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We compute the mass and current quadrupole tidal corrections to the four-momentum and energy flux
radiated during the scattering of two spinless bodies, at leading order inG and at all orders in the velocities,
using the effective field theory worldline approach. In particular, we derive the conserved stress-energy
tensor linearly coupled to gravity generated by the two bodies, including tidal fields, and the waveform in
direct space. The integral is solved using scattering amplitude techniques. We show that our expressions are
consistent with existing results up to the next-to-next-to-leading order in the post-Newtonian expansion.
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Introduction.—The direct detection of gravitational
waves from binary black holes [1] and neutron stars [2]
has opened an new way to test gravity in the strong-field
regime [3] and explore fundamental physics [4]. An impor-
tant target of current and future observations is the meas-
urement of tidal deformations during the coalescence of
compact objects [5–15], which may shed light on the
internal structure of neutron stars [16], the nature of black
holes [17], or the existence of more exotic astrophysical
objects [18–20].
Tidal deformations affect the conservative two-body

dynamics as well as the emitted energy in gravitational
waves. They have been studied using different analytical
techniques, most notably the post-Newtonian (PN) expan-
sion [21–26], the effective one-body approach [27–29],
nonrelativistic general relativity [30–35], and the self-force
formalism [36–39] (see Ref. [40] for a review).
Another technique that has been employed to study the

gravitational two-body problem is the post-Minkowskian
(PM) method [41–49], consisting of expanding the gravi-
tational dynamics for small interactions, while keeping the
velocities fully relativistic. It has been recently subject of
great interest and activity, in particular in association with
the effective one-body approach [48,50–55], scattering
amplitude techniques [56–73], and worldline approaches
[74–88]. Tidal effects have been studied with the PM
expansion in [89–100]. These developments concern the
scattering of two bodies moving on unbounded orbits but
computed observables can be extended to the case of bound
orbits by applying the so-called “boundary-to-bound”

(B2B) dictionary, consisting of an analytic continuation
between hyperbolic and elliptic motion [101–104].
A long-standing and, until recently, unsolved problem

was the calculation of the four-momentum radiated in gravi-
tational waves—the so-called gravitational Bremsstrahlung
—during the scattering of two spinless bodies, at leading PM
order, i.e., atOðG3Þ. This was finally obtained very recently
in [105,106] via the amplitude-basedmethod of [60], in [70]
using the eikonal approach, and in [107] by a classical
effective field theory worldline approach. (See also
Refs. [97,108–117] for previous work on radiation effects.
Earlier pioneering studies include [47,118–123]. Moreover,
see Refs. [124,125] for conservative and radiative effects in
QED.) Crucially, these calculations strongly benefited from
several computational tools developed in the high-energy
community [126], such as reduction to master integrals by
integration-by-parts identities [127–129] and differential
equations [130–133] to solve the latter using the near-static
regime as initial conditions.
In particular, in [107] two of us showed that it is possible

to use these tools to directly compute radiated observables
in the PM expansion without going through the classical
limit of scattering amplitudes. Indeed, the emitted four-
momentum was obtained by phase-space integration of the
graviton momentum weighted by the modulo squared of
the classical radiation amplitude [116,117], the latter being
derived by matching to the conserved stress-energy tensor
linearly coupled to gravity, generated by localized sources.
The phase-space integral was then recast as a two-loop
integral that we solved with the aforementioned techniques.
In this Letter, we use the same approach but we go

beyond the minimally coupled case, and we compute for
the first time the effect of tidal deformations on the four-
momentum radiated into gravitational waves during
the scattering of the two bodies. From this, extending
the technique recently developed in [104], we also com-
pute the tidal corrections to the emitted energy flux, which
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is valid for both open and closed orbits. We focus on the
leading tidal contributions to the orbital dynamics, i.e., to
quadrupolar deformations, but the extension to higher
multipoles can be straightforwardly obtained using the
same approach.
This Letter is organized as follows. We first define the

Feynman rules in the case of tidal couplings, which will
allow us to derive the stress-energy tensor linearly coupled
to gravity, and the waveform in direct space, at leading PM
order. From the stress-energy tensor, we compute, using
reverse unitarity, the total four-momentum radiated into
gravitational waves, and from this the emitted flux. We then
use the B2B dictionary [101–104] to check our results with
PN derivations [26].
Leading PM tidal effects.—We consider the scattering of

two gravitationally interacting spinless bodies with mass
m1 andm2, approaching each other from infinity. Using the
mostly minus metric signature, setting ℏ ¼ c ¼ 1 and
defining the Planck mass as mPl ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
, the total

action describing the dynamics with tidal effects reads

S ¼ −2m2
Pl

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ Spp þ Stidal: ð1Þ

At leading order in their size, the bodies are described by
point-particle actions,

