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Light probes interacting with heavy bound states such as black holes give rise to observables containing
valuable dynamical information. Recently, a family of black hole microstates was shown to admit an exact
string worldsheet description. We construct the physical vertex operators of these models, and compute an
extensive set of novel heavy-light correlators. We then obtain the first match between worldsheet
correlators in black hole microstates and the holographically dual conformal field theory. We conjecture a
closed formula for correlators with an arbitrary number of light insertions. As an application, we compute
the analogue of the Hawking radiation rate for these microstates.
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Introduction.—In recent years we have seen ground-
breaking observations of black holes, as well as a sharp-
ening of problems that arise in their quantum description, in
particular the information paradox [1,2]. There are strong
reasons to expect that black hole evaporation is unitary.
However, a microscopic description of the quantum physics
of general black holes, including singularity resolution and
evaporation, is presently out of reach.
In string theory, black holes are bound states of strings

and branes with an exponential number of internal micro-
states. Large classes of such microstates are well described
by smooth horizonless supergravity solutions [3–6], whose
intricate horizon-scale structure appears black-hole-like
for most purposes, while nevertheless allowing for poten-
tially observable signatures [7,8]. Holography provides
strong evidence for the microscopic interpretation of these
solutions [9–12].
Studying how light probes interact with a heavy back-

ground such as a black hole microstate yields valuable
dynamical information, for instance about the unitary
microscopic process underlying black hole evaporation.
In holographic models, such processes can be understood
in terms of correlators in the dual field theory involving two
heavy operators and a number of light insertions, often
referred to as heavy-light (HL) correlators [13,14].

While supergravity solutions are very useful descrip-
tions, there is a wealth of string-theoretic physics that they
do not capture. There are growing expectations that such
stringy physics will be necessary to obtain a complete
description of black hole microstructure. Recently, a novel
set of worldsheet models describing black hole microstates
has been constructed and studied [15–19]. A subset of these
models are exactly solvable gauged Wess-Zumino-Witten
(WZW) models. They provide a rare and valuable window
into stringy physics in highly excited backgrounds such as
black hole microstates. In this Letter we construct the
physical vertex operators of these models, and initiate the
systematic study of their correlation functions. These
describe the dynamics of perturbative strings in the given
heavy backgrounds, and are exact in α0. The main building
blocks are given by correlators based on SLð2;RÞ and
SU(2). The former have a complicated structure due to
spectral flow [20–22], on which progress has been made
recently [23,24].
There are two instances of holography relevant to the

models we study. On the gravity side, in the UV we have
linear-dilaton NS5-brane asymptotics, and the dual theory
is little string theory (LST) [25,26]. Thus correlators of the
vertex operators we construct holographically define LST
amplitudes. In the IR, we have an AdS3=CFT2 duality. We
will refer to the holographic CFT2 as the HCFT.
Because of the gauging, the identification of the coor-

dinates on the boundary of AdS3 is subtle. By carefully
making this identification, we derive all heavy-light-light-
heavy (HLLH) correlators where the light probes are
massless, in the AdS3 limit. We find exact and highly
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nontrivial agreement with the small subset of known
examples [13,27,28]. We further identify the precise
relation with the HCFT at the symmetric orbifold locus.
Moreover, we conjecture a closed-form expression for
all higher-point HL correlators on these backgrounds,
Eq. (15) below.
As an application, we compute the emission rate for the

unitary analogue of Hawking radiation from these back-
grounds. Further applications of our results include study-
ing the Penrose process [29] and scrambling of infalling
perturbations [30]. Our results also lay foundations for
analyzing the stringy phenomenology of black hole micro-
states, which will be an important endeavour in the
coming years.
Worldsheet models for black hole microstates.—We

work in type IIB string theory on R4;1 × S1 × T 4 with a
microscopic T 4, and a macroscopic S1 with asymptotic
radius Ry. We consider n5 NS5-branes wrapped on
T4 × S1, n1 F1-strings wound on S1, and np units of
momentum charge along S1. We work in the NS5-brane
decoupling limit, in which the string coupling gs and the
radial coordinate r scale to zero with gs=r fixed; we choose
units in which α0 ¼ 1.
We consider a set of horizonless supergravity solutions

