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The Coon amplitude is a deformation of the Veneziano amplitude with logarithmic Regge trajectories and
an accumulation point in the spectrum, which interpolates between string theory and field theory. With string
theory, it is the only other solution to duality constraints explicitly known and it constitutes an important data
point in the modern S-matrix bootstrap. Yet, its basics properties are essentially unknown. In this Letter, we
fill this gap and derive the conditions of positivity and the low energy expansion of the amplitude. On the
positivity side, we discover that the amplitude switches from a regime where it is positive in all dimensions
to a regime with critical dimensions, which connects to the known d ¼ 26, 10 when the deformation is
removed. Incidentally, we find that the Veneziano amplitude can be extended to massive scalars of masses up
to m2 ¼ 1=3, where it has critical dimension 6.3. On the low-energy side, we compute the first few
couplings of the theory in terms of q-deformed analogs of the standard Riemann zeta values of the string
expansion. We locate their location in the EFT-hedron, and find agreement with a recent conjecture that
theories with accumulation points populate this space. We also discuss their relation to low spin dominance.
Finally, we comment on the length of the Coon parton.
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The Coon amplitude [1–3] is, together with the Veneziano
amplitude, the only explicitly known four-point tree-level
amplitude that describes an infinite exchange of higher-spin
resonances that solve the duality constraints. It was discov-
ered as a deformation of the Veneziano amplitude to non-
linear Regge trajectories. The deformation is given in terms
of a parameter q (0 ≤ q ≤ 1), which characterizes a family of
amplitudes defined by (in units α0 ¼ 1)

Aqðs; tÞ ¼ ðq − 1ÞqlogðσÞ
logðqÞ

logðτÞ
logðqÞ

Y∞
n¼0

ðστ − qnÞð1 − qnþ1Þ
ðσ − qnÞðτ − qnÞ ð1Þ

with

σ ¼ 1þ ðs−m2Þðq− 1Þ; τ ¼ 1þ ðt−m2Þðq− 1Þ; ð2Þ

where s, t are the Mandelstam variables (cf. the
Supplemental Material [4]). This amplitude describes the
scattering of four identical scalars of mass m2. At q ¼ 0, it
reduces to a scalar theory, and at q ¼ 1 it gives back the
Veneziano model:

lim
q→0

Aqðs; tÞ ¼
1

s −m2
þ 1

t −m2
− 1; ð3Þ

lim
q→1

Aqðs; tÞ ¼ AVðs; tÞ ¼ −
Γð−sþm2ÞΓð−tþm2Þ

Γð−s − tþ 2m2Þ : ð4Þ

Unlike for the Veneziano model, no world sheet theory
was found for the Coon amplitude, and to this day, its
physical origin remains mysterious. In addition, and what
concerns us in this Letter, its basic properties—unitarity
conditions and low-energy expansion—are essentially
unknown.
In more recent times, the Coon amplitude was brought

forward as an exception to the universality of linear Regge
trajectories in [9], where the authors traced to the presence
of an accumulation point in its spectrum.
Related bootstrap constraints applied to the Wilson

coefficients of effective field theories (EFTs) coming from
unitarity, crossing, and analyticity are known to impose
bounds [10] that carve theory islands [11–15], and it appears
that they are bigger than what is required to describe the
known physical theories [16–19]. Even more interestingly,
Ref. [19] recently conjectured that the space of gravitational
EFTs is actually populated generically by theories with
accumulation points. Since the Coon amplitude has an
accumulation point and connects, continuously, string
theory and field theory, it provides an interesting testing
ground to investigate these questions.
First, we map the positivity region of the amplitude, see

Fig. 1: for each point ðq;m2Þ we determine the maximal
dimension in which no ghosts are exchanged as intermediate
states. This generalizes the known d ¼ ð10Þ26 critical
dimensions of (super)string theory for m2 ¼ ð0Þ, −1.
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Our results show the existence of two regimes. In the first one,
we prove that the amplitude is ghost-free in all dimensions.
While this goes against intuition from standard string theory,
null strings are known to possess similar features [20–25].
In the other regime, we determine numerically the positivity
surface, which interpolates from infinite critical dimensions to
the standard critical dimensions of string theory. Along the
way,we realized that theCoon and thusVeneziano amplitudes
canbe extended topositivem2 → 1=3,with critical dimension
d ≃ 6.3 for the latter [26].
Second, we compute some low energy couplings of the