Spp ¼ −
X
a¼1;2

ma

2

Z
dτagμνðxaÞUμ

aðτaÞUν
aðτaÞ; ð2Þ

where τa and Uμ
a ≡ dxμa=dτa (with Ua

μU
μ
a ¼ 1) are, respec-

tively, the proper time and the four-velocity of body a. Note
that we have used the Polyakov-like form of the action and
fixed the einbein to unity, which simplifies the gravitational
coupling to the matter sources [77,134,135].
Tidal effects are included by augmenting the point-

particle action with nonminimal worldline couplings
involving higher-order derivatives of the gravitational field
[30]. At leading PM order, only linear tidal deformations,
i.e., those whose response is linear in the external gravi-
tational field, are relevant. These are described by cou-
plings quadratic in the Weyl tensor Cμανβ evaluated at the
particle position. The Weyl tensor can be decomposed in
terms of the gravitoelectric and gravitomagnetic fields,
defined as

Eμν ≡ CμανβUαUβ; Bμν ≡ 1

2
ϵαβγμC

αβ
δνU

γUδ; ð3Þ

where ϵαβγμ is the Levi-Civita tensor. At lowest order in
derivatives, and restricting to parity-even operators for
symmetry reasons, the action describing tidal deformations
is given by

Stidal ¼
X
a¼1;2

Z
dτaðcE2

a
Ea
μνE

μν
a þ cB2

a
Ba
μνB

μν
a Þ; ð4Þ

where cE2
a
and cB2

a
are Wilson coefficients related to the

relativistic Love numbers kð2Þa and jð2Þa [28], respectively, as

cE2
a
¼ 1

6
kð2Þa R5

a=G, cB2
a
¼ ð1=32Þjð2Þa R5

a=G, with Ra the
radius of the object a. Tidal operators can be equally
defined by replacing the Weyl tensor in Eq. (3) with the
Riemann tensor: the difference can be removed by field
redefinitions; see, e.g., Refs. [24,30,136]. Here, we will use
the Riemann tensor because it leads to simpler calculations.
In full generality, one could also add to Eq. (4) operators
that include spatial derivatives, orthogonal to the worldline
of the body, of the gravitoelectric or gravitomagnetic field,
as well as time derivatives along the worldline [28]. Higher
spatial derivatives describe higher-order multipolar defor-
mations of the objects while time derivatives account for
the time dependence of the Wilson coefficients; see, e.g.,
Refs. [7,34].
Following [107,117], our first goal is to compute the stress-

energy tensor Tμν defined as the linear term sourcing the
gravitational field in the effective action [30,137,138], i.e.,

Γ½xa; hμν� ¼ −
1

2mPl

Z
d4xTμνðxÞhμνðxÞ; ð5Þ

with hμν ≡mPlðgμν − ημνÞ, which includes contributions
from both the bodies and the gravitational self-interactions.
To do so, we use a matching procedure consisting in
expanding the action [Eq. (1)] for small hμν and computing
perturbatively all Feynman diagrams with one external
graviton. The stress-energy tensor is obtained by matching
this result with the one computed using Eq. (5). To proceed,
we need to introduce the Feynman rules.
Adding the usual de Donder gauge-fixing term to Eq. (1),

from the quadratic part of the gravitational action one can
extract the graviton propagator,

ð6Þ

where Pμνρσ ≡ ημðρησÞν − ðημνηρσ=2Þ. (The boundary con-
ditions that specify the contour of integration in the
complex k0 plane are discussed in [117].) Furthermore,
expanding the Einstein-Hilbert action in Eq. (1) at cubic
order we can extract the cubic graviton vertex.
We also need to find the Feynman rules coming from the

interaction of gravity with the external sources, i.e., the two
bodies. These are of two types: minimal and tidal. For the
former, from Eq. (2) one sees that there is only one linear
interaction vertex. As discussed in [117] (see also
Refs. [77,78]), we isolate the powers of G by expanding
the position and velocity of the bodies around straight
trajectories, i.e.,

