Floquet
method underlying [49] enabling its use in Kerr-like
models beyond optomechanics [50-52] and incorporating
thermo-optical effects. We find that these effects can
influence the sideband structure of the optical out-
put spectrum which we demonstrate experimentally.
Crucially, our analysis shows that Floquet techniques
enable dynamical control of the optomechanical bistabil-
ity in multimode settings. This presents a useful tool in
the manipulation of optomechanical systems, paving the
way toward frequency sensing, phononic memory, and
logic element applications. Finally, our analysis suggests
that thermo-optical nonlinearities can suppress or amplify
this novel mechanism, proving that thermal effects can
counterintuitively amplify the mechanism.

Model.—We consider the collective dynamics of a system
consisting of N mechanical modes coupled to one optical
mode, described by the optomechanical Hamiltonian

© 2022 American Physical Society
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with a (13 ;) being the optical (jth mechanical) annihila-
tion operator, @,, (£2;) the corresponding resonance
frequencies, and g; the vacuum optomechanical coupling
rates. Extending the Hamiltonian with iA[Ey..(7)a" —
Elive(t)a] includes laser driving. We assume the driving
laser &, = £ye'®:! to be subjected to optical modula-
tion Eyive(t) = Ein(1)7 (1) with a Mach-Zehnder modu-
lator (MZM). Its transfer characteristic 7 (f) = e'®o(1 +

ei?ma()) /2 realizes intensity modulation, considered
throughout this work, expressible as

T(t) 1 - lj 0 "

i )4 Zz H17,,(d) cos[nb(1)]  (2)

for ¢oa(t) = —m/2 + dcos[0(1)] with (1) = Q0at + 6
and Bessel functions of the first kind .7, (d). An increasing
modulation depth d therefore involves increasingly many
driving tones beyond the usual first pair [44—48].

The quantum Langevin equations that describe the open
system dynamics [1] are separable into mean-field and
fluctuation components [a(z)e'® "0 = (1) + a(t) and
b i(t) = B;(t) + f)j(t)]. The resulting mean-field dynamics
with the detuning of the central laser frequency from
the optical resonance A = w,, — @, and defining R(z) =

7+ 7" are

a= { { Zgj (B } }a+€07e"¢0

. F

B = (sz T )ﬂ, T igylal? 3)

In addition to dispersive optomechanical coupling, the
cavity absorbs photons and heats up, which in turn
changes its refractive index and geometry. We model this
process through the dynamics of the temperature devia-
tion 67(f) = gus|a>(t) — yw6T(r)/2, and the resulting
shift of the optical frequency w,, & @op(T) + (0w, /0T )X
[T(t) — T) = wy + gr6T (t). Here, g, denotes the tempe-
rature change due to linear photon absorption, yy,
the thermalization rate, and gy the linearized thermo-
optical frequency shift [44-48]. The mean mecha-
nical fields f;(¢) and temperature deviation 67(f) are
expressible via the mean intensity |@|?() in Fourier space.
Since the equation for the mean optical field « is tempo-
rally periodic, we choose a Floquet ansatz and express a as
a truncated Fourier series a(t) = >, a,e "’ with

n € {-D,...,D}. The resulting mean field intensity is
then [&|*(®) =37, #p@p—g8(® = igQpoq), Where p €
{-D,...,D} and g € {-D + p,...,D + p}. The Floquet

ansatz results in the dynamics of the optical mean field

a,, = goT

—Xm an1+§ :)Ccubq pAp—q®

Acquiring its steady state (&, = 0) amounts to solving
4D + 2 coupled real cubic equations, applicable to other
Kerr-like models [50-52]. Here, we defined 7, =
[1 - le(d)]/z’ Tm:ilmlJrljm(d)’ )(;11 :i(A_QOod)+
k)2, and ok = X7h g + D X0M.jg With 277 o/ 91 Gans =
(qgmod - iyth/z)_l and 277'7((_)11\/[,]'4/9? = [i(qgmod - Qj)_
[;/2]7" = [i(gQumoa + Q) +T';/2]7". The steady state @,
is attainable analytically [53] for D = 0 and numerically
otherwise.

