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We study Chern-Simons theories at large N with either bosonic or fermionic matter in the fundamental
representation. The most fundamental operators in these theories are mesonic line operators, the simplest
example being Wilson lines ending on fundamentals. We classify the conformal line operators along an
arbitrary smooth path as well as the spectrum of conformal dimensions and transverse spins of their
boundary operators at finite ’t Hooft coupling. These line operators are shown to satisfy first-order chiral
evolution equations, in which a smooth variation of the path is given by a factorized product of two line
operators. We argue that this equation together with the spectrum of boundary operators are sufficient to
uniquely determine the expectation values of these operators. We demonstrate this by bootstrapping the
two-point function of the displacement operator on a straight line. We show that the line operators in the
theory of bosons and the theory of fermions satisfy the same evolution equation and have the same
spectrum of boundary operators.
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Introduction.—Three-dimensional Chern-Simons (CS)
theory enjoys level-rank duality, which is well established
when the level k and the rank N of the gauge group are
finite [1–4]. This duality is believed to extend to a non-
perturbative duality between conformal theories that are
obtained by coupling CS theory to scalars or fermions in
the fundamental representation.
There is extensive and robust evidence for the duality,

especially in the largeN ’t Hooft limit with λ≡ N=k fixed. It
includes matching correlation functions of local operators
[5–10], the spectrum of monopole and baryon operators
[11,12], thermal free energies [13–17], S matrices [18–20],
and relating the nonsupersymmetric dualities to well-
established supersymmetric ones [21,22] via RG flow
[16,23]. Since these tests are performed in the strict planar
limit, they do not distinguish between different versions of the
duality that differ by half-integer shifts of the Chern-Simons
level k and by the gauge group being SUðNÞ or UðNÞ [24].
In this Letter, we summarize the results of our study of

line operators in the large N limit. They can be either
closed, such as Wilson loops, or open, such as Wilson lines
stretching between a fundamental and an antifundamental
field. We denote the latter as mesonic line operators.
Detailed derivations of the results presented here will
appear in separate publications [30,31].

At leading order in the large N limit, the matter does not
contribute to the expectation values of closed Wilson loops.
On the other hand, it does contribute to the expectation
values of mesonic line operators. Correspondingly, their
dependence on the path is not topological and, as will
become clear, is directly related to the 1=N correction to the
closed Wilson loop expectation value. Mesonic line oper-
ators overlap with all local operators in the theory, includ-
ing the single-trace and the multitrace ones.
A generic mesonic operator would experience a RG flow

on the line. Here, we focus on the fixed points of that flow,
which are the conformal line operators, and study them
along arbitrary smooth paths. We classify them, as well as
their relevant deformations (when such exist), and specu-
late about the flows between them.
Since the Wilson line in CS theory is oriented, we have

two families of boundary operators, right (fundamental)
and left (antifundamental). Both sets are uniquely classified
by their conformal dimension and transverse spin. They can
be further divided into those that become SLð2;RÞ pri-
maries and descendants when the line is straight. For any of
the conformal line operators and on either the left or the
right boundary, we find that there are two towers of primary
operators. Operators in the same tower have the same twist.
They all have nonzero anomalous dimension and anoma-
lous transverse spin, equal to �λ=2. Correspondingly, if
one starts with a boundary operator of integer (half-integer)
spin at λ ¼ 0, one ends up with a boundary operator of half-
integer (integer) spin at jλj ¼ 1.
To determine the correlation functions and expectation

values of the line operators, we need to understand their
dependence on the shape of the path. This dependence is
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subject to the evolution equation. It is a loop equation of the
type that was first introduced for closed Wilson loops in
four-dimensional Yang-Mills theory as an alternative non-
perturbative approach to solving QCD, (see the review [32]
and references therein). Here, in CS-matter theory, the
equation is first order. It relates any smooth variation of a
(conformal) mesonic line operator to a factorized product
of two mesonic line operators, see Fig. 1 [33].
We show that the evolution equation, combined with the

spectrum of boundary operators, uniquely determines the
expectation value of any of the mesonic line operators. To
demonstrate this, we start with a straight line and deform it
smoothly and systematically, order by order in the relative
magnitude of the deformation, while imposing the above
properties. In particular, we bootstrap the (normalization
independent) two-point function of the displacement oper-
ator [34]. We find that it is given by

⟪OLjDiðxsÞDiðxtÞjOR⟫

⟪OLjOR⟫
¼ ΛðΔÞ

x4st

�
x10xst
x1sxt0

�
2Δ
; ð1Þ

with

ΛðΔÞ ¼ −
ð2Δ − 1Þð2Δ − 2Þð2Δ − 3Þ sinð2πΔÞ

2π
: ð2Þ

The double brackets in (1) denote expectation values in the
presence of the mesonic line operator lying along a straight
line stretching between x0 to x1. Here,OL=R are the left and
right boundary operators of minimal (and opposite) trans-
verse spin and Δ is their conformal dimension. The λ
dependence of Δ, given below, depends on which con-
formal line operator we consider and whether we use the
fermionic or the bosonic descriptions. We have also verified
(2) in perturbation theory to all loop orders [30].
We show that the conformal line operators of the bosonic

and fermionic theories satisfy the same evolution equation
and that their spectra of boundary operators are related
to each other through the map λf ¼ λb − signðkbÞ [7]. It
follows that their expectation values are related by the
same map.
Setup and overview.—The first hint for the existence of a

dynamical interplay between fermions and bosons in three
dimensions comes from the study of CS theory. This
topological gauge theory is governed by the action [35]

SCS ¼
ik
4π

Z
d3xϵμνρtr

�
Aμ∂νAρ −

2i
3
AμAνAρ

�
: ð3Þ

In this Letter, we work in the Euclidean signature and focus
on the ’t Hooft limit, in which the rank of the gauge group is
large [36]

N → ∞ with λ≡ N
k
∈ ½−1; 1� fixed: ð4Þ

The theory (3) enjoys a level-rank duality under which
the parameters in (4) transform as