PHYSICAL REVIEW LETTERS 129, 121101 (2022)

121101-2



xμaðτaÞ ¼ bμa þ uμaτa þ δð1ÞxμaðτaÞ þ…; ð7Þ

Uμ
aðτaÞ ¼ uμa þ δð1ÞuμaðτaÞ þ…; ð8Þ

where ua is the (constant) asymptotic incoming velo-
city and ba is the body displacement orthogonal to it,
ba · ua ¼ 0, while δð1Þxμa and δð1Þuμa are respectively the
deviation from the straight trajectory and constant velocity
of body a at order G, induced by the gravitational
interaction. With this expansion we obtain the usual
Feynman rules for the leading and next-to-leading PM-
order graviton coupling in the point-particle case [117],
respectively represented by the diagrams

ð9Þ

where a filled dot denotes a minimally coupled particle
evaluated using the straight worldline and the cross
attached to the wiggly line is there to remind us that there
is no propagator attached to the straight worldline. Their
explicit expressions can be found in [107,117].
Moreover, we need to provide the Feynman rules from

tidal contributions. In this case, from Eq. (4) there is no
tidal coupling linear in the graviton. Tidal couplings of two
gravitons to the body can be directly computed from the
action using

MEa
μναβðlÞ≡

2δEa
μν

δhαβðlÞ ¼ ημσηνρuσau
ρ
alαlβ

þðl · uaÞ2ηαðμηνÞβ − 2ðl · uaÞuρaηρðμηνÞðαlβÞ;

MBa
μναβðlÞ≡

2δBa
μν

δhαβðlÞ ¼
1

2
lρuσaϵρσαðμ½ηνÞβðl · uaÞ− ηνÞρu

ρ
alβ�

þ ðα↔ βÞ; ð10Þ

where we use the flat metric ημν to raise and lower indices.
At leading PM order one obtains

ð11Þ

where

Vμν;κλ ¼ i
X
X¼E;B

X
a¼1;2

cX2
a

4m2
Pl

Z
dτaeiðl1þl2Þ·ðbaþuaτaÞΠXa

μν;κλ;

ð12Þ

with

ΠXa
μν;κλðl1;l2Þ≡MXa

μναβðl1ÞMXa
κλ

αβðl2Þ: ð13Þ
On the left-hand side of Eq. (11), the square denotes a
tidally coupled particle evaluated using the straight world-
line. We have verified that our expression agrees with that
which can be read off from the four-point amplitude at
leading PM order obtained in Ref. [89].
Stress-energy tensor with tidal effects.—The stress-

energy tensor needed to compute the emitted four-
momentum is given by the sum of the point-particle and
tidal contributions, i.e.,

T̃μν ¼ T̃μν
pp þ T̃μν

tid; ð14Þ
where the tilde denotes the Fourier transform, T̃μνðkÞ ¼R
d4xTμνðxÞeik·x. The stress-energy tensor in the point-

particle case was computed in [107,117] (see also
Ref. [75]). Discarding the static contribution, which does
not enter the calculation, the leading-order diagrams are
represented in Fig. 1. Using the notation

R
q ≡

R ½d4q=ð2πÞ4�
and �δðnÞðxÞ≡ ð2πÞnδðnÞðxÞ, it can be written as

ð15Þ

where is the contribution from diagram (a), from the
same diagram but with the two particles exchanged and tμν⊢
from (b). We refer the reader to Ref. [107,117] for their
explicit expressions.
The contribution of the tidal operators to the stress-

energy tensor has no static piece. The leading PM term can
be obtained from the diagram (c) in Fig. 1 and it is
symmetric under exchange of the two particles. We obtain

T̃μν
tid ¼

m1m2

4m2
Pl

Z
q1;q2

�δ ðq1 · u1Þ�δ ðq2 · u2Þ�δ ð4Þðk − q1 − q2Þ

×
eiq1·b1þiq2·b2

q21q
2
2

X
a¼1;2

X
X¼E;B

tμν
X2
a
ðq1; q2Þ; ð16Þ

(a) (b) (c)

FIG. 1. The Feynman diagrams needed for the computation
of the stress-energy tensor: (a) and (b) are the point-particle
contributions, and (c) is the tidal one. The symmetric terms are
obtained by exchange of 1 ↔ 2.
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with tμνX2
1

