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We present a new formula for the angular momentum Jμν carried away by gravitational radiation in
classical scattering. This formula, combined with the known expression for the radiated linear momentum
Pμ, completes the set of radiated Poincaré charges due to scattering. We parametrize Pμ and Jμν by
nonperturbative form factors and derive exact relations using the Poincaré algebra. There is a contribution
to Jμν due to static (zero-frequency) modes, which can be derived from Weinberg’s soft theorem. Using
tools from scattering amplitudes and effective field theory, we calculate the radiated Jμν due to the
scattering of two spinless particles to third order in Newton’s constant G, but to all orders in velocity. Our
form-factor analysis elucidates a novel relation found by Bini, Damour, and Geralico between energy and
angular momentum loss at OðG3Þ. Our new results have several nontrivial implications for binary
scattering at OðG4Þ. We give a procedure to bootstrap an effective radiation reaction force from the loss of
Poincaré charges due to scattering.
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Introduction.—It is crucial to have accurate theoretical
modeling of binary coalescence, given the rapid improve-
ment in sensitivity of current and future gravitational-wave
detectors. Recently, there has been tremendous progress in
solving binary dynamics by utilizing tools in quantum field
theory (QFT) building on the pioneering work of non-
relativistic general relativity [1].
The power of QFT-based methods originates from the

gauge invariance and Lorentz covariance of scattering
observables, which can be extracted from QFT amplitudes
via effective field theory (EFT) methods [1–3] and the
Kosower-Maybee-O’Connell (KMOC) framework [4,5].
This enables tools developed in particle physics to be
applied to classical gravity. Scattering results can then be
translated into binary bound state ones through the effec-
tive-one-body mapping [6–8], EFT method [2,3], and
analytic continuation [9–11]. Outputs from this program
naturally fit within the post-Minkowskian (PM) framework,
which expands in G but keeps all orders in velocity. State-
of-the-art results for the conservative PM potential [12–15]
and scattering tail effect [16,17] illustrate the power of this
new methodology.
Dissipation is a key feature of binary coalescence that is

already present at 2.5 post-Newtonian (PN) order, as can be
seen by the radiation reaction (RR) [18–23]. The RR force

has been extended to up to 4.5 PN accuracy [24–32].
Theoretical predictions for dissipative effects on binary
scattering are also relatively less developed. For instance,
the waveform [33–35], impulses [36–44], and radiated
linear [43–45] and angular momentum [34,35,46–48], have
been computed to only the leading PM order.
The aim of this Letter is to leverage Poincaré symmetry

to incorporate dissipation due to radiation into the QFT-
based framework. Poincaré invariance imposes conserva-
tion laws that relate the linear and angular momentum
carried away by radiation, Pμ and Jμν, to the corresponding
loss in the binary system. While the formula for Pμ is well
known (see also its expression in the KMOC form), the
standard formula for Jμν [49] is less well understood in
scattering scenarios. This is due to the presence of the
static mode, which is analogous to the Coulomb mode in
electrodynamics (EM) [50]. In this Letter, we derive a new
formula (3) for Jμν in terms of the stress-energy pseudo-
tensor that applies to radiation with arbitrary frequency.
The formula manifests the gauge independence and
Lorentz covariance of Jμν. This enables us to parametrize
Pμ and Jμν with nonperturbative form factors in Eq. (5) that
obey exact constraints imposed by the Poincaré algebra.
Applying this framework perturbatively in G, we calculate
Jμν to OðG3Þ in Eqs. (13) and (15), and find agreement
with the literature [46–48]. In particular, we directly derive
the remarkable relation (16) between energy and angular
momentum loss first found by [47]. Weinberg’s soft
theorem [51] greatly simplifies the calculation of the
zero-frequency contribution to Jμν. Our results, however,
disagree with those calculated using standard formula in the
rest frame [34,35], due to the subtlety in the static mode.
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The radiated Poincaré charges have important implica-
tions for dissipative binary dynamics. By combining our
OðG3Þ results for Jμν with those for Pμ [43,44], one can
immediately predict the linear-in-RR correction to the
scattering angle and transverse impulse at OðG4Þ using
the Bini-Damour formula [46,52] and the maps in [47].
In addition, by following the framework in [46,47,52], we
bootstrap an effective PM RR force via the balance
equations [27–29] modulo total time derivatives, i.e., the
so-called Schott terms [53,54].
Radiated linear and angular momentum.—Consider a