Coon amplitude in terms of q-polylogarithm values,
which generalize the known zeta values of the string
low-energy expansion and suggest the possible existence
of a q-deformed world sheet theory where we relate q to
the Coon parton in Eq. (11). We compute explicitly the
first coefficients g2ðqÞ; g3ðqÞ; g4ðqÞ and map their location
in the space of couplings, comparing to [11]. We also
comment on the connection to the notion of low-spin
dominance (LSD) of [16].
The Coon amplitude.—We start by reviewing some facts

about the Coon amplitude. As defined in (1), it describes
color-ordered scalar scattering amplitude, being stripped of
a color factor in analogy to [27]. Later, to compare its IR
regime to [11], we consider an ðs; t; uÞ symmetrized
amplitude, corresponding to ordinary external scalars.
The spectrum of the amplitude can be read off Eq. (1). It

has single poles located at σ ¼ qn which correspond to [28]

s ¼ m2
n ≔ m2 þ qn − 1

q − 1
: ð5Þ

These poles build up an accumulation point as n → ∞,

s� ¼ m2 þ 1

1 − q
: ð6Þ

At the accumulation point starts a cut, coming from the
nonmeromorphic prefactor in Eq. (1). As we explain below,
this factor is crucial to ensure polynomial residues [3].
Analogies with atomic physics of such an analytic structure
were drawn in [29] but never made precise [30]. This makes
this amplitude depart from the strict tree-level case studied
in [9]. It would be interesting to understand if such non-
analyticities can help to model the important phenomenon
of bending of hadron Regge trajectories, as in [31].
On a given pole s ¼ m2

n, the nonmeromorphic q factor
reduces to τn and cancels an inverse factor τ−n coming from
the denominator [32] and the residue of the amplitude
reduces to a polynomial of degree n in t, corresponding to
the exchange of particles of spins 0 to n, which reads

ResðAqðs; tÞÞjs¼m2
n
¼

Yn−1
j¼0

�
τ − qj−n

1 − q−j−1

�
: ð7Þ

This factor was missed in the original papers and in the
more recent Refs. [33,34]. This aspect of the Coon
amplitude indicates that accumulation points are a clear
sign of tension between weak coupling (meromorphy) and
locality, and could be useful to understand the species
bound [35,36]. This tension also suggests a physical
rationale as to why amplitudes with accumulation points
evade the theorem of Ref. [9] (Supplemental Material [4])
on the linearity of Regge trajectories.
The Regge and fixed-angle regimes are readily extracted

[1,37]. In the Regge regime, where s ≫ −t and t fixed, 1=σ
vanishes and the amplitude behaves as

Aqðs; tÞ∼fðtÞsjðtÞ; jðtÞ ¼ log½ðt−m2Þðq− 1Þþ 1�
logðqÞ ; ð8Þ

where fðtÞ ∼Qð1 − qn=τÞ. Since q < 1, the amplitude is
suppressed at physical negative t for m2 ≥ 0. In particular,
all bounds on couplings derived assuming standard twice-
subtracted dispersion relations are expected to hold. We
plot jðtÞ in the Supplemental Material [4] for a specific
value of the mass.
In the fixed angle regime, ðs= − tÞ fixed, both 1=σ and

1=τ vanish, therefore we get

Aqðs; tÞ ∼ elogðsÞlogð−tÞ= logðqÞ ∼ slog½s cosðθÞ�= logðqÞ: ð9Þ

Finally, we also worked out the impact parameter
transform of the amplitude at large b (and q < 1), which
reads

Âqðs; bÞ∼
�

bffiffiffiffi
t�

p
�

−log s
logq

e−b
ffiffiffi
t�

p
; t� ¼ m2 þ 1

1− q
: ð10Þ

It is similar to the Yukawa potential of a single particle of
massm ¼ ffiffiffiffi

t�
p

, dressed by power corrections. When q → 1,

FIG. 1. Green surface: Numerical boundary of the unitary region.
Blue shaded region: Unitary region determined by q ≤ qcðm2Þ.
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these resum to the Gaussian behavior of string theory
amplitudes [38]. In the SupplementalMaterial [4]we provide
numerical arguments that essentially relate q to the length of
the Coon parton, as

lC ≃ l0 þ q
ffiffiffiffiffiffiffiffiffiffiffiffi
logðsÞ

p
: ð11Þ

Positivity of the amplitude.—We present now our results
on the unitarity of the Coon amplitude, i.e., the conditions
under which no negative-norm states, or ghosts, decouple.
Ghosts are characterized by negative residues on single
poles, or more precisely by negative coefficients in the
partial wave expansion of the amplitude’s residues. Near a
resonance exchange in the s channel, the amplitude takes
the form