½k; λ� ↔ ½−k; λ − signðkÞ�: ð5Þ

This duality interchanges the weak and strong coupling
limits.
In the pure CS theory, the only observables are Wilson

loops. When defined with framing regularization, they only
depend on the topology of the loops and the self-linking
number f. The latter counts the number of times the framing
vector n winds around the loop [37]. For example, the
expectation value of an unknotted loop is

hWf
unknoti ¼ eiπλf × k

sinðπλÞ
π

: ð6Þ

We can therefore think of the Wilson loop as being a
ribbon, parameterized by the framing vector. It is expected
that once we attach a Wilson line to an operator in the
fundamental representation, this dependence on the fram-
ing vector would lead to fractional spin and to statistics
ranging between a boson (fermion) at λ ¼ 0 and a fermion
(boson) at jλj ¼ 1. Here we will prove this expectation.
Concretely, we study CS theory coupled to fermions or

bosons in the fundamental representation. The action in
these two cases is given by [38]

SbosE ¼ SCS þ
Z

d3xðDμϕÞ†Dμϕþ λ6
N2

ðϕ†ϕÞ3; ð7Þ

SferE ¼ SCS þ
Z

d3xψ̄ · γμDμψ : ð8Þ

Both theories are conformal (for tuned λ6) and have high
spin currents that are conserved at leading order in the large
N limit (4). The level-rank duality (5) was conjectured to
extend to a duality between the theory of fermions (bosons)
and the Legendre transform of the theory of bosons
(fermions) with respect to the scalar current Jð0Þ [39,41].
The differences between these theories and their Legendre
transforms will not be relevant for our primary focus,
which is the planar expectation values of mesonic line
operators [43].

FIG. 1. The evolution equation (21) relates a small smooth
deformation of a conformal mesonic line operator to an integrated
product of two mesonic line operators.
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Without loss of generality, we assume that the level, and
correspondingly, the ’t Hooft coupling in the bosonic
theory is positive [44].
Mesonic line operators in the bosonic theory.—The most

familiar line operator along any smooth path C is a Wilson
line. However, on such a line in the bosonic theory, there
is a nonzero beta function for the coupling of the adjoint
operator ϕϕ†. At the fix points of the corresponding flow,
we find operators with the biscalar condensate,

Wα½C; n�≡
h
Pei

R
C
ðA·dxþiα2πλN ϕϕ†jdxjÞ

i
n
; ð9Þ

where α ¼ �1. In what follows, we show that the operator
with α ¼ 1 is stable. The other operator with α ¼ −1 has
one relevant deformation that, when turned on, generates
a flow that leads to the former [45]. In the next section,
we study the α ¼ 1 operators, and in the Appendix, we
generalize our considerations to the α ¼ −1 one. In the
Appendix section “Line operator with one degree of
freedom,” we consider a new conformal line operator with
one degree of freedom on the line that is constructed using
both of the α ¼ �1 operators.
The stable mesonic line operator: The mesonic line

operator with α ¼ 1 is defined by stretching W ≡Wα¼1

between a right (fundamental) boundary operator and a left
(antifundamental) boundary operator,

M ¼ OLWOR: ð10Þ

It depends on the shape of the path, the framing vector,
and the two boundary operators. In the planar limit, all
operators on the line factorize into a product of two
boundary operators Oinner ¼ OR ×OL.
To classify the boundary operators, it is sufficient to

consider the case of a straight line along the x3 direction.
An infinite straight line preserves an SLð2;RÞ ×Uð1Þ
subgroup of the three-dimensional conformal symmetry.
The boundary operators are uniquely characterized by two
numbers, their SLð2;RÞ conformal dimension Δ and their
Uð1Þ spin in the transverse plane to the line. For example,
at tree level, for the right operators,

Oðn;sÞ
R;tree ¼

1ffiffiffiffi
N

p ×

(
∂
n
x3R
∂
s
xþR
ϕ s ≥ 1

∂
n
x3R
∂
−s
x−R
ϕ s ≤ 0

; ð11Þ

and similarly for Oðn;sÞ
L;tree. Here, x

� ¼ ðx1 � ix2Þ= ffiffiffi
2

p
para-

metrize the transverse plane. The operators of minimal
twist, Oð0;sÞ, are all SLð2;RÞ primaries.
At tree level these boundary operators have transverse

spin s and dimension Δðn;sÞ
0 ¼ 1=2þ nþ jsj. However, at

loop level, their dimensions and spins receive quantum
corrections. We computed their conformal dimensions
and anomalous spin explicitly [30]. Working in light cone

gauge, we studied the expectation values of all the mesonic
line operators (10) along a straight line. It was shown that
terms in their perturbative expansions satisfy a recursion
relation, which can be solved to give simple expressions.
Resummation of these expressions yields an anomalous
dimension and anomalous spin equal to �λ=2, as well as
the two point function of the displacement operator in (2).
The set of operators with s ≥ 0 (s < 0) all have the same

anomalous dimension. They are related to each other by the
covariant path derivatives, denoted δxμR=L , as follows [48]:

OLWOð0;sþ1Þ
R ¼ δxþROLWOð0;sÞ

R ; s ≥ 1;

OLWOð0;−s−1Þ
R ¼ δx−ROLWOð0;−sÞ

R ; s ≥ 0; ð12Þ

and

Oð0;sþ1Þ
L WOR ¼ δxþLO

ð0;sÞ
L WOR; s ≥ 0;

Oð0;−s−1Þ
L WOR ¼ δx−LO

ð0;−sÞWOR; s ≥ 1: ð13Þ

Here, the use of equal signs instead of a proportionality
relation is a relative choice of normalization. At the bottom
of these four towers of primaries we have the boundary
operators

n
Oð0;0Þ

L ;Oð0;−1Þ
L

o
and

n
Oð0;0Þ

R ;Oð0;1Þ
R

o
: ð14Þ

Similarly, the descendants are obtained from the primaries
by acting with the SLð2;RÞ raising generator. Their form
depends on the conformal frame. Since we let the endpoints
vary and do not keep the line straight, we use a simpler
classification of the descendants by the number of longi-
tudinal path derivatives,