≡ −2ðcX2
1
=m1Þq21ημαηνβΠX1

αβ;κλðuκ2uλ2 − ηκλ=2Þ, and
an analogous formula for ð1 ↔ 2Þ. The explicit expressions
of tμν

X2
1

and tμν
X2
2

after use of Eq. (13), as well as the calculation

of the waveform in direct space, are given in the
Supplemental Material (SM) [139].
Note that, because of scaling arguments, the tidal contri-

bution vanishes in the soft limit ω → 0. As a consequence,
at this order in G tidal fields leave no trace on the gravi-
tational wave memory. (See the SM for details.) Since the
emitted angular momentum, Jrad, at OðG2Þ is proportional
to the gravitational wave memory [113], we conclude that
there are no tidal effects on the emission of angular mo-
mentum at this order. On the other hand, at leading-PM
order, the radiation reaction on the scattering angle is rela-
ted to the radiated angular momentum by χrad ¼ 1

2
χconsLO Jrad

[113,115,140], where the leading-order conservative con-
tribution to the scattering angle, χconsLO , is of OðGÞ. As a
consequence, χrad is unaffected by tidal effects at OðG3Þ.
Radiated four-momentum.—The derivation of the emit-

ted linear momentum closely follows the procedure
presented in Ref. [107]. In particular, the emitted four-
momentum is given as an integral over phase space of the
outgoing graviton momentum kμ weighted by the pro-
bability of one graviton emission, which here is given by
the square of the total stress-energy tensor from Eq. (14).
Although we use a quantum mechanical language, this
quantity is well defined classically [31,107]. Defining
�δ�ðk2Þ ≡ θð�k0Þ�δðk2Þ we obtain, for the leading-
order contribution from the tidal effects to the radiated
momentum,

Pμ
tid ¼

1

2m2
Pl

Z
k

�δ þðk2ÞkμRe½T̃αβ
ppPαβρσT̃

�ρσ
tid �: ð17Þ

From the relation with tidal Love numbers below Eq. (4),
for Ra ∼Gma, the contribution quadratic in T̃ tid is further
suppressed by OðG4Þ and is thus neglected.
Following [107], we can interpret the phase-space delta

function as a cut propagator, so that the integrand repro-
duces a vacuum-to-vacuum diagram with a cut, pictorially
represented as

ð18Þ

where, using Eqs. (15) and (16) for the stress-energy tensor,
the three topologies come from considering the contribu-
tions from , , and

Re½tαβ⊢ Pαβ
ρσtX1�

ρσ �, respectively. Notice that the H diagram
is absent, because there are no tidal interactions linear
in hμν.
We can now recast the problem of computing the emitted

momentum as evaluating a cut two-loop integral followed
by a 2D Fourier transform. In particular, the emitted four-
momentum can be decomposed without loss of generality
along ǔμ1 ≡ ðuμ1 − γuμ2Þ=ð1 − γ2Þ, ǔμ2 ≡ ðuμ2 − γuμ1Þ=ð1 − γ2Þ
(satisfying ua · ǔb ¼ δab), with γ ≡ u1 · u2, and bμ. By the
symmetries of the integrand, one can show that the
component along bμ vanishes, so that the momentum
can be written as

Pμ
tid ¼

15πG3m2
1m

2
2

64jbj7
X
X

�cX2
1

m1

ðEXǔμ1 þ FXǔμ2Þ þ ð1 ↔ 2Þ
�
:

ð19Þ

The functions EX and FX inside the brackets depend only
on γ and can be expressed as 2D Fourier transforms of cut
two-loop integrals, IX

E ðγÞ and IX
F ðγÞ. For instance,

EXðγÞ ¼ jbj7
Z
q

�δ ðq · u1Þ�δ ðq · u2Þeiq·bð−q2Þ5=2IX
E ðγÞ;

ð20Þ

and analogously for FXðγÞ. The explicit expressions of the
two-loop integrals are given in the SM.
Making use of reverse unitarity [141–144], we can use

integration-by-parts identities to express the two-loop inte-
grals IX

E;F as linear combinations of simpler master inte-
grals. We perform this reduction using the MATHEMATICA

package LITERED [145,146], finding that the three integrals
defined in Eqs. (4.13)–(4.15) of Ref. [107] form a complete
base. (In the minimally coupled case, we need a fourth
integral, defined in Eq. (4.16) of this reference. This comes
from the H diagram, which here is absent.) These integrals
can be solved using differential equation methods
[126,130–133,147,148]. Eventually, we find that

EX ¼ fX1 þ fX2 log
�
γ þ 1

2

�
þ fX3

arccoshðγÞffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p ; ð21Þ

with fX1 , f
X
2 , f

X
3 , and FX given in Table I.