Aðs; tÞ ∼s→m2
n

ResnðtÞ
s −m2

n
: ð12Þ

As is standard, [9,13] Lorentz invariance implies that
ResnðtÞ is a polynomial whose degree corresponds to the
highest spin among the modes of massmn being exchanged,
and that it can be further decomposed into Gegenbauer

polynomials PðdÞ
J which are angular eigenfunctions in

dimension d:

ResnðtÞ ¼
Xn
J¼0

cn;JP
ðdÞ
J ðcosðθÞÞ: ð13Þ

Here cosðθÞ ¼ 1þ ½2t=ðm2
n − 4m2Þ� is the cosine of the

scattering angle at s ¼ m2
n, and each term in the sum

corresponds to a different particle of mass mn and spin J
being exchanged.
The coefficients cn;J can be obtained using the ortho-

gonality of the Gegenbauer polynomials, and unitarity
implies that these should be positive.
In the case of string theory, the no-ghost theorem [39,40]

guarantees that such states decouple from all scattering
amplitudes in d ≤ 26 or 10. At the level the Veneziano
amplitude, a recent paper showed that residues should all be
positively expandable on Gegenbauer polynomials [41] in
d ≤ 6 [42]. It would still be desirable to be able to bridge
the gap to d ¼ 10 or 26 and maybe the Coon amplitude in
its q → 1 limit could be useful for this.
Regarding Coon, the authors of [43] investigated the

presence of ghosts in the amplitude in d ¼ 4, and observed
numerically that some regions in the q,M2 parameter space
are ghost-free. While their (numerical) method finds ghosts
in d ¼ 4, we do not, for any values of q. This is because our
set up is different: for them, the mass of the external
particles M2 is distinct from m2 (the first pole of the
amplitude), while for us, M2 ¼ m2. The subsequent work
[33] also studied the problem (while being unaware of
[43]), but was inconclusive. Overall, before the present

work, nothing was known on the critical dimensions of the
Coon amplitude.
Our results are summarized in Fig. 1. They show the

existence of two regimes for q, distinguished critical value
q ≶ q∞ðm2Þ, where

q∞ðm2Þ ¼ m2 − 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 2m2 þm4

p

2m2
: ð14Þ

Using elementary properties of the Gegenbauer polyno-
mials and the residues given by Eq. (7), it is easy to show
that for q < q∞ðm2Þ the amplitude is ghost-free in all
dimensions. Then, for q > q∞ðm2Þ, critical dimensions
exist and we numerically determined them, backed by an
estimate of the envelope of the critical dimensions near
q∞ðm2Þ. The details of these proofs are given in the
Supplemental Material [4].
Requiring that the residues are positive also puts an

upper bound on the mass of the external particle: if m2 > 1
3
,

the Coon amplitude exhibits ghosts at all values of q and d.
There is no such strict lower bound on the mass, but
for m2 < −1 the unitary region of the Coon amplitude
becomes disconnected from the Veneziano limit, and thus
we restricted our analysis to the region −1 ≤ m2 ≤ 1

3
. More

details on this can also be found in the Supplemental
Material [4].
On the numerics side, for q > q∞ðm2Þ we performed an

extensive numerical study of the signs of the residues.
We computed the Gegenbauer coefficients for the first 50
resonances and all spins J ≤ 50 for a grid of values of
m2 ∈ ½−1; 1

3
� and q ∈ ½0; 1� and determined with finite 4%

accuracy the critical dimension dðm2; qÞ for which all the
coefficients become positive. This draws the green surface
of Fig. 1. When q → 1, the critical dimensions of the
m2 ¼ −1 and m2 ¼ 0 models match the values for the
Veneziano and Neveu-Schwarz models. Moreover, our
results suggest a possible extremal unitary amplitude with
m2 ¼ 1