Oðnþ1;sÞ
L WOR ≡ δx3LO

ðn;sÞ
L WOR; ð15Þ

and similarly for the right operator.
The spin s of the boundary operators can be computed

explicitly [30] or alternatively, be determined from the
anomalous dimension as we now explain. First, we
notice that operators that are related to each other by a
path derivative, (12), (13), and (15), must have the same
anomalous spin. Second, we notice that the conformal
line operator W can be lifted into locally supersymmetric
line operators in the N ¼ 2 supersymmetric Chern-
Simons theory. Under this lift, the four operators (14) are
mapped into boundary operators in Bogomol’nyi–Prasad–
Sommerfield (BPS) supermultiplets [49]. It turns out that at
leading order in the large N limit, the expectation values of
the locally supersymmetric mesonic line operators in the
N ¼ 2 theory are the same as they are in the nonsupersym-
metric theory, (7) or (8). The BPS condition for either the left
or the right boundary operators leads to the relation
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Δðn;sÞ ¼ 1

2
þ nþ jsj: ð16Þ

This implies that the anomalous part of the transverse spin
equals the anomalous dimension that we have derived before
and is given by

sL ¼ sL þ λ=2; sR ¼ sR − λ=2; ð17Þ

where sL=R are the tree level spins.
This result confirms the expectation in which the framing

dependence of a closed Wilson loop in CS theory turns
bosons into fermions and vice versa.
The operator on the line with the minimal dimension is

Oð0;0Þ
L ×Oð0;0Þ

R . It has conformal dimension Δmin
inner ¼ 1þ λ.

Hence, the line operator (9) with α ¼ 1 does not have a
relevant deformation. As in (17), all results we find for the
left operators are related to those for the right ones by
parity, which flips the sign of the transverse spin.
The evolution equation: Next, we would like to under-

stand the dependence of the mesonic line operator on the
path. Under a small smooth deformation of the path
xð·Þ ↦ xð·Þ þ vð·Þ, the change in the line operator can
be expressed in terms of the displacement operatorDμðsÞ as

δW ¼
Z

dsj_xðsÞjvμðsÞP½DμðsÞW�; ð18Þ

where the deformation is parametrized such that vðsÞ is a
normal vector. We find that the displacement operator is
chiral, with its two components given by [57]

Dþ ¼ −4πλOð0;1Þ
R Oð0;0Þ

L

D− ¼ −4πλOð0;0Þ
R Oð0;−1Þ

L

for α ¼ 1; ð19Þ

with the understanding that the framing vector, being
continuous, is the same on the right and left. Note that
while the left and right boundary operators have nonzero
anomalous dimensions and anomalous spins, these exactly
cancel out in the combinations in (19).
This form of the displacement operator is derived

by computing the Schwinger-Dyson equation for the
line operator defined in (9), with no self-intersections.
Alternatively, we notice that D in (19) is the unique
operator on the line with exact dimension ΔðD�Þ ¼ 2
and transverse spin equal to one. We can therefore reverse
the logic and use (19) as the definition of the deformed
operator.
The factorized form of the displacement operator leads to

a closed equation for the mesonic line operators. We label
them using the shorthand notation

MðsL;sRÞ
st ½xð·Þ�≡Oð0;sLÞ

L Wst½xð·Þ�Oð0;sRÞ
R ; ð20Þ

where xð·Þ is a smooth path between xL ¼ xðsÞ and
xR ¼ xðtÞ. In this notation, the evolution equation takes
the form

δMðsL;sRÞ
10 ½xð·Þ� ¼ ½boundary terms�

− 4πλ

Z
1

0

dsj_xsj
h
vþs M

ðsL;1Þ
1s Mð0;sRÞ

t0 þ v−s M
ðsL;0Þ
1s Mð−1;sRÞ

t0

i
;

ð21Þ

where us ≡ uðsÞ. The boundary terms can be determined
by consistency of the equation, see the section “The line
bootstrap” and [31].
The boundary equation: Similar to the line evolution

equation, the boundary operators also satisfy a Schwinger-
Dyson type equation. It relates SLð2;RÞ primaries from the
same tower as

δxþROLWOð0;−s−1Þ
R ¼ βOLWOð2;−sÞ

R ; s ≥ 0;

δx−ROLWOð0;sþ1Þ
R ¼ β̄OLWOð2;sÞ

R ; s ≥ 1; ð22Þ

and similarly for the left operators. On the right-hand side
we have the unique boundary operator with the correct
dimension and transverse spin. In the section “The line
bootstrap” we bootstrap the proportionality coefficients to
be given by [58]

β ¼ β̄ ¼ −
1

2
: ð23Þ

Mesonic line operators in the fermionic theory.—In the
fermionic theory, the Wilson line operator that only couples
to the gauge field

W½xð·Þ� ¼ Pei
R

Aμ _xμds ð24Þ

is a conformal line operator. The corresponding mesonic
line operators take the form (10) with

Oðn;sÞ
R ¼ 1ffiffiffiffi

N
p ×

(
Dn

3D
jsj−1

2þ ψþðxRÞ s ≥ þ 1
2

Dn
3D

jsj−1
2− ψ−ðxRÞ s ≤ − 1

2

; ð25Þ

and similarly for the left boundary. Here, the tree level spin s
takes half integer values and Dμ is the covariant derivative.
We have repeated the explicit computation of the

anomalous dimensions, the anomalous spins, the lift to a
locally supersymmetric line operator in the N ¼ 2 theory,
as well as the analysis of the BPS boundary operators [30].
We find that under the duality map between the ’t Hooft
couplings in the fermionic and bosonic theories, λf ¼
λb − 1, the spectrum of boundary operators as well as their
transverse spins exactly match the ones we have obtained
for the α ¼ 1 operator in (16) and (17).
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The form of the evolution equation in the two theories
also matches. The only difference is in the coefficient,
being 4πλb in (21) and 4πλf in the fermionic theory. This
factor, however, depends on the normalization of the
mesonic line operators.
The bosonic operator with α ¼ −1 also has a dual

description in the fermionic theory. It is constructed in
the Appendix section “The condensed fermionic line
operator.”
The line bootstrap.—In this section, we explain how the

evolution equation and the spectrum of boundary operators
can be used to evaluate the expectation value of mesonic
line operators. Here, we summarize our results and explain
the main ideas that lead to them. For concreteness, we use
the labeling of the operators in the bosonic theory with
α ¼ 1. The construction, however, does not depend on this.
The expectation value of the mesonic line operators

along a straight line, Mðs;s0Þ ≡ hMðs;s0Þi, is fixed by
conformal symmetry to take the form [59]