collectively known as spectral flowed supertubes. The non-
supersymmetric solutions in this family are known as the
JMaRT solutions [31], and the family also contains super-
symmetric [32–34] and/or two-charge solutions. These
solutions can be recast in a simple form in terms of three
integers, m, n, k, associated with the angular momenta and
the orbifold structure near r ¼ 0, plus Ry [19].
Flowing further to the IR, one can take the AdS3

decoupling limit, after which the geometries are related
by a large gauge transformation to global ðAdS3 × S3Þ=
Zk × T 4. The holographically dual CFT states are heavy in
the sense that their conformal dimensions scale linearly
with the central charge. At the locus in moduli space at
which the HCFT is realized as the symmetric product
orbifold SymNðT 4Þ with N ¼ n1n5, the states dual to the
JMaRT solutions are related to the k-twisted vacuum state
by fractional spectral flow with parameters ðm� nÞ=k [35].
An exact worldsheet description of these configurations

was constructed in [16]. The target space is the coset

SLð2;RÞ × SUð2Þ ×Rt × Uð1Þy
R × Uð1Þ × T 4; ð1Þ

where the gauging involves two null chiral currents,

J ¼ J3 þ sþK3 þ iμ∂tþ ikþ∂y;

J̄ ¼ J̄3 þ s−K̄3 þ iμ∂̄tþ ik−∂̄y;

s� ¼ n�m; k� ¼∓ kRy þ n5mn=ðkRyÞ; ð2Þ

where J3 and K3 are the Cartan generators of SLð2;RÞ and
SU(2), respectively, while n5ð1 − s2�Þ þ μ2 − k2� ¼ 0 and
s� ∈ 2Zþ 1. Supersymmetry is preserved in the left
and/or right sector when js�j ¼ jk�=μj ¼ 1. The gauging
effectively generates a JJ̄ marginal deformation on the
worldsheet, similar to that of [36,37].
Vertex operators.—The string spectrum contains both

short and long strings, built upon the discrete and con-
tinuous series of SLð2;RÞ. In this Letter, we shall primarily
focus on supergravity operators, dual to light operators in
chiral multiplets of the HCFT. The corresponding discrete
series vertex operators with zero (worldsheet) spectral
flows and y-winding are excitations of the center-of-mass
wave function Φ0 ¼ Vjmm̄V 0

j0m0m̄0eið−EtþPyyÞ, where Vjmm̄ is

a bosonic SLð2;RÞ primary field of spin j and J3

eigenvalue m, and similarly for the SU(2) vertex V 0
j0m0m̄0

[38], while Py ¼ ny=Ry with ny ∈ Z. First-excited states
must satisfy the Virasoro and gauge constraints

0 ¼ ½−jðj − 1Þ þ j0ðj0 þ 1Þ�=n5 − ðE2 − P2
yÞ=4; ð3Þ

0 ¼ mþ sþm0 þ ðμEþ kþPyÞ=2;
0 ¼ m̄þ s−m̄0 þ ðμEþ k−PyÞ=2; ð4Þ

which couple probe and background angular momenta.
Subfamilies of solutions to these conditions were analyzed
in [15,16,18].
We now construct the states polarized in the directions

involved in the gauging. Importantly, the AdS3 × S3

isometries are broken in the full model, and only emerge
in the IR. Thus, vertex operators need not have definite
SLð2;RÞ and SU(2) spins or chiralities, which complicates
the analysis. From now on we mostly write only holomor-
phic expressions, and assume normal ordering. The chiral
Becchi-Rouet-Stora-Tyutin (BRST) charge contains the
usual terms plus additional contributions c̃J and γ̃λ
associated to the gauging; here c̃, γ̃ are ghosts and the
fermion λ ¼ ψ3 þ sþχ3 þ μλt þ kþλy is the superpartner
of J [18].
In the Neveu-Schwarz (NS) sector, before gauging