3
and critical dimension d ≃ 6.3. Those three curves

are plotted specifically in Fig. 2.
One curious observation from that study is that the scalar

ghost sector seems to always define the unitarity surface. In
the Supplemental Material [4] we give a proof of this fact in
the large d limit and an estimate of the critical dimensions
for q near the critical line which matches the numerics; see
Fig. 2. While our arguments fail as q → 1, we observed that
this continues to hold. Proving this fact, maybe using the
methods of [41], would allow to prove analytically the
unitarity of the Coon and of Veneziano amplitude as a
function of m2.
Low energy expansion and EFT hedron.—Recent times

have witnessed a renewal of activity revolving around
implications of dispersion relations, crossing symmetry,
and unitarity. Following the ideas of [10], various studies
explored how the Wilson coefficients of weakly coupled
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EFTs are constrained [11–15,44] and live in some regions
of some positive region dubbed “EFThedron.”
In this section, we compute the first few low energy

couplings of the Coon amplitude. Because the Coon
amplitude is well behaved at infinity, and respects analy-
ticity and crossing, it admits dispersion relations and must
fall in those positivity regions. We will see that the
couplings indeed draw one-dimensional varieties within
those regions, parametrized by the value of q.
The first amplitude we consider is an ðs; t; uÞ symmetric

version of Coon, for external massless scalars (m2 ¼ 0)
with no color indices:

Mqðs; t; uÞ ¼ Aqðs; tÞ þ Aqðt; uÞ þ Aqðu; sÞ: ð15Þ

The ðs; t; uÞ symmetry and momentum conservation
sþ tþ u ¼ 0 allow expansion at small s, t, u of this
function in terms of σ2 ¼ s2 þ t2 þ u2 and σ3 ¼ stu, so
that

Mqðs; t; uÞ ¼
1

s
þ 1

t
þ 1

u
þ g0ðqÞ þ g2ðqÞσ2 þ g3ðqÞσ3

þ g4ðqÞðσ2Þ2 þ…; ð16Þ

where the coefficients of this expansion are classically
interpreted as low energy Wilson coefficients.
A lengthy but straightforward explicit calculation gave

us the first few coefficients, up to g4ðqÞ. Trivially,
g0ðqÞ ¼ 1 − q. The next ones are given by functions related
to q-zeta values, for instance, g2ðqÞ reads

g2ðqÞ ¼
1

2
ðq− 1Þ3ð3h1ðqÞþ 5h2ðqÞþ 2h3ðqÞÞ−

ðq− 1Þ3
logðqÞ ;

ð17Þ

where

hmðqÞ ¼
X∞
n¼1

qnm

ð1 − qnÞm ≔ Limðqm; qÞ ð18Þ

can be written in terms of q-deformed polylogarithms as
defined, for instance, in [45], and whose q-zeta values are
classically defined as q values of those functions. Note that,
compared to string theory, different orders of q transcen-
dentality appear to be mixed. The other couplings g3ðqÞ and
g4ðqÞ are given in the Supplemental Material [4]. We also
verified that when q → 1, they descend to the values given
by the symmetrized sum AVðs; tÞ þ AVðt; uÞ þ AVðu; sÞ:

g2ð1Þ ¼ −ζ3; g3ð1Þ ¼ 9=4ζ4; g4ð1Þ ¼ −ζ5=2: ð19Þ

For generic EFTs, the allowed range of coefficients g2, g3,
g4 was determined in [11], Fig. 8, in terms of dimensionless
ratios g̃3 ¼ g3M2=g2 and g̃4 ¼ g4M4=g2 with M2 given by
the scale of the first massive mode, which in our con-
ventions is M2 ¼ 1. We show in Fig. 3 the value of those
ratios. They fall neatly in the domain determined in [11],
albeit approaching tangentially the boundary at intermediate
values of q.
One can also couple a massless scalar to a massive Coon

amplitude, since 0 ≤ m2 ≤ 1=3 are allowed. These ampli-
tudes reduce to the extreme case of [11], coupling the
massless scalar to a single massive scalar of massM2 ¼ m2

and therefore accumulate to the upper right corner of their
Fig. 8. It is not surprising, and the same happens when
coupling a massless scalar to an amplitude made of massive
Veneziano blocks.
Low spin dominance.—The Coon amplitude Aqðs; tÞ,

together with its Veneziano limit, exhibit a form of LSD,
albeit weaker than that of [16]. It is a LSD where not only
the scalar state dominates the partial waves, but also the
spin 1 state [46]. Let us explain how this comes about.
Following the conventions of [16], we Taylor expand the

amplitude as Aqðt;−s−tÞ¼ð1=sÞþð1=tÞþP
p<kak;ps

k−ptp.
To compare to [16], we look at the coefficients at level
k ¼ 2, 4, 6, which we relate to that of an amplitude given by
a sum of