scattering process where the initial state consists of massive
particles (referred to as matter), and the final state consists
of matter and outgoing gravitational radiation. Poincaré
symmetry implies that the loss of linear and angular
momentum of matter is equal to that carried away by
radiation. The radiated linear and angular momentum in the
final state are given by

Pμ ¼
Z

d3x Tμ0; Jμν ¼
Z

d3x x½μTν�0; ð1Þ

where Tμν is the stress-energy tensor of the radiation,
a½μbν� ≡ aμbν − aνbμ, and the integrals are over all space at
a fixed time. The global conserved charges are invariant
under improvement terms in Tμν [55].
Gravitational radiation is defined as the fluctuation

around flat space gμν ¼ ημν þ
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
hμν. In what follows,

we use the mostly minus convention. Asymptotically, the
radiation can be decomposed into on-shell plane waves
labeled by kμ ¼ ðω; kÞ, where ω is the energy, boldface k
denotes spatial momentum, and k2 ¼ 0. After gauge fixing,
the radiation field of any frequency can be solved in terms
of the stress-energy pseudotensor T ρσðkÞ, which is analo-
gous to the current in EM. T ρσðkÞ contains both matter and
radiation contributions, unlike the usual stress tensor which
does not contain radiation. T ρσðkÞ is conserved on shell,
i.e., kρT ρσðkÞ ¼ 0. [One can always find such a T ρσðkÞ
[56].] There is an invariance under residual gauge trans-
formations T μνðkÞ → T μνðkÞ þ kμϵνðkÞ þ kνϵμðkÞ where
ϵðkÞ · k ¼ 0. Crucially, the formula for the radiation field
and Jμν are written in terms of T ρσðkÞ, rather than the
transverse-traceless components of the radiation field used
in the standard formula [49], which means our results are
also applicable to the static mode that contributes to the
angular momentum. This is similar to the Coulomb field in
EM, which is not in the transverse projection of the vector
potential. The radiation field in terms of T ρσðkÞ reads

hμνðxÞ ¼
ffiffiffiffiffiffiffiffiffi
8πG

p Z fdkðPμνρσT ρσðkÞe−ik·x þ c:c:Þ; ð2Þ

where Pμνρσ is the gauge-dependent projection and fdk ¼
½d3k=ð2πÞ32ω� is the Lorentz invariant phase space
measure.

Using Einstein’s equations, it is straightforward to relate
Tμν to the radiation field. Combining Eqs. (1), (2), and the
expression for Tμν in terms of hμνðxÞ, we obtain the main
formulas of this Letter,

Pμ ¼ 8πG
Z fdk kμ

�
T �ρσðkÞT ρσðkÞ −

1

2
T �ρ

ρ ðkÞT σ
σðkÞ

�
;

Jμν ¼ 8πG
Z fdk

�
T �ρσðkÞLμνT ρσðkÞ −

1

2
T �ρ

ρ ðkÞLμνT σ
σðkÞ

þ 2iT �ρ½μðkÞT ν�
ρ ðkÞ

�
; ð3Þ

where Lμν ≡ ik½μ∂ν�. Note the absence of any explicit time
dependence. This completes the set of expressions for the
radiated Poincaré charges. Since the stress-energy pseudo-
tensor can be derived directly from on-shell amplitudes
using the KMOC framework [4,5], our formulation for Jμν

meshes well with the QFT-based approach. Analogous
formulas for Pμ and Jμν in EM are given in Supplemental
Material, Sec. A [57].
The expressions in Eq. (3) are highly constrained by

gauge invariance and the Poincaré algebra. The relative
factor between the first and last terms in the Jμν integrand is
fixed by invariance under residual gauge transformations.
These terms are sometimes referred to as the orbital and spin
contributions. However, only their combination is gauge
invariant, implying that individually, they have no physical
meaning [58]. The Poincaré algebra imposes the following
transformations under the translation xμ → xμ þ aμ,