Mðs;s0Þ ¼ csðλÞδs;−s0
4πjxL − xRj1þj2sþλj : ð26Þ

In our normalization of the boundary operators (12) and
(13), the normalization constants cs are not independent
[60]. Using the chiral form of the evolution equation (21)
and demanding that the expectation values are invariant
under constant translation in the transverse plane, we find
that

csþ1 ¼ −βðsþ 1þ λÞðsþ 2þ λÞcs; s ≥ 0;

c−s−1 ¼ −β̄ðsþ 1 − λÞðsþ 2 − λÞc−s; s ≥ 1; ð27Þ

where β and β̄ are defined in (22). Demanding that the
expectation values are also invariant under rigid rotations
fixes them to be given by (23).
So far, the results (27) and (23) were obtained using only

deformations for which the contribution of the displace-
ment operator (19) drops out. To proceed, we must include
deformations to which they do contribute. As we next
describe, this is done using a form of conformal perturba-
tion theory on the straight line.
We deform away from the straight line as xð·Þ ↦

xð·Þ þ vð·Þ. At any order in v, we add all operators of
the corresponding dimension and spin to the local action of
the straight line and its boundaries. This includes scheme
dependent counterterms that cancel power divergences
arising from the integration of the displacement operator.
We then fix their coefficients systematically, imposing the
correct spectrum of boundary operators, the conformal
symmetry of the line, and the evolution equation.
Demanding that the straight line transforms covariantly

under conformal transformations is sufficient to fix all the
coefficients at order v, but not at order v2. We then demand

in addition that if we first preform an arbitrary smooth
deformation, and, on top of that, we apply a conformal
transformation then the deformed line transforms cova-
riantly. These conditions turn out to fix all the second-order
coefficients. We then evaluate the two-point function of the
displacement operator and find that it is given by (2) with
Δ ¼ ð1þ λbÞ=2. The analysis in the fermionic theory is
manifestly identical, with the only difference being in the
normalization convention.
Going to higher orders in the deformation is tedious but

systematic. It can be used to unambiguously evaluate the
expectation value order by order in the deformation from
the straight line. It follows that the expectation values of the
line operators in the bosonic and fermionic theories are
related to each other by the duality map λf ¼ λb − signðkbÞ.
This is because their spectrum of boundary operators are
related to each other by this map, and the forms of their
evolution equations are the same.
Another conclusion from the derivation above is a match

of the 1=N corrections to the expectation values of closed
line operators between the bosonic and fermionic theories.
That is a direct outcome of the fact that their deformations
are governed by the same local displacement operators. In
other words, smooth deformations of a closed loop (and
circular in particular) are equal to 1=N times factorized
expectation values of mesonic line operators.
Discussion.—In this Letter, we have classified the

conformal line operators of large N Chern-Simons theory
coupled to fermions or bosons in the fundamental repre-
sentation. We have computed the spectrum and transverse
spins of their boundary operators at finite ’t Hooft coupling.
In particular, their displacement operators factorize into a
product of fundamental and antifundamental boundary
operators. Together, the spectrum and the form of the
displacement operator were shown to fix the expectation
value of the mesonic line operators uniquely. We have
found that the line operators of the theory coupled to
bosons and the ones of the theory coupled to fermions are
related to each other through the strong-weak duality
map λf ¼ λb − signðkbÞ.
To complete the derivation of the duality at the planar

level, one should also match the connected piece of the
correlation functions between mesonic line operators. The
path dependence of this piece is controlled by the expect-
ation values studied here. We expect that the additional
information about the known spectrum of single trace
operators will be sufficient to determine these connected
correlators uniquely. There are two future directions that
we hope to report on in the near future. First, it would
be interesting to find an explicit finite coupling solution
for the expectation value of the mesonic line operators.
Second, there is much evidence that the bosonic and
fermionic vector models are holographically dual to parity
breaking versions of Vasiliev’s higher-spin theory [61],
see Refs. [7,13,42,62–65]. One of our main motivations for
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this Letter is to better understand and, optimistically, even
to derive this duality.
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Appendix: The unstable mesonic line operator.—By
repeating the resummation of the perturbation theory for
the operator (9) with α ¼ −1, we find the same dimensions
and spins as for the α ¼ 1 boundary operators with the
only exception been that for s ¼ 0

Δ̃ðn;0Þ
L=R ðλÞ ¼ Δðn;0Þ

L=R ð−λÞ; ðA1Þ

where the tilde is added to distinguish from the α ¼ 1 line.
The relation between the anomalous dimension and the

anomalous spin is also confirmed by an explicit compu-
tation and by lifting the line operator (9) with α ¼ −1 to a
different supersymmetric line operator in theN ¼ 2 theory
and repeating the analysis of its boundary operators.
As for the α ¼ 1 case, here there are also four towers

of SLð2;RÞ primaries that are related by path derivatives.
At the bottom we have the operatorsn

Õð0;0Þ
L ; Õð0;1Þ

L

o
and

n
Õð0;0Þ

R ; Õð0;−1Þ
R

o
: ðA2Þ

The operator on the line with the minimal dimension,

Õð0;0Þ
L × Õð0;0Þ

R , now has conformal dimension Δ̃min
inner¼1−λ.

It is the unique relevant deformation of the α ¼ −1 line
operator. In perturbation theory, turning this deformation
on is equivalent to changing the coefficient in front of the
biscalar condensate in (9). Doing so with a positive
coefficient generates a flow between the α ¼ −1 and the
α ¼ 1 line operators. Deforming by it with the opposite
sign generates a flow to an (almost) trivial line. The dual
picture of this flow is discussed in the Appendix section
“The condensed fermionic line operator.”
Finally, the displacement operator now takes the form

D̃þ ¼ þ4πλÕð0;0Þ
R Õð0;1Þ

L

D̃− ¼ þ4πλÕð0;−1Þ
R Õð0;0Þ

L

for α ¼ −1; ðA3Þ

and the evolution equation is modified accordingly.
Line operator with one degree of freedom: In this

Appendix, we construct a conformal line operator with a
worldline fermion. Equivalently, we add a two-dimensional
Hilbert space on the line that carries the transverse spin 1=2
and is coupled nontrivially to the CS-matter fields.