AðJÞðt;uÞ¼ ð−1ÞJPJð1þ2s=M2Þ
t−M2

þPJð1þ2t=M2Þ
u−M2

; ð20Þ

m2=1/3

m2=0

m2=–1
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FIG. 2. Dots: Sections of the surface mapped in Fig. 1. Solid
lines: Large d envelope computed analytically (see Supplemental
Material [4]).
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FIG. 3. Plot of Wilson coefficients with cutoff M2 ¼ 1.
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with J ¼ 0, 1. Denoting by aðJÞk;q the low energy coefficients

of expanding AðJÞðt;−s − tÞ in powers of s, t, the model

mentioned above states that ak;p ∼ að0Þk;p þ qað1Þk;p. This cor-
responds to the straight yellow line in Fig. 4, and matches
well the dots near q ¼ 1, where the amplitude matches pure
LSD, since only J ¼ 0 contributes. Within this spin 0-1
model, it is immediate to verify that

a2;1
a2;0

¼ 2 − 2q
1þ q

; ð21Þ

a4;1
a4;0

¼ 2ðqþ 2Þ
qþ 1

;
a4;2
a4;0

¼ 6

qþ 1
: ð22Þ

For q ∈ ½0; 1�, this implies in particular that 0 ≤ ða2;1=a2;0Þ
≤ 1, 3 ≤ ða4;1=a4;0Þ ≤ 4, and 3 ≤ ða4;2=a4;0Þ ≤ 6. The
upper bound corresponds to pure LSD, while the lower
bound is pure spin-0þ spin-1 model. While for the coef-
ficients a2;1=a2;0, the bounds are exactly satisfied, at k ¼ 4 it
can be seen that string theory lies a bit away from that, at
½ða4;1=a4;0Þ; ða4;2=a4;0Þ� ≃ ð2.9; 2.9Þ. The relative accuracy
of the model is explained by the fact that spin J exchanges
comewith qJðJþ1Þ=2, for which the linear approximation (spin
0 and 1) is a good approximation away from q ¼ 1.
Perspectives.—This study opens many perspectives,

some mentioned in the text. First, we clarified the definition
of the amplitude and our results on unitarity and the
q-deformed low energy expansion very similar to that of
string theory suggest strongly that there might exist a
unitary Coon theory, with maybe a q-deformed world sheet
theory. Very few results exist in the literature on world sheet
theory and N-point functions (see Refs. [47,48] and [2,49–
51], respectively) and it would be really interesting to
understand this better. This amplitude could also be used to
revisit the analysis of [41] and study the unitarity of the
Veneziano amplitude thanks to the q dependence. It would
be nice to understand and relate to the q deformation
the feature of the disappearance of critical dimensions
when q → 0.

Furthermore, our study resonates neatly with a conjecture
of [19] that amplitudes with accumulation points populate
the EFT-hedron of gravitational theories away from the
small portion, where usual theories seem to live. It would
be very important to study this question in more detail, in
relation with the results presented here. In view of the
species bound mentioned above, there is clearly a paradox
here, whose resolution might provide us with new physical
principles to understand better the space of EFTs and Coon
is a nice and controlled toy model for this problem.
It would also be interesting to study the Coon version of

the Lovelace-Shapiro amplitude [52,53]. This amplitude,
only recently understood from string theory [54], constitutes
an interesting example where the N-point function shows
defaults of unitarity.
Finally, and maybe in relation to the species bound

mentioned above for gravitational theories, we have not
been able to write down a unitary Coon amplitude via the
Kawai-Lewellen-Tye formula [55]. It would be very inter-
esting to see if one can be found and study the question of
the species bound in this context.
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