Pμ → Pμ;

Jμν → Jμν þ a½μPν�: ð4Þ
Since T μνðkÞ → T μνðkÞeik·a under translations, the expres-
sions in Eq. (3) indeed obey Eq. (4).
Form factor parametrization.—By parametrizing Pμ and

Jμν in terms of the initial data of binary scattering, one can
derive additional constraints on them using the Poincaré
algebra. The particles are labeled by a Roman subscript
i ¼ 1, 2 and mi, p

μ
i , and bμi correspond to the particle’s

mass, initial momentum, and impact vector, which, as
depicted in Fig. 1, obey pi · bj ¼ 0. In addition, it is useful
to define the relative impact vector Δbμ ≡ bμ2 − bμ1, its

FIG. 1. The initial configuration of the binary system. The
spatial momenta of the two particles are along the x direction, and
the impact vectors bμ1;2 are along the y direction.
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magnitude b≡ ffiffiffiffiffiffiffiffiffiffiffiffi
−Δb2

p
, and b̄μ ≡ ½p1 · ðp1 þ p2Þbμ1 þ p2·

ðp1 þ p2Þbμ2�=ðp1 þ p2Þ2. The Lorentz-invariant variables
are then mi, b, and the relative boost σ ≡ p1 · p2=ðm1m2Þ.
We find that the most general forms of Pμ and Jμν

consistent with Lorentz covariance, the Poincaré con-
straints (4), and particle interchange symmetry are

Pμ ¼ F 1p
μ
1 þ F 2p

μ
2 þ F 3Δbμ;

Jμν ¼ b̄½μðF 1p
ν�
1 þ F 2p

ν�
2 þ F 3Δbν�Þ

þ Δb½μðG1p
ν�
1 − G2p

ν�
2 Þ þH12p

½μ
2 p

ν�
1 ; ð5Þ

where F i, Gi,H12 are form factors that are functions of the
Lorentz invariants m1, m2, σ, b. Particle interchange
symmetry implies that the form factors satisfy

F 1 ¼m1↔m2F 2; G1 ¼m1↔m2G2;

F 3 ¼m1↔m2 − F 3; H12 ¼m1↔m2 −H12; ð6Þ
so that the only independent ones are F 2, F 3, G2, H12.
We consider two frames in this Letter, the center of mass

(c.m.) and the frame where particle 1 is initially at rest
(referred to as the rest frame hereafter). See Supplemental
Material, Sec. B [57] for the initial conditions in each
frame. In particular, b̄μ ¼ 0 in the c.m. frame and bμ1 ¼ 0 in
the rest frame. We denote the components of Jμν in the c.m.
and rest frames as Jμνc:m: and Jμνrest, and the initial angular
momentum along the z direction as Jc:m: and Jrest. Their
form factor expressions are summarized in Supplemental
Material, Sec. B [57]. Remarkably, all form factors can be
fixed with only Pμ, J12rest, and J01rest.
Since Eq. (5) was derived from exact symmetries, we can

deduce nonperturbative relations among the components of
Jμνc:m: and Jμνrest. For instance, this implies J01c:m: ¼ J01rest. In
addition, the zero-frequency sector of the radiation has
vanishing F i and, according to Eq. (5), we find

J12c:m:

Jc:m:

����
ω¼0

¼ G1 þ G2;
J12rest
Jrest

����
ω¼0

¼ G2: ð7Þ

Since the radiation carries no energy at OðG2Þ, Eq. (7) is
indeed the full result at this order. As we discuss further
below, our formula (3) agrees with this relation, but the
standard formula [34,35,49] does not.
The remainder of the Letter is devoted to using this

formalism to compute Jμν in G expansion, defined in
Supplemental Material, Sec. C [57].
Stress-energy pseudotensor.—To obtain the OðG3Þ cor-

rection to Jμν, it is necessary to determine T μνðkÞ toOðG2Þ.
The diagrams in Fig. 2 depict these contributions. The full
expression for T μνðkÞ is only known up toOðGÞ [5,33] and
is reviewed in Supplemental Material, Sec. E [57].
However, at OðG2Þ only the related integrand has been
constructed [59,60].
Fortunately, the full OðG2Þ expression for T μνðkÞ is not

needed to compute Jμν atOðG3Þ, since this term only enters

through an interference term with the leading Oð1Þ static
piece. This implies we only need to consider the leading
soft limit of T μνðkÞ which is governed by Weinberg’s soft
theorem [51]

T μνðkÞjω→0þ ¼−
i
2

X
a¼1;2

pμ
apν

a

Ea− k̂ · pa
2πδðωÞ

þ 1

ωþ i0

X
a¼1;2

�
pμ
a;fp

ν
a;f

Ea;f − k̂ · pa;f
−

pμ
apν

a

Ea − k̂ · pa

�
;

ð8Þ
where k̂ ¼ k=ω is a unit vector, and pμ

a ¼ ðEa; paÞ and
pμ
a;f ¼ ðEa;f; pa;fÞ are the initial and final momenta of

particle a. The first line is the static contribution to T μν

sourced by the initial particles and is exactly soft. The
factor of 1=2 is present to avoid double counting positive-
and negative-frequency contributions to the static piece.
The second term in Eq. (8) encodes the scattering

process. In the soft limit, the scattering trajectory reduces
to a kink at t ¼ 0 whose frequency space representation is
1=ðωþ i0Þ. The kink is fixed by the hard scattering data,
which, for our purposes, is needed to OðG2Þ, and can be
obtained from the scattering angle χ summarized in
Supplemental Material, Sec. D [57]. We also derive
Eq. (8) in the KMOC framework [5] by taking the soft
limit of amplitudes [61]. (See also [62,63].)
Perturbative results at OðG2Þ.—At OðG2Þ, the only

contribution to Jμν is due to interference between the Oð1Þ
static term and the OðGÞ contribution to T μν. As pointed
out above and by Damour [46], the zero-frequency limit of
T μν is all that is needed for this interference piece, which is
given by Eq. (8) and theOðGÞ impulse. Evaluating Eq. (3),
and using the notation in Supplemental Material, Sec. C
[57], yields

J12rest;2
Jrest

¼ νM2χ1IðσÞ ¼
νM2ð2σ2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p IðσÞ;

J01rest;2 ¼ 0; ð9Þ

FIG. 2. Sample diagrams depicting contributions to T μνðkÞ.
Straight and wavy lines denote matter and gravitons. Radiation
can be emitted from any of the external matter legs. The top row
illustrates relevant diagrams for the zero-frequency limit in
Eq. (8). The solid and hallow blobs correspond to the OðGÞ
and OðG2Þ deflections. The bottom row depicts T μνðkÞ at OðGÞ
with general frequency.
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where M ¼ m1 þm2 is the total mass, ν ¼ m1m2=M2 is
the reduced mass ratio, χ1 is the OðGÞ scattering angle
given in Supplemental Material [57], and IðσÞ is given in
Table I. Interestingly, Jμν can be written in terms of the
scattering angle χ1 and is independent of short-distance
details. We find the leading radiated angular momentum is
positive when χ1 > 0, i.e., the scattering is attractive.
Matching the above to Eq. (5) gives

G1;2 ¼ G2;2 ¼
νM2ð2σ2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p IðσÞ; ð10Þ

while all other form factors vanish at this order. Plugging
Eq. (10) into Eq. (5) gives the remaining components of Jμν

in the rest and c.m. frames:

J02c:m:;2

E1 − E2

¼ J02rest;2
m1 −m2σ

¼ bνM2ð2σ2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p IðσÞ; ð11Þ

J12c:m:;2

Jc:m:
¼ 2

J12rest;2
Jrest

¼ 2νM2ð2σ2 − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p IðσÞ: ð12Þ

These results can be directly verified using Eq. (3).
Our results for J12c:m:;2 agree with Eq. (4.9) of [46]; J02c:m:;2

agrees with Eq. (160) of [48] modulo an extra term. As a
nontrivial check, we computed the angular momentum loss
using the known 3.5PN RR force exerted on the matter
[26]. This predicts the first 2 orders of the velocity
expansion of Jμν at OðG2Þ, and we fully agree in the

c.m. and rest frames. However, we disagree with the
expression for J12rest;2 obtained by using the standard formula

]34,35 ], which leads to J12rest;2=Jrest ¼ J12c:m:;2=Jc:m:. This
disagrees with Eqs. (7) and (12) by a factor of 2 because
of the subtlety of applying standard formulas away from the
c.m. frame [64].
TheOðG2Þ result is intriguing for a couple reasons. First,

it implies that radiation can carry finite angular momentum
but, at the same time, zero linear momentum (see also the
recent discussions [64–67]). Second, the ratio J12=J is
different in the c.m. and rest frames, even in the large mass
ratio limit, i.e., m1 ≫ m2. Both features can easily be
understood using the RR force. Relative to the binary’s
initial state, the final state has a smaller impact parameter
but the same energy. This implies the radiated energy
vanishes but not the angular momentum. In addition, the
leading 2.5PN RR force exerts the same acceleration
between the two particles for any mass ratio. This implies
the recoil from the heavy particle cannot be ignored.
Therefore, the results do not have to coincide in the c.m.
and rest frames for large mass ratios, in contrast to the
conservative effects.
Perturbative results at OðG3Þ.—The OðG3Þ correction

to Jμν also contains an interference contribution between
the static term from the initial state and the soft limit of
T μνðkÞ in Eq. (8). At this order, one needs the OðG2Þ
correction to the momentum impulses, which can be
calculated given the scattering angle up to OðG2Þ.
The nonzero frequency contribution to Jμν at OðG3Þ

comes from inserting the full T μνðkÞ at OðGÞ, as reviewed
in Supplemental Material [57], into Eq. (3). To evaluate this
integral, we worked in the rest frame, expanded the
integrand in small velocity, p∞ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p

, and integrated
the resulting terms. Using this method, we computed the
nonrelativistic expansion of J12rest;3 to Oðp60

∞Þ. To resum
the velocity series, we constructed an ansatz by dressing the
same transcendental functions appearing in the expression
for Pμ at OðG3Þ [43,44] with rational functions of σ
containing unknown coefficients. The ansatz can be fixed
by matching the series to Oðp54

∞Þ which we confirm to
Oðp60

∞Þ. It would be interesting to verify the resummation
using modern integration methods. As a cross-check, we
reproduced the results for Pμ obtained in [43,44] using this
procedure.
The results for Jμν at OðG3Þ in the rest frame are

J12rest;3 ¼ bm1m2
2½m1CðσÞ þ ðm1 þm2ÞDðσÞ�;

J01rest;3 ¼ −bm1m2ðm2
1 −m2

2Þ
χ21ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p IðσÞ; ð13Þ

where CðσÞ and DðσÞ correspond to the nonzero frequency
and interference contributions (see Table I). Using the maps
in Eq. (5) we fix F i;3, Gi;3, and H12;3 by matching to Pμ

[43,44] and Eq. (13):

TABLE I. Functions specifying Pμ [43,44] and Jμν at OðG2Þ
and OðG3Þ. These are provided in Supplemental Material [57].

IðσÞ ¼ −
16

3
þ 2σ2

σ2 − 1
þ 4ð2σ2 − 3Þ

σ2 − 1

σ arcsinh
� ffiffiffiffiffiffi

σ−1
2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ;

EðσÞ
π

¼ f1 þ f2 logð
σ þ 1

2
Þ þ f3

σ arcsinh
� ffiffiffiffiffiffi

σ−1
2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ;

CðσÞ
π

¼ g1 þ g2 logð
σ þ 1

2
Þ þ g3

σ arcsinh
� ffiffiffiffiffiffi

σ−1
2

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ;