(“upstairs”) we start from a generic linear combination
of excitations in the AdS3 × S3 ×Rt × S1

y. Of these eight
polarizations, two are removed by the γG and γ̃λ con-
straints, G being the supersymmetry current. Another two
are BRST-exact combinations of GΦ0 and λΦ0. This gives
the correct four transverse polarizations for a massless field
in the six physical directions orthogonal to the gauging and
the T4. We obtain the physical operators

W ¼ e−φðψ⊥VjÞjmV 0
j0m0eið−EtþPyyÞ;

X ¼ e−φVjmðχ⊥V 0
j0 Þj0m0e

ið−EtþPyyÞ; ð5Þ
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where ðψ⊥VjÞ and ðχ⊥V 0
j0 Þ are generalizations of Eq. (A.6)

in [38] with the replacements ψ3 → ψ3 þ ctλt þ cyλy and
χ3 → χ3 þ dtλt þ dyλy, where

ct ¼ −dt

sþ
¼ −n5Py

kþEþ μPy
; cy ¼ −dy

sþ
¼ n5E

kþEþ μPy
:

To take the AdS3 limit, we define the rescaled energy
E ¼ ERy, and hold E, ny, and s� fixed as Ry → ∞. The
gauging is then concentrated mostly in Rt × Uð1Þy, and
parametrically less in SLð2;RÞ × SUð2Þ. As a result, ct;y,
dt;y becomeOðR−1

y Þ, and we recover the AdS3 expressions.
In the Ramond sector, before gauging, the polarizations

involve a spin field that is a 64-component spinor of
Oð10; 2Þ, Sε1;…;ε6 with εi ¼ �1. Implementing the Gliozzi-
Scherk-Olive (GSO) projection, we fix an overall spinor
parity. The BRST procedure [18] reduces the DOF by a
further factor of 4, leaving the correct eight physical
polarizations. Again, the T 4 does not participate in the
gauging, so the corresponding signs ε4;5 are constrained
only by overall parity. Therefore, we make the ansatz

e−
φ−φ̃
2

X
ε1;ε2;ε

Fε
ε1ε2Sε1;…;ε6Vj;m−ε1

2
V 0
j0;m0−ε2

2

eið−EtþPyyÞ;

where ε3 ¼ εε1ε2 and ε6 ¼ εε4ε5, and solve for the
coefficients Fε

ε1ε2 . The field φ̃ arises from the bosonization
of the β̃ γ̃ ghosts for null gauging. In the ð− 1

2
; 1
2
Þ picture for

ðφ; φ̃Þ, there are no exact states. The BRST procedure
mixes the different ε-chirality sectors and leaves only two
independent components in Fε

ε1ε2 , say Fþ
þ�. Acting with γ̃λ

gives

F−
ε1ε2

Fþ
ε1ε2

¼ i
ffiffiffiffiffi
n5

p 1 − ε1ε2sþ
μþ ε4ε5kþ

¼ iffiffiffiffiffi
n5

p μ − ε4ε5kþ
1þ ε1ε2sþ

; ð6Þ

which allows us to decouple the remaining constraints. The
explicit relations will be given in a forthcoming companion
work. Finally, we can choose F�

þ� by asking that the
Ramond states reduce to the usual AdS3 ones in the IR.
Interestingly, in this regime Eq. (6) implies that F� ∼ 1 and
F∓ ∼OðR−1

y Þ for ε4ε5 ¼ �1. We thus recover definite ε-
chirality states.
We derive the (worldsheet) spectral flowed versions of

the above short string states analogously. For this, we use
the same left/right spectral flow charge ω in SLð2;RÞ and
SU(2). The Virasoro condition is modified accordingly,
while the gauge conditions should be understood in terms
of mw ¼ �ðJω þ nÞ, where Jω is the (flowed) spin and
n ∈ N. A residual discrete gauge symmetry allows us to
recast ω units of spectral flow in terms of kω units of y
winding [19].
Heavy-light correlators and spacetime basis.—In the IR,

correlators of the above vertex operators correspond to

heavy-light n-point functions of the HCFT. In the remain-
der of this Letter we work in the AdS3 limit. The character-
istics of the heavy states are encoded in the construction
of the coset theory (1) itself. Hence, we can compute
hOHð0ÞOLð1ÞŌLðxÞŌHð∞Þi HCFT four-point functions
by computing worldsheet two-point functions.
So far we have constructed vertex operators in the