The line operators with α ¼ �1 (9) have boundary
operators with the same anomalous spins and the same
absolute value of anomalous dimensions. As a result, they
can be combined to generate a new conformal line operator.
It is defined as

W½C; n�≡
h
Pei

R
C
dxμðAμIþi2πλN ϕ†ϕσμÞ

i
n
; ðA4Þ

where we have introduced a two-dimensional spin 1=2
space on the line. At the upper component (spin þ1=2) we
have the α ¼ 1 connection and the α ¼ −1 at the lower
component (spin −1=2). For a straight line, this operator
simply factorized into the α ¼ 1 and α ¼ −1 line operators.
However, as we deform away from the straight line, the
coupling dx · σ in (A4) couples the two nontrivially.
Correspondingly, the displacement operator contains an
off-diagonal component

D− ¼ 4πλ

 
−Oð0;0Þ

R Oð0;−1Þ
L

1ffiffi
2

p δ3ðOð0;0Þ
R Õð0;0Þ

L Þ
0 Õð0;−1Þ

R Õð0;0Þ
L

!
;

Dþ ¼ 4πλ

 
−Oð0;1Þ

R Oð0;0Þ
L 0

1ffiffi
2

p δ3ðÕð0;0Þ
R Oð0;0Þ

L Þ Õð0;0Þ
R Õð0;1Þ

L

!
: ðA5Þ

On the diagonal we see the displacement operators (19) and
(A3). On the off-diagonal we have the longitudinal deriva-

tive of the operators Oð0;0Þ
R Õð0;0Þ

L and Õð0;0Þ
R Oð0;0Þ

L , respec-
tively. For these, the cancellation of the anomalous
dimensions between the left and right operators comes
about due to the flip in the sign of α, Δð0;0Þ ¼ ð1þ λÞ=2,
Δ̃ð0;0Þ ¼ ð1 − λÞ=2. Moreover, their �1 spin now arises
due to the flip in the components of the two-dimensional
space on the line. The displacement operator (A5) can
also be shown to factorize into left times right (two
components) boundary operators and will be considered
in more detail in [31].
The condensed fermionic line operator: The bosonic

theory also has the conformal line operator with α ¼ −1
and we can ask what is its dual fermionic description? A
hint comes from looking at the spectrum of boundary
operator at λb ¼ 1. According to α ¼ −1 spectrum and
(17), in the free fermionic theory, we expect to have right
and left boundary operators of dimension zero and spins
sL ¼ −sR ¼ 1

2
, respectively. Another clue comes from the

form of the displacement operator (A3) that factorizes at
tree level to a dimension zero times a dimension two
boundary operator.
The corresponding conformal line operator is somewhat

unusual, having integrated fundamental fields in the expo-
nent that interpolate between regions of the line with and
without a Wilson line, see Fig. 2. To write it in a compact
form, we introduce a two-dimensional space on the line
[66]. Its upper (lower) component stands for the regions
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with (without) a Wilson line. Using this convention, the
mesonic line operator takes the form

M̃ð1
2
;−1

2
Þ½xð·Þ� ¼

h
Pei

R
Ãμ _xμds

i
22
; ðA6Þ

where ÃðsÞ is the 2 × 2 matrix

Ãμ ≡
� Aμ iP−

μ ψ

−i 4πk ψ̄P
−
μ

4π
k

1
ϵ γμ þ Γμ

�
; ðA7Þ

and in (A6) we have taken the 2-2 component of the matrix.
Here,

P�
μ ðsÞ≡ 1

2
ðeμðsÞ � γμÞ; with e ¼ _x=j_xj; ðA8Þ

is a projector to the spinor � (∓) component on the right
(left). The term proportional to 1=ϵ is a counterterm for
subtracting a power divergence, with ϵ being a point
splitting regulator on the line. Finally, Γμ _xμ is a spinor
connection that is responsible for a topological transporting
of the � spinorial component along the empty regions. It is
given by,

Γμ _xμ ¼ −
i
2
ϵμνρðeμ _eνγρ − _nμnνeρe · γÞ: ðA9Þ

The four towers of boundary operators are obtained by
taking path derivatives of the four operators

n
Õ

ð0;1
2
Þ

L ; Õ
ð0;3

2
Þ

L

o
and

n
Õ

ð0;−3
2
Þ

R ; Õ
ð0;−1

2
Þ

R

o
; ðA10Þ

with M̃ðð3=2Þ;−ð3=2ÞÞ defined as

M̃ð3
2
;−3

2
Þ½xð·Þ� ¼ Õ

ð0;3
2
Þ

L

h
Pei

R
Ãμ _xμds

i
11
Õ

ð0;−3
2
Þ

R ; ðA11Þ

and

Õ
ð0;3

2
Þ

L ¼ Dþðψ̄Pþ
ν eνLÞ=

ffiffiffiffi
N

p
;

Õ
ð0;−3

2
Þ

R ¼ D−ðeρRP−
ρ ψÞ=

ffiffiffiffi
N

p
: ðA12Þ

We have repeated the derivation of the boundary dimen-
sions and the evolution equation for this condensed fermion
operator. The results match those of the α ¼ −1 operator,
with the replacement of λb → 1þ λf in the spectrum, and
λb → λf in the displacement operator, (A3). The operator
in (A6) also has a lift into a locally supersymmetric line
operator in the N ¼ 2 theory. The corresponding circular
1=2 BPS operator was considered in the context of quiver
gauge theories, with the fermion in the bifundamental
representation [67–69]. The lift of the operator in (A6) is
obtained by taking the rank of one of the gauge groups
to one. This limit was discussed previously in [70]. The
resulting anomalous spin is given by (17), with the tree
level spin being shifted by one half with respect to the
bosonic theory. The operators (A10) match with the ones in
(A2) and the rest are related to these by path derivatives.
Nonunitary conformal line operators: The conformal

line operator defined in (A6) and (A7) has the components
of the fermion ψ− and ψ̄þ condensed in the exponent. We
can instead use the components ψþ and ψ̄− as

Ǎμ ≡
� Aμ iPþ

μ ψ

−i 4πk ψ̄P
−
μ

4π
k

1
ϵ γμ þ Γμ

�
; ðA13Þ

The resulting line operator is also conformal. The spectrum
of boundary operators is related to the ones of the line
operator (A7) by flipping the tree level spins as well as the
anomalous dimensions