The resulting @, turn the dynamics of fluctuation
components @ and b into a periodic system treatable with
Floquet techniques [37] up to leading order,

(4

( )?_ a +ZZ’QJ%5R ” + \/Eam ’
(Z + \/_ijm’ (5)

with the mechanical Floquet susceptibilities )V(anl =
—[i(Q; — nQyoq) +T;/2] and the optical susceptibility
77 = —li(A = X 2l () /75 ) + k/2) where we
denote R(6) =0+ 0" and I(z) = i(z* —z). Using the
input-output relations for the relevant optical output field
dou(@) = (a)) Vk6® (@) and input noise obeying
(@m (a))ﬁ:o;(p) (@) = 8(w = @)SypBp(nih + 1) characte-
rized by the average thermal occupations ny yields the
stationary power spectral density of the optical output field

BEn) :)?7155") 4 igj[aina<

n

Sop(a)) =S+

_ b,
ng.|an|2r‘nth o (6)
nj [(w—A)? +E ][(a) Q)+

This quantity is experimentally accessible in a direct
measurement and consisting of a noise floor § and multiple
Lorentzian peaks at Q;, = Q; + n€,4. In sideband unre-
solved systems (x > €;,), these are filtered equally by the
Lorentzian cavity density of states with effective detuning
A=A+, 2g@,]*/Q;), due to static radiation pressure
forI'; < Q;. Consequently, the spectrum displays the mean
field amplitudes |a,|? in leading order.

Results with one mechanical mode.—Aiming to observe
the model dynamics with one mechanical mode, we use a
265 nm thin InP 10 x 20 ym? membrane suspended over a
rib silicon waveguide via a 250 nm air-gap illustrated in
Fig. 1(a). The membrane is pierced with a 2D photonic
crystal and two L3 defect cavities at its center. These
defects, shown in the inset of Fig. 1(a), allow localized
photonic modes to be evanescently driven from the wave-
guide. The optical channel transmission spectrum is mea-
sured by injecting a broadband light source into the
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FIG. 1. (a) Experimental setup including the integrated opto-

mechanical platform with a suspended 2D photonic crystal InP
nanomembrane (blue) above a SOI waveguide (red). Inset: SEM
micrograph of the L3 defects. (b) Measured transmission spec-
trum (orange dots) and fit (black line). The electric field
distribution associated with each photonic resonance are shown
on top. (c) Mechanical spectrum measured by optomechanically
probing the photonic mode (—) (dark blue) or the mode (4) (light
blue). The photothermal effect induces different elastic property
changes resulting in different frequencies.

waveguide gratings termination. The transmitted field is
collected and sent to a monochromator. The normalized
transmission spectrum is plotted in Fig. 1(b). We fit the data
using the coupled mode theory (CMT) of two waveguide-
coupled photonic cavities [54] and ignore the right most
feature. The bonding and antibonding modes central wave-
lengths are fitted as A_ = 1557.27 nmand A, =1565.55nm,
with total quality factors Q"' ~ 380 and Q%" =~ 3240. The
discrepancy between fit and data around 1570 nm results
from imperfect alignment of the injection and collection
fiber tips with regard to the SOI gratings. The simulated
distributions of the transverse electric field component
for both modes are shown in Fig. 1(b). We perform all
measurements at room temperature with the chip placed in a
vacuum chamber pumped below 107> mbar.

To access the mechanical noise spectrum of the sus-
pended membrane, a tunable laser resonantly drives a given
optical mode [dashed vertical lines in Fig. 1(b)]. The output
signal is filtered, sent to a low noise amplifier (LNA), and
coupled to a low-sensitivity photodetector. We measure the
resulting rf signal with an electrical spectrum analyzer
(ESA). The suspended membrane sustains several
mechanical modes with frequencies ranging from 4 MHz
to more than 100 MHz. These resonances interact with the
optical modes through dissipative and dispersive optome-
chanical couplings [55]. As illustrated in Fig. 1(c), the
mechanical spectrum can be accessed by driving either the

bonding (light blue) or antibonding (dark blue) optical
mode. In this work we focus on the fundamental mechani-
cal mode with central frequency Q; = 27 x 4.330 MHz
and linewidth I'; = 27 x 6 kHz.