representation in which the Cartan currents are diagonal-
ized, which provides the natural framework for our gauging
procedure. Their correlators are the gauge-invariant subset
of the so-called m-basis correlators of the upstairs
theory, where the quantum numbers are related through
Eq. (4) [39,40]. In particular the two-point functions
factorize, the only nontrivial contributions being the
SLð2;RÞ propagators [21].
Holographic applications of AdS3 string models involve

the conjugate x basis, in which the SLð2;RÞ currents act as
differential operators associated with the spacetime
Virasoro generators. The complex label x is identified with
the coordinate of the HCFT. More explicitly, in global
AdS3, given an operator Vhmm̄ of spacetime weight h, with
m ¼ hþ n, m̄ ¼ hþ n̄, and n; n̄ ∈ N, one defines VhðxÞ ¼P

m;m̄ xm−hx̄m̄−hVhmm̄ [20,21]. Here Vhmm̄ contains any
excitations, such as fermions or spin fields. However, in
the gauged models (1), the identification of the x variable is
obscured by the gauging, since J� do not commute with the
BRST charge.
We now show that a careful reconstruction of the local

basis in these cosets leads to a considerable set of
interesting new results, a subset of which match very
nontrivially to two families of known HLLH correlators.
We choose a gauge in which the upstairs SLð2;RÞ time

and angular direction are fixed. Then, importantly, t=Ry and
y=Ry parametrize the asymptotic boundary of the down-
stairs AdS3 at a fixed point on the S3. We define my ¼
ðE þ nyÞ=2 and m̄y ¼ ðE − nyÞ=2, and interpret these as the
asymptotic AdS3 mode labels of the cosets.
At large Ry, the modified Virasoro condition (3) is solved

by the usual relation j ¼ j0 þ 1þOðR−2
y Þ. Although the

weights of the t, y exponentials scale as OðR−2
y Þ, the

associated quantum numbers E and ny enter nontrivially
in the leading-order gauge conditions (4) because
μ ∼ kþ ∼ −k− ∼ −kRy. Hence, the vertex operators reduce
to the familiar AdS3 ones, however, their quantum numbers
must satisfy the gauge conditions

0 ¼ mþ sþm0 − kmy ¼ m̄þ s−m̄0 − km̄y: ð7Þ

Therefore, my and m̄y take values in Z=k. Crucially,
momentum quantization along the y circle imposes that
my − m̄y ∈ Z. This implies that local operators are built
only out of the subset of SLð2;RÞ modes that satisfy

m − m̄≡ sþm0 − s−m̄0 ðmod kÞ: ð8Þ
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Since my and m̄y label the spacetime modes, we define the
x-basis operators in the coset as

OhðxÞ ¼
1

k2h
X
my;m̄y

xmy−hx̄m̄y−hVhmm̄V 0
h0m0m̄0 ; ð9Þ

where h0 is related to h, and the left- and right-handed
quantum numbers are constrained by Eqs. (7) and (8).
Coset HLLH correlators are accordingly expanded as
power series in x, x̄, where the coefficients are the m-basis
two-point functions.
We now have everything in place to compute a large set

of correlators. We first present a simple example involving
the untwisted h ¼ 1=2 chiral primary of the orbifold CFT,
denoted by OL ¼ Oþþ. This is associated with a Ramond-
Ramond worldsheet state (which we also denote by Oþþ)
for which the SLð2;RÞ mode propagators are trivial. We
write sþ ¼ 2sþ 1, s− ¼ 2s̄þ 1, which makes explicit that
s� are odd, and connects to the notation of previous
works. We decompose s ¼ pkþ ŝ and s̄ ¼ p̄kþ s̃ with
0 ≤ fŝ; s̃g < k, and define δ ¼ s̃ − ŝ. Then we obtain

hOþþð1ÞO−−ðxÞiH
¼ 1

k2
ð1 − xÞjxjδ=k þ ð1 − x̄Þjxj−δ=k − j1 − xj2jxj−jδj=k

xð2sþδÞ=2kx̄ð2s̄−δÞ=2kjxjj1 − xj2ð1 − jxj2=kÞ ;