Δ̌ðn;sÞ
R ¼

(
j 1
2
− sj þ nþ λ=2 s ≤ 1

2

j 1
2
þ sj þ n − λ=2 s ≥ 3

2

; ðA14Þ

and

Δ̌ðn;sÞ
L ¼

(
j 1
2
þ sj þ nþ λ=2 s ≥ − 1

2

j 1
2
− sj þ n − λ=2 s ≤ − 3

2

: ðA15Þ

The anomalous spin is unchanged and is given by (17). At
the bottom of these four towers we now have the operators

n
Ǒ

ð0;−1
2
Þ

L ; Ǒ
ð0;−3

2
Þ

L

o
and

n
Ǒ

ð0;3
2
Þ

R ; Ǒ
ð0;1

2
Þ

R

o
: ðA16Þ

The corresponding displacement operator is

Ďþ ¼ −4πλǑð0;3
2
Þ

R Ǒ
ð0;−1

2
Þ

L ; Ď− ¼ −4πλǑð0;1
2
Þ

R Ǒ
ð0;−3

2
Þ

L :

ðA17Þ

If we quantize the theory radially in the presence of a
straight conformal line operator, then reflection positivity

FIG. 2. The condensed fermionic line operator is defined
perturbatively by integrating fundamental and antifundamental
fermions along the path, (A7). Neighboring ordered pairs of
fundamental and an antifundamental are connected by Wilson
lines. In between these pairs we have a topological transport of
the spin component (A9). We call these segments “empty”
because they do not have fields inserted in them.
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restricts the dimensions of boundary operators to be

positive [71]. The dimensions of the operators Ǒð0;−ð1=2ÞÞ
L

and Ǒð0;ð1=2ÞÞ
R are, however, negative, (given by λ=2 of the

fermionic theory). This is because conjugation in radial
quantization relate ψ− to ψ̄þ and ψþ to −ψ̄−. As a result,
the line operator with (A7) is unitary while the one with
(A13) is not.

*Corresponding author.
zdlzdlzdl@gmail.com

[1] P.-S. Hsin and N. Seiberg, Level/rank duality and
Chern-Simons-matter theories, J. High Energy Phys. 09
(2016) 095.

[2] S. G. Naculich, H. A. Riggs, and H. J. Schnitzer, Group
level duality in WZW models and Chern-Simons theory,
Phys. Lett. B 246, 417 (1990).

[3] E. J. Mlawer, S. G. Naculich, H. A. Riggs, and H. J.
Schnitzer, Group level duality of WZW fusion coefficients
and Chern-Simons link observables, Nucl. Phys. B352, 863
(1991).

[4] M. Camperi, F. Levstein, and G. Zemba, The large N limit
of Chern-Simons gauge theory, Phys. Lett. B 247, 549
(1990).

[5] J. Maldacena and A. Zhiboedov, Constraining conformal
field theories with a higher spin symmetry, J. Phys. A 46,
214011 (2013).

[6] J. Maldacena and A. Zhiboedov, Constraining conformal
field theories with a slightly broken higher spin symmetry,
Classical Quantum Gravity 30, 104003 (2013).

[7] O. Aharony, G. Gur-Ari, and R. Yacoby, Correlation
functions of large N Chern-Simons-matter theories and
bosonization in three dimensions, J. High Energy Phys.
12 (2012) 028.

[8] G. Gur-Ari and R. Yacoby, Correlators of large N fermionic
Chern-Simons vector models, J. High Energy Phys. 02
(2013) 150.

[9] A. Bedhotiya and S. Prakash, A test of bosonization at
the level of four-point functions in Chern-Simons vector
models, J. High Energy Phys. 12 (2015) 032.

[10] S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash, and E.
Skvortsov, On the higher-spin spectrum in large N Chern-
Simons vector models, J. High Energy Phys. 01 (2017) 058.

[11] O. Aharony, Baryons, monopoles and dualities in
Chern-Simons-matter theories, J. High Energy Phys. 02
(2016) 093.

[12] D. Radivcević, Disorder operators in Chern-Simons-
fermion theories, J. High Energy Phys. 03 (2016) 131.

[13] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R.
Wadia, and X. Yin, Chern-Simons theory with vector
fermion matter, Eur. Phys. J. C 72, 2112 (2012).

[14] S. Jain, S. P. Trivedi, S. R. Wadia, and S. Yokoyama,
Supersymmetric Chern-Simons theories with vector matter,
J. High Energy Phys. 10 (2012) 194.

[15] O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena, and R.
Yacoby, The thermal free energy in large N Chern-Simons-
matter theories, J. High Energy Phys. 03 (2013) 121.

[16] S. Jain, S. Minwalla, T. Sharma, T. Takimi, S. R. Wadia, and
S. Yokoyama, Phases of large N vector Chern-Simons
theories on S2 × S1, J. High Energy Phys. 09 (2013) 009.

[17] T. Takimi, Duality and higher temperature phases of large N
Chern-Simons matter theories on S2xS1, J. High Energy
Phys. 07 (2013) 177.

[18] S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S. R. Wadia,
and S. Yokoyama, Unitarity, crossing symmetry and
duality of the S-matrix in large N Chern-Simons theories
with fundamental matter, J. High Energy Phys. 04
(2015) 129.

[19] K. Inbasekar, S. Jain, S. Mazumdar, S. Minwalla, V. Umesh,
and S. Yokoyama, Unitarity, crossing symmetry and duality
in the scattering of N ¼ 1 susy matter Chern-Simons
theories, J. High Energy Phys. 10 (2015) 176.

[20] S. Yokoyama, Scattering amplitude and bosonization dua-
lity in general Chern-Simons vector models, J. High Energy
Phys. 09 (2016) 105.

[21] A. Giveon and D. Kutasov, Seiberg duality in Chern-Simons
theory, Nucl. Phys. B812, 1 (2009).

[22] F. Benini, C. Closset, and S. Cremonesi, Comments
on 3d Seiberg-like dualities, J. High Energy Phys. 10
(2011) 075.

[23] G. Gur-Ari and R. Yacoby, Three dimensional bosonization
from supersymmetry, J. High Energy Phys. 11 (2015) 013.