Before injecting into the system, the laser with wave-
length 1; = 1565.75 nm passes a MZM subjected to an rf
signal V(f) = V 04 €08 Q0qf. The modulation depth is
d =7 xVya/V, with the calibrated half-wave voltage
V,=7.0V. We record the output optical field noise
spectrum as illustrated in Fig. 2(a). The resulting exper-
imental diagrams using a modulation depth of d = 0.89 are
depicted in Fig. 2(b). The top figure shows the result for the
input power P;, = 1.3 mW which yields a thermo-optic
bistability (see Supplemental Material [56]). At this input
power and wavelength 4;, the probing laser is put centrally
in this bistable regime. We observe modulation sidebands
surrounding the mechanical peak, with imbalanced ampli-
tudes because of thermo-optical effects. For comparison,
the identical measurement realized in the low-power sit-
uation is shown in the bottom of Fig. 2(b). In this case, only
one pair of sidebands with weak and balanced amplitudes
are recorded. Neglecting higher order contributions (see
Supplemental Material [56]), the numerical prediction by
Eq. (6) with Q; = 27 x 4.34 MHz, g,/Q; = 2.30 x 1072,
I/Q =735 x 1072, x/Q; = 1.36 x 10*, A/Q, =
1.65 x 10* is presented in the top of Fig. 2(c) showing
qualitative agreement with the experiment at large input
power. We employ a drive of &,/Q; = 4.62 x 10* and
modulation depth d = 1.35 in addition with the thermo-
optical coupling strength grgays/ g7 = 2.54 x 10? and ther-
malization rate yy = 27 x 112 kHz. These parameters
amount to a blueshift (grguns/7m > 0) for temperature
fluctuations previously found in silicon [44]. This can be
attributed to changes in the cavity’s elastic properties [57]
and geometry rather than a change in the refractive index.
We find that Q4 allows control over the transduced
modulation comb. This effect requires sufficiently high
input power and modulation frequencies below 125 kHz.
This cut-off frequency originates from the thermalization
rate of the material. In an independent measurement (see
Supplemental Material [56]), we measure the switching
transition time of approximately 4 us in the thermo-optic
resonator, in good agreement with previous measurements
in a similar device [58]. Higher modulation frequency
suppresses the thermo-optic effect but maintains the
amount of visible sidebands (in contrast to the heterodyne
measurement in [44]). Consequently, the modulation comb
retains its symmetry. We perform a measurement as a
function of the modulation depth (see Supplemental
Material [56]) and find that this parameter also enables
control over the modulation comb asymmetry. Numerical
simulations of Eq. (6) with a reduced driving strength
&y/91 = 10 and modulation depth d = 0.89 shown in the
bottom of Fig. 2(c) agree with the experimental result and
show only one pair of symmetric sidebands. Horizontal
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FIG. 2. Floquet dynamics of a single-mode optomechanical system (a) Schematic of an optomechanical cavity driven with a
modulated laser field. (b) Experimentally measured noise spectra centered at the mechanical frequency Q; = 2z x 4.330 MHz for
P;, = 1.3 mW (top) and P;, = 325 uW (bottom) mapped over the modulation frequency Q4. (¢) Theoretically predicted noise spectra
for varying Q,,,q employing high (top) and low (bottom) optical power. (d) Lateral sections along the dotted lines in (b) and (c) of the

measured spectra (dotted) and numerical results (solid).

sections of the respective theoretical (solid) and experi-
mental (dotted) heat maps are shown in Fig. 2(d) for large
(top) and low (bottom) input power for €. .4 = 0.28 x
Ym/2 (blue), Q.4 = 1.00 X y4/2 (green), and Q.4 =
1.43 X y/2 (red) demonstrating the thermal decay rate
Ym/2 to define the cut-off frequency and confirming the
observed model dynamics.

Floquet control of optomechanical bistability.—Based
on our model and its agreement with experiment for one
mechanical mode, we extend the discussion to potential
applications with multimode systems. We can analyze the
interaction of the mechanical Floquet modes b ) mediated
through the optical field fluctuations by ehmlnating a®
and find their effective coupling via the contributions

9912,
—i(A+ o)+

gjglaimap _
i(A-w)+%

" (w) =

Jlp

(7)

s .
2

The stationary mechanical spectra without periodic drive
(m=p=0) are Lorentzians [34,59] Sﬁj (w) = Sf,j—i-

[7;[(Q) — w)? +T'5/4]7" with optical-spring-corrected

frequencies Q) = Q; \/ I[o 110 Q;)]/(4Q;) + 1 and modi-

fied linewidths I, =T + R] J(J())(Q )]
ons allow assessing optomechanlcal and photother-
mal [60] backaction as negligible in our system (see
Supplemental Material [56]). Moreover, the former expres-
sion contains information about the stability of mechanical
oscillators’ steady states for red-detuned driving (A > 0): if
we examine the static frequency response we find
Q(w=0)=Q;,/; with n;=1-Ag}|ag|*/[Q;(A%+K*/4)]
which has to be larger than zero for a stable steady state
according to the Routh-Hurwitz criterion [34]. In the

Such expressi-

presence of the periodic drive, there are additional con-
tributions to the frequency response which modify the
stability parameter

| Ao
SRR . )
4Qj V%;/ l(Q n'(Zmod) + + 512

This suggests that a mechanical mode b, can influence the
occurrence of the optomechanical bistability of a distinct
mechanical mode b ; if the modulation frequency is tuned
into resonance at ¢ = Q;/n with n € Z on the scale of
the mechanical linewidth I';. We investigate the predicted
capability of the periodic drive in Eq. (8) to control the
bistability of a distinct mechanical mode as depicted in
Fig. 3(a). We therefore conduct numerical simulations with
system parameters which exhibit an optomechanical bist-
ability based on [26]. It consists of a mechanical oscilla-
tor with frequency Q; =2z x 10 MHz, damping rate
I'/Q, =5.00 x 1072, coupled with the rate ¢,/Q; =
1.52 x 107 to an optical field with decay rate x/Q; =
1.40, detuning A/Q; =2.62, and &,/Q; = 1.44 x 10°.
Additionally, a second mechanical mode with frequency
Q,/Q, = 1.10, damping rate I',/Q; = 5.50 x 1073, and
coupling strength ¢,/g; = 5.53 x 1072 is used to control
the prior one’s steady state. We omit the thermo-optical
effect (gr = 0) and inspect the effect of intensity modu-
lation with modulation depth d = 1.875 x 107> on the
mean field dynamics of the Itd stochastic differential
equation corresponding to Eq. (3). We study thermal
O for

the cavity and the bistable mechanical mode and nth
8000 phonons employing the Euler-Maruyama scheme
[61]. This setting makes the system experience noise

excitation corresponding to shot noise ng = n
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FIG. 3. Floquet control of optomechanical bistability. (a) An
optomechanically bistable mode is controlled by another non-
degenerate control mode with an intensity-modulated pump.
(b) The steady state switches when the modulation frequency
Q. .q matches the control frequency €, (green) whereas it is
unaffected for off-resonant modulation (black). (c) Two-dimen-
sional parameter diagram describing the switching capability of
the Floquet drive: the intensity modulation’s phase 6, aligning
with the mechanical phase ¢, in addition to the frequency
matching leads to steady state switching (green).

predominantly in the control mode b,. Its mean field
displacement R(f,) = G, cos[Q,t + ¢, ()] will therefore
encounter phase noise ¢, (¢) described by a Wiener process.
The examples in Fig. 3(b) show that the system remains
stable in its steady state for off-resonant modulation
Q. 0d = 27 x 1 MHz < ,. For sufficient time under reso-
nant modulation Q.4 = ©,, switching of the steady state
occurs (see Supplemental Material [56]) and enables the
setup to detect a signal at frequency €2, in the signal fed into
the MZM. Figure 3(c) summarizes the result of omitting
thermal excitation and replacing it with periodic drive to
clarify the switching mechanism: switching of the steady
state occurs if the now deterministic phase ¢, of the
mechanical oscillator used to control the bistability aligns
with the phase 6, of the optical modulation for resonant
intensity modulation. This requires the control oscillator to
assume the correct phase for sufficiently long optical
modulation (see Supplemental Material [56]). Thermal
excitation causes phase noise and will eventually ensure
the phase-sensitive switching. Tuning the modulation
depth, we find that the amplitude of the sidebands &,
can be increased or reduced for modulation frequencies in
the thermo-optical regime (see Supplemental Material
[56]). Since Eq. (8) suggests that the underlying coupling
strength grows (nonlinearly) with these amplitudes, photo-
thermal effects and thermal excitation can be exploited for
increased control of multimode optomechanical systems.

Conclusions.—Our investigation reveals that thermal
properties of optomechanical systems can be employed
to tailor its Floquet dynamics. Using a 2D sideband
unresolved optomechanical photonic crystal, we demon-
strated experimentally how a Kerr-type nonlinearity—
namely the thermo-optic effect—can achieve the predicted
desymmetrization. This method conveniently characterizes
thermal properties which we verify with independent
measurements. Interestingly such nonlinearities are ubiqui-
tous in semiconductor microcavities, with cut-off frequen-
cies ranging from a few kilohertz and surpassing the GHz
range [62], depending on the process nature. These Floquet
modes allow us to control the bistability of a distinct
mechanical mode which can be understood from higher-
order cross-mode contributions to the self-energy with
modulated drive. We demonstrated the operation of this
mechanism with two mechanical modes where the thermal
excitation of one mode allows resonant modulation to
trigger a response of the other. This mechanism applies
equally to multiple harmonically spaced control modes
where the switching can implement logical rules.
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