ð10Þ

where h� � �iH stands for the correlator in the coset corre-
sponding to the heavy backgrounds of interest. For the
appropriate subset of values of s� and k, this worldsheet
correlator matches the supergravity and orbifold CFT
results of [13,27,41]. It also significantly extends these
results to the full set of non-supersymmetric JMaRT
backgrounds.
HL correlators and the SymNðT 4Þ CFT.—By

enforcing the constraint (8) using a Kronecker comb,P
q∈Z δm−m̄;kq ¼ k−1

Pk−1
r¼0 e

2πir½ðm−m̄Þ=k�, the sum in (9)
over restricted powers of the physical cross-ratio x
becomes a sum over unrestricted powers of its kth roots,
i.e., a sum over powers of all u such that uk ¼ x. Then the
rhs of Eq. (10) takes the simple and elegant form

hOþþð1ÞO−−ðxÞiH ¼ 1

k3
X
uk¼x

u−
sþ
2 ū−

s−
2 juj1−k

j1 − uj2 : ð11Þ

This formula is extremely instructive. First, it is readily
generalized to light insertions with generic weights and R
charges. Second, the appearance of the kth roots of x invites
a comparison with the dual HCFTat the symmetric orbifold
point. We now develop both these points.
Let us consider a worldsheet operator with definite

charge m0, and express the coset spacetime modes as
my ¼ x∂x þ h. Proceeding similarly for the upstairs

SLð2;RÞ modes m ¼ u∂u þ h − β, for the auxiliary vari-
able u and shift β, we see that in order to obtain uk ¼ x, we
should fix β and the analogous right-moving β̄ to be

β ¼ hð1 − kÞ þ sþm0; β̄ ¼ hð1 − kÞ þ s−m̄0: ð12Þ

Then the worldsheet operator (9) is re-expressed as

OhðxÞ ¼
1

k2hþ1

X
uk¼x

uβūβ̄VhðuÞV 0
h0m0m̄0 : ð13Þ

The role of β is twofold: it gives the Jacobian factor for the
coordinate change from x to u, and also the appropriate
rescaling under spectral flow [27]. We thus find that
worldsheet HLLH correlators with generic massless inser-
tions take the surprisingly simple form

hOLðx1ÞŌLðx2ÞiH ¼ 1

k4hþ2

X
uki¼xi

uβ11 ū
β̄1
1 u

β2
2 ū

β̄2
2

ju1 − u2j4h
: ð14Þ

A priori, this gives a prediction for the HCFT at strong
coupling. However, a subset of these correlators is known
to be protected between supergravity and symmetric orbi-
fold CFT [13,27,41]. Thus it is natural to investigate how
general this protection may be. For untwisted light oper-
ators of the orbifold CFT, it is natural to identify u with the
coordinate on the k-fold covering space that trivializes the
twist operators involved in the definition of the heavy
states. This coincides precisely with the symmetric orbifold
covering space method for such correlators [42,43]. In the
presence of twist-k operators, modes take values in Z=k.
Moreover, when mapping Sk-invariant untwisted operators
to the k-fold covering space, one obtains an expression
analogous to Eq. (13).
By contrast, for twisted operators, the interpretation of

our result (14) is more involved: the covering map for such
correlators is not x ¼ uk. To exhibit the precise relation, we
focus on the singlet marginal deformation operator of twist
two, and take s� ¼ 0. More general light operators and
values of s� can be treated analogously. The relevant four-
point function was studied recently in [28,44,45] in the
SymNðT 4Þ CFT. At large N the correlator is dominated
by a contribution from a covering space with genus zero.
The relation between the physical-space cross-ratio
and its covering-space images is x ¼ ðuþ 1Þ2kðu − 1Þ−2k.
The relevant correlator takes the form GðuÞ ¼
u−2ðuþ 1Þ2þ2kðu − 1Þ2−2k. The final result is obtained
by summing over the 2k preimages of x, and including
the appropriate combinatorial factor. However, due to the
u → 1=u symmetry of the map, there are actually only k
distinct contributions. Upon inserting the explicit solutions
u ¼ uðxÞ, the final expression remarkably coincides pre-
cisely with (14).
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From the point of view of the worldsheet theory, there is
no strong distinction between vertex operators associated
with different twist sectors of the HCFT at the orbifold
point, and our general result depends only on their weight
and charges. In this sense, the only covering space
that appears is that associated with the heavy operators
x ¼ uk.
Moreover, using Eq. (13), we conjecture a formula