[24] For a complete list of the dualities, see e.g., Refs. [1,11,25–29].
In this letter, we shall restrict to the SUðNÞ=UðNÞ version.

[25] O. Aharony, F. Benini, P.-S. Hsin, and N. Seiberg, Chern-
Simons-matter dualities with SO and USp gauge groups,
J. High Energy Phys. 02 (2017) 072.

[26] Z. Komargodski and N. Seiberg, A symmetry breaking
scenario for QCD3, J. High Energy Phys. 01 (2018) 109.

[27] N. Seiberg, T. Senthil, C. Wang, and E. Witten, A duality
web in 2þ 1 dimensions and condensed matter physics,
Ann. Phys. (Amsterdam) 374, 395 (2016).

[28] A. Karch and D. Tong, Particle-Vortex Duality from 3D
Bosonization, Phys. Rev. X 6, 031043 (2016).

[29] J. Murugan and H. Nastase, Particle-vortex duality in
topological insulators and superconductors, J. High Energy
Phys. 05 (2017) 159.

[30] B. Gabai, A. Sever, and D.-l. Zhong, Line operators in
Chern-Simons-matter theories and bosonization in three
dimensions II—Perturbative analysis and all-loop resuma-
tion (to be published).

[31] B. Gabai, A. Sever, and D.-l. Zhong, Line operators in
Chern-Simons-Matter theories and bosonization in three
dimensions III—The line bootstrap (to be published).

[32] A. A. Migdal, Loop equations and 1=N expansion, Phys.
Rep. 102, 199 (1983).

[33] Stated differently, each of the conformal line operators has a
unique operator on the line of dimension two and transverse
spin one. These adjoint displacement operators factorize
into a product of left and right boundary operators. These
two boundary operators have nontrivial, but opposite,
anomalous dimensions and anomalous spin.

[34] The displacement operator displaces the contour in an
orthogonal direction. It is defined in equation (18).

[35] Here, Aμ ¼ AI
μTI , with TI generators of the gauge group in

the fundamental representation, with trðTITJÞ ¼ 1
2
δIJ , and

ϵ123 ¼ 1 is the antisymmetric tensor.

PHYSICAL REVIEW LETTERS 129, 121604 (2022)

121604-8

https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1016/0370-2693(90)90623-E
https://doi.org/10.1016/0550-3213(91)90110-J
https://doi.org/10.1016/0550-3213(91)90110-J
https://doi.org/10.1016/0370-2693(90)91899-M
https://doi.org/10.1016/0370-2693(90)91899-M
https://doi.org/10.1088/1751-8113/46/21/214011
https://doi.org/10.1088/1751-8113/46/21/214011
https://doi.org/10.1088/0264-9381/30/10/104003
https://doi.org/10.1007/JHEP12(2012)028
https://doi.org/10.1007/JHEP12(2012)028
https://doi.org/10.1007/JHEP02(2013)150
https://doi.org/10.1007/JHEP02(2013)150
https://doi.org/10.1007/JHEP12(2015)032
https://doi.org/10.1007/JHEP01(2017)058
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP03(2016)131
https://doi.org/10.1140/epjc/s10052-012-2112-0
https://doi.org/10.1007/JHEP10(2012)194
https://doi.org/10.1007/JHEP03(2013)121
https://doi.org/10.1007/JHEP09(2013)009
https://doi.org/10.1007/JHEP07(2013)177
https://doi.org/10.1007/JHEP07(2013)177
https://doi.org/10.1007/JHEP04(2015)129
https://doi.org/10.1007/JHEP04(2015)129
https://doi.org/10.1007/JHEP10(2015)176
https://doi.org/10.1007/JHEP09(2016)105
https://doi.org/10.1007/JHEP09(2016)105
https://doi.org/10.1016/j.nuclphysb.2008.09.045
https://doi.org/10.1007/JHEP10(2011)075
https://doi.org/10.1007/JHEP10(2011)075
https://doi.org/10.1007/JHEP11(2015)013
https://doi.org/10.1007/JHEP02(2017)072
https://doi.org/10.1007/JHEP01(2018)109
https://doi.org/10.1016/j.aop.2016.08.007
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1007/JHEP05(2017)159
https://doi.org/10.1007/JHEP05(2017)159
https://doi.org/10.1016/0370-1573(83)90076-5
https://doi.org/10.1016/0370-1573(83)90076-5


[36] Here we have assumed the convention where k is the
renormalized level that arises, for instance, when the theory
is regularized by dimensional reduction.

[37] E. Witten, Quantum field theory and the Jones polynomial,
Commun. Math. Phys. 121, 351 (1989).

[38] Here, we use the convention where ψ̄a ¼ ψ�
a, γμ ¼ σμ,

Dμϕ
i ¼ ∂μϕ

i − iAI
μðTIÞijϕj, Dμψ

i
a ¼ ∂μψ

i
a − iAI

μðTIÞijψ j
a.

[39] Legendre transform here represents a double trace defor-
mation triggered by ðJð0ÞÞ2, where Jð0Þ is given by ϕ†

iϕ
i in

the bosonic case, and by ψ̄ iψ
i in the fermionic case. Details

can be found in e.g., [40].
[40] S. Giombi, Higher spin—CFT duality, in Theoretical

Advanced Study Institute in Elementary Particle Physics:
New Frontiers in Fields and Strings (World Scientific,
Singapore, 2017), pp. 137–214.

[41] The boson theory (7) also has a triple-trace ðJð0ÞÞ3=N2 term
in the action. At order 1=N the coupling of this operator has
to be tuned to the fix-point, see Refs. [8,42] for details.

[42] O. Aharony, G. Gur-Ari, and R. Yacoby, d ¼ 3 bosonic
vector models coupled to Chern-Simons gauge theories,
J. High Energy Phys. 03 (2012) 037.

[43] It enters the bootstrap of the line operators’ correlators,
which is briefly discussed in the section “Discussion,”
through the dimension of Jð0Þ.

[44] Hence, the dual level and ’t Hooft coupling of the fermionic
theory are negative. The other sign is related to this one by a
parity transformation, k ↔ −k, λ ↔ −λ.

[45] A similar picture was found before for line operators with
large quantum numbers in free scalar triplet and in theWilson-
Fisher Oð3Þ model [46]. It would be interesting to check that
the flow satisfies the general constraints derived in [47].

[46] G. Cuomo, Z. Komargodski, M. Mezei, and A. Raviv-
Moshe, Spin impurities, Wilson lines and semiclassics,
J. High Energy Phys. 06 (2022) 112.

[47] G. Cuomo, Z. Komargodski, and A. Raviv-Moshe, Re-
normalization Group Flows on Line Defects, Phys. Rev.
Lett. 128, 021603 (2022).

[48] The path derivatives pick the operator that multiplies the
boundary value of a smooth deformation parameter, with
the framing vector kept constant and perpendicular to the
direction of the deformation.

[49] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.121604 for details,
which includes Refs. [50–56].

[50] B. M. Zupnik and D. G. Pak, Superfield formulation of the
simplest three-dimensional gauge theories and conformal
supergravities, Theor. Math. Phys. 77, 1070 (1988).

[51] E. A. Ivanov, Chern-Simons matter systems with manifest
N ¼ 2 supersymmetry, Phys. Lett. B 268, 203 (1991).

[52] L. V. Avdeev, G. V. Grigorev, and D. I. Kazakov, Renorma-
lizations in Abelian Chern-Simons field theories with
matter, Nucl. Phys. B382, 561 (1992).

[53] L. V. Avdeev, D. I. Kazakov, and I. N. Kondrashuk, Re-
normalizations in supersymmetric and nonsupersymmetric
nonAbelian Chern-Simons field theories with matter, Nucl.
Phys. B391, 333 (1993).

[54] A. Kapustin, B. Willett, and I. Yaakov, Exact results for
Wilson loops in superconformal Chern-Simons theories
with matter, J. High Energy Phys. 03 (2010) 089.

[55] N. Hama, K. Hosomichi, and S. Lee, SUSY gauge theories
on squashed three-spheres, J. High Energy Phys. 05
(2011) 014.

[56] D. Gaiotto and X. Yin, Notes on superconformal Chern-
Simons-matter theories, J. High Energy Phys. 08 (2007)
056.

[57] The chirality of the displacement operator follows from the
fact that the Chern-Simons term breaks parity.

[58] These values are also derived in [30] by a careful analysis of
the loop corrections to the boundary equation of motion
with point splitting regularization.

[59] We have computed it for arbitrary shape of the path at one-
loop order, and details will be reported in [30].

[60] If the framing is nontrivial, there is an additional overall
phase factor of exp ðiλðϕL − ϕRÞ=2Þ, with ϕL=R been the
total rotation angles in the plus direction at the left and right
endpoints, with respect to the trivial framing.

[61] M. A. Vasiliev, More on equations of motion for interacting
massless fields of all spins in (3þ 1)-dimensions, Phys.
Lett. B 285, 225 (1992).

[62] I. R. Klebanov and A.M. Polyakov, AdS dual of the critical
O(N) vector model, Phys. Lett. B 550, 213 (2002).

[63] E. Sezgin and P. Sundell, Holography in 4D (super) higher
spin theories and a test via cubic scalar couplings, J. High
Energy Phys. 07 (2005) 044.

[64] C.-M. Chang, S. Minwalla, T. Sharma, and X. Yin, ABJ
triality: From higher spin fields to strings, J. Phys. A 46,
214009 (2013).

[65] R. G. Leigh and A. C. Petkou, Holography of the N ¼ 1
higher spin theory on AdS(4), J. High Energy Phys. 06
(2003) 011.

[66] It can also be realized using a worldline fermion.
[67] N. Drukker and D. Trancanelli, A Supermatrix model for

N ¼ 6 super Chern-Simons-matter theory, J. High Energy
Phys. 02 (2010) 058.

[68] H. Ouyang, J.-B. Wu, and J.-j. Zhang, Novel BPS Wilson
loops in three-dimensional quiver Chern–Simons-matter
theories, Phys. Lett. B 753, 215 (2016).

[69] K.-M. Lee and S. Lee, 1=2-BPS Wilson loops and vortices
in ABJM model, J. High Energy Phys. 09 (2010) 004.

[70] N. Drukker, BPS Wilson loops and quiver varieties, J. Phys.
A 53, 385402 (2020).

[71] It also restrict the two-point function of the displacement
operator to be positive. This is indeed the case as can
seen in (2).

PHYSICAL REVIEW LETTERS 129, 121604 (2022)

121604-9

https://doi.org/10.1007/BF01217730
https://doi.org/10.1007/JHEP03(2012)037
https://doi.org/10.1007/JHEP06(2022)112
https://doi.org/10.1103/PhysRevLett.128.021603
https://doi.org/10.1103/PhysRevLett.128.021603
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.121604
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.121604
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.121604
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.121604
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.121604
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.121604
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.121604
https://doi.org/10.1007/BF01028682
https://doi.org/10.1016/0370-2693(91)90804-Y
https://doi.org/10.1016/0550-3213(92)90659-Y
https://doi.org/10.1016/0550-3213(93)90151-E
https://doi.org/10.1016/0550-3213(93)90151-E
https://doi.org/10.1007/JHEP03(2010)089
https://doi.org/10.1007/JHEP05(2011)014
https://doi.org/10.1007/JHEP05(2011)014
https://doi.org/10.1088/1126-6708/2007/08/056
https://doi.org/10.1088/1126-6708/2007/08/056
https://doi.org/10.1016/0370-2693(92)91457-K
https://doi.org/10.1016/0370-2693(92)91457-K
https://doi.org/10.1016/S0370-2693(02)02980-5
https://doi.org/10.1088/1126-6708/2005/07/044
https://doi.org/10.1088/1126-6708/2005/07/044
https://doi.org/10.1088/1751-8113/46/21/214009
https://doi.org/10.1088/1751-8113/46/21/214009
https://doi.org/10.1088/1126-6708/2003/06/011
https://doi.org/10.1088/1126-6708/2003/06/011
https://doi.org/10.1007/JHEP02(2010)058
https://doi.org/10.1007/JHEP02(2010)058
https://doi.org/10.1016/j.physletb.2015.12.021
https://doi.org/10.1007/JHEP09(2010)004
https://doi.org/10.1088/1751-8121/aba5bd
https://doi.org/10.1088/1751-8121/aba5bd