DðσÞ ¼ 3πð5σ2 − 1Þ
8

IðσÞ;

f1¼
210σ6−552σ5þ339σ4−912σ3þ3148σ2−3336σþ1151

48ðσ2−1Þ3=2 ;

f2 ¼ −
35σ4 þ 60σ3 − 150σ2 þ 76σ − 5

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ;

f3 ¼
ð2σ2 − 3Þð35σ4 − 30σ2 þ 11Þ

8ðσ2 − 1Þ3=2 ;

g1¼
105σ7−411σ6þ240σ5þ537σ4−683σ3þ111σ2þ386σ−237

24ðσ2−1Þ2 ;

g2 ¼
35σ5 − 90σ4 − 70σ3 þ 16σ2 þ 155σ − 62

4ðσ2 − 1Þ ;

g3 ¼ −
ð2σ2 − 3Þð35σ5 − 60σ4 − 70σ3 þ 72σ2 þ 19σ − 12Þ

4ðσ2 − 1Þ2 :
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F 2;3 ¼
m2

1m2

σ þ 1
EðσÞ; F 3;3 ¼ 0;

G2;3 ¼
m1m2ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
�
m1CðσÞ þ ðm1 þm2ÞDðσÞ

−
ðm2 þm1σÞ

M2h2
m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
EðσÞ

σ þ 1

	
;

H12;3 ¼ −bðm2
1 −m2

2Þ
χ21

σ2 − 1
IðσÞ; ð14Þ

where h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðσ − 1Þp

.
The form factors in Eq. (14) can be used to translate the

rest-frame results into c.m. ones via Eq. (5). For instance,

J12c:m:;3

Jc:m:
¼ νM3

p∞

�
CðσÞ þ 2DðσÞ − νp∞EðσÞ

h2

	
: ð15Þ

Defining J3 ≡ ðp3
∞=νM3h3ÞðJ12c:m:;3=Jc:m:Þ, we find that the

combination

h3J3 þ
νp3

∞

h2
EðσÞ ¼ ðσ2 − 1Þ½CðσÞ þ 2DðσÞ� ð16Þ

only depends on σ but not mi. This is precisely the relation
first observed in [47] by considering the matter impulses at
OðG4Þ. Here, we obtain the same result as a consequence of
the mass scaling at OðG3Þ in Eq. (13) and Lorentz
covariance in Eq. (5). Expanding J3 in small velocity yields

J3
π

¼ 28

5
p2
∞ þ

�
739

84
−
163

15
ν

�
p4
∞

þ
�
−
5777

2520
−
5339

420
νþ 50

3
ν2
�
p6
∞

þ
�
115769

126720
þ 1469

504
νþ 9235

672
ν2 −

553

24
ν3
�
p8
∞ þ � � � :

ð17Þ

The first three terms agree with Eq. (7.21) of [47].
Implications for OðG4Þ scattering.—It was pointed out

in [46,47,52] that RR effects on the scattering angle
and momentum impulses can be extracted from Pμ and
Jμν. Define the transverse impulse at OðG4Þ to be
Δp⊥;4 ≡ ½ðΔp1 · ΔbÞ=b�jG4 . It can be written as

Δp⊥;4 ¼ νM5ðG=bÞ4ðcconsb;4 þ crr;evenb;4 þ crr;oddb;4 Þ; ð18Þ

where cconsb;4 is the conservative contribution calculated in
[16,17] using the prescription [47], and crr;even and crr;odd

are the dissipative contributions that are even and odd under
time reversal. (cconsb;4 and crr;oddb;4 are cconsb;G4 and crr;totb;G4 in [47].)