for worldsheet correlators with n massless insertions.
Denoting the light operator weights by hi and charges
by m0

i, m̄i
0, and defining the shorthands Oi ≡Ohi and

ÔiðuiÞ≡ VhiðuiÞV 0
h0im

0
im̄i

0 , we obtain

hO1ðx1Þ;…; OnðxnÞiH
¼ 1

k2Hþn

X
uki¼xi

�Yn
i¼1

uβii ū
β̄i
i

�
hÔ1ðu1Þ;…; ÔnðunÞi; ð15Þ

with βi, β̄i as in Eq. (12), and H ¼ h1 þ � � � þ hn. In this
way, these HL correlators are directly determined from the
vacuum n-point function evaluated at the kth roots of the
physical insertion points. Interestingly, this suggests that
the large N fusion rules for these correlators within our
heavy states coincide with the vacuum ones, including
those involving spectrally flowed states.
Hawking radiation from the worldsheet.—The asymp-

totically flat JMaRT solutions emit ergoregion radiation
[46]. This has been interpreted as an enhanced analogue of
Hawking radiation, since both are described by the same
microscopic process in the HCFT [27,47]. As an applica-
tion, we now rederive the amplitude controlling the rate of
emission of supergravity quanta from the JMaRT solutions.
This is obtained by taking x2 → 0 and x1 ¼ x in Eq. (14),
obtaining

AðxÞ ¼ 1

k2h

P
l∈Zδsþm0−s−m̄0;kl

xhð1þ1
kÞ−m0sþ

k x̄hð1þ1
kÞ−m̄0s−

k

: ð16Þ

The numerator ensures the correct spectrum of emission.
This amplitude gives a direct worldsheet derivation of the
emission rates computed in [27,35,41,47].
Discussion.—We have obtained closed-form expressions

for a comprehensive family of correlators of light operators
in heavy black hole microstates, using the exact worldsheet
description of the JMaRT solutions. We did so by carefully
identifying the correct spacetime modes and the local
coordinate on the asymptotic AdS3 boundary emerging
in the IR. For all cases computed in the literature, our
worldsheet results precisely match with those of the dual
HCFT at the symmetric orbifold locus.
Our findings are a significant improvement over previous

work, providing a powerful general method that is much
less computationally intensive than the Lunin-Mathur
covering space method in the symmetric orbifold CFT,

as well as a set of results that substantially expand upon the
small number of earlier case-by-case studies.
The matching to the HCFT for particular subcases of our

results (10) and (14) is highly nontrivial. Perhaps most
strikingly, even for the nonsupersymmetric amplitudes
(16), we find precise agreement. There is no known
nonrenormalization theorem protecting the latter ampli-
tudes. However the matching we find is consistent with
previous results, and is almost certainly due to the relation
between these heavy states and the NS vacuum involving
orbifolding and fractional spectral flow [35].
Our results open up many interesting directions for

future work. Equations (14) and (15) can be used to obtain
a deeper understanding of factorization channels, con-
formal blocks, and anomalous dimensions of the HCFT
[28,45]. Furthermore, the vertex operators we have con-
structed will enable the explicit study of correlators in the
full coset models. In the UV, the holographically dual LST
is nonlocal, and we see that our construction of the x
coordinate breaks down, as it must. Computing these
correlation functions might very well take us one step
closer to flat space holography [48].
Finally, our methods can be used to study a wealth of

black hole microstate physics including the Penrose proc-
ess [29], tidal forces [30] and multipole ratios [7], all of
which can be probed with our higher-point functions. Our
Letter lays the foundations for computing more general
heavy-light correlators from the string worldsheet, which
will contribute to the emerging programme of exploring the
stringy phenomenology of black hole microstates in this
exciting era of direct detections of gravitational waves [49].
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