FromEq. (19), one can compute the radiated energy in the
center-of-mass frame from tidal effects, ΔEtid ≡ Ptid · uc:m:.
Defining the total mass m≡m1 þm2, the symme-
tric mass ratio ν≡m1m2=m2 and hðν; γÞ≡ E=m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þp

, where E is the incoming energy of the
two-body system, this reads

ΔEtid ¼
15πG7m8ν2

64jbj7h GðEX;FXÞ; ð22Þ
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where

GðEX;FXÞ≡X
X

½κX2EX þ λX2ðFX − EXÞ�; ð23Þ

and we have introduced the dimensionless parameters [95]

λX2 ≡ 1

G4m5

�cX2
1
m2

m1

þ
cX2

2
m1

m2

�
; ð24Þ

κX2 ≡ 1

G4m4

�cX2
1

m1

þ
cX2

2

m2

�
: ð25Þ

Expanding for small velocities v≡ ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
=γ, we find

EE ¼ 288v3 þ 2143

7
v5 þ 14542

21
v7 þOðv9Þ;

EB ¼ −98v5 þ 585

4
v7 þOðv9Þ;

FE ¼ 288v3 þ 336v5 þ 3027

4
v7 þOðv9Þ;

FB ¼ −210v5 −
669

4
v7 þOðv9Þ; ð26Þ

which shows that the current (magnetic) quadrupole is 1PN
order higher than the mass (electric) one, as expected.
Finally, the emitted energy from a two-body encounter

can be used to derive the energy loss for closed orbits by the
use of the B2B relation [101–104], ΔEðclosedÞðγ; JÞ ¼
ΔEðopenÞðγ; JÞ − ΔEðopenÞðγ;−JÞ, where the emitted energy
on the right-hand side must be expressed in terms of
the angular momentum J ¼ jbjmν

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
=hðν; γÞ (with

h ¼ E=m) and analytically continued to bound orbits with
h < 1, corresponding to γ ¼ 1þ ½ðh2 − 1Þ=2ν� < 1. This
yields

ΔEðclosedÞ
tid ¼ 15πG7m15ν9ð1 − γ2Þ7=2

64J7h8
GðẼX; F̃XÞ; ð27Þ

where ẼX ¼ −2EX and F̃X ¼ −2FX, with EX and FX

subject to the replacement ðγ2 − 1Þn=2 → ð1 − γ2Þn=2. In the
following we show that this expression is consistent with
known results in the PN approximation.

Radiated flux.—The instantaneous flux is defined as
F≡ dE=dt. Focussing on the tidal correction, Ftid, and
integrating this relation for half of the scattering trajectory,
we obtain

ΔEtidðγÞ ¼
Z

∞

jbj

dr
_r
Ftidðr; γÞ: ð28Þ

We have assumed that the expression of the flux is in
isotropic gauge; thus, we have dropped the dependence on
J in Ftid. From Eq. (22), the leading-order tidal contribution
to the flux scales as G7 so that its dependence on r is fully
determined: Ftidðr; γÞ ∝ r−8. By integrating the right-hand
side of Eq. (28) with this ansatz, and using _r for straight
orbits at this PM order, we find

Ftidðr; γÞ ¼
G7m8

r8
3ν3

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
4h3ξ

GðEX;FXÞ; ð29Þ

where ξ≡ E1E2=E, and Ea is the initial asymptotic
energies of body a ¼ 1, 2. This result extends the one
for point-particles computed in [104]. As discussed there,
due to the absence of a term higher in G, the leading PM
computation is insufficient to reconstruct the leading PN
flux but it provides the full velocity—or reduced-energy—
series to order G3.
Consistency check.—We can compare our result for

small velocities to the emitted flux and energy in one
period derived in the PN expansion in the large eccentricity
limit, i.e., to leading order in large J.
The tidal effects on the gravitational wave energy flux for

spinless bodies has been computed up to the next-to-next-
to-leading PN order in [26] (see Refs. [24,25] for a
derivation of the equations of motion and Hamiltonian
in this case, respectively; see also Ref. [97] for a calculation
of the PM Hamiltonian and the emitted energy for
quasicircular orbits at leading PN order, with interactions
cubic in the