Using the explicit map in [47], crr;oddb;4 is fixed by Pμ and Jμν

to OðG3Þ

crr;oddb;4 ¼ν

�
σð6σ2−5Þ
σ2−1

−
m1

M
2σ2−1

ðσþ1Þ
	
EðσÞ
p∞

−
νð2σ2−1Þ
σ2−1

�
3πð5σ2−1Þ

2
IðσÞþCðσÞþ2DðσÞ

	
;

ð19Þ
where the mass dependence is consistent with [47,68].
The first 3 orders of the velocity expansion in Eq. (19)
agree with the last line of Eq. (8.6) of [47].
In the high energy limit σ → ∞, crr;oddb;4 is dominated by

terms coming from CðσÞ and EðσÞ and scales as σ3. This
high-energy behavior is comparable to that of cconsb;4 .
However, the sum does not cancel and Δp⊥;4 ∼G4σ3 in
the high energy limit. It would be interesting to see if the
contribution from crr;evenb;4 tames this divergence.
Radiation reaction force.—Dissipative effects on a

binary system in a generic orbit can be described by the
RR force FRR. Let the spinless binary motion lie on the x–y
plane. In polar coordinates, FRR ¼ Frer þ ðFϕ=rÞeϕ,
where er and eϕ are the radial and angular unit vectors,
r is the relative distance, and ϕ is the polar angle. The
energy E and angular momentum J of the binary are not
conserved in the presence of FRR. Using the formulation in
[47,52], the fluxes of E and J are

_J ¼ Fϕ; _E ¼ _rFr þ _ϕFϕ: ð20Þ
One can bootstrap the RR force using the loss of energy

and angular momentum due to scattering in the c.m. frame.
Assuming FRR is a vector under spatial parity and odd
under time reversal,

FRR ¼ crprer þ cpp ¼ ðcr þ cpÞprer þ
cpJ

r
eϕ; ð21Þ

where p is the relative momentum, pr ¼ p · er, and cr and
cp are unknown coefficients that are even under time
reversal. We also assume that cr and cp can be expressed
in isotropic gauge, i.e., they only depend on r and p2.
Classical power counting yields the ansatz

cr ¼
G2

r3
cr;2ðp2Þ þ � � � ; cp ¼ G2

r3
cp;2ðp2Þ þ � � � ; ð22Þ

where the dots denote higher orders in G.
Plugging Eqs. (21) and (22) into Eq. (20), and integrating

over the conservative trajectories in the c.m. frame, which
to leading order are straight lines, yields the change in E
and J after scattering

ΔJ ¼ 2G2

b
E1E2

E12

cp;2ðp20Þ þ � � � ;

ΔE ¼ 2G2Jc:m:

3b3
½cr;2ðp20Þ þ 3cp;2ðp20Þ� þ � � � ; ð23Þ

Conservation of energy and angular momentum implies
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ΔJ ¼ −J12c:m:; ΔE ¼ −P0
c:m:: ð24Þ

Matching this to Eq. (12) and P0
c:m:;2 ¼ 0 atOðG2Þ fixes the

ansatz entirely:

cr;2ðp20Þ ¼ −3cp;2ðp20Þ;

cp;2ðp20Þ ¼ −
ν2M4

E1E2

ð2σ2 − 1ÞIðσÞ: ð25Þ

This extends the RR force atOðG2Þ to all orders in velocity,
which was only derived previously to the first three orders
in the velocity expansion [32]. The equations of motion for
the c.m. recoil, and the extension to OðG3Þ, can be studied
similarly.
This analysis, however, assumes that FRR can be

expressed in the isotropic gauge. It would be important
to check the agreement between Eq. (25) with the known
RR force in the overlapping region by including Schott
terms [53], i.e., total time derivatives that leave ΔJ and ΔE
invariant [54]. We leave this to future work.
Conclusions.—In this Letter, we build a new framework

to calculate the radiated angular momentum due to scatter-
ing that meshes well with QFT-based methods. Our work
opens up many avenues for future work. Some obvious
generalizations include dissipative effects in scattering with
spin [69,70], and in gauge [54,71] and supersymmetric
theories [36,72]. It would also be interesting to compare our
method with other approaches using soft theorems [41,42].
A crucial next step is to calculate Pμ and Jμν to OðG4Þ. For
the bounded binaries, it would be interesting to compare
with the flux from analytic continuation [11], and study its
impact on waveform models [73]. Last but not least, it
would be interesting to extend our framework beyond
gravitational-wave science, perhaps along the lines of jet
observables [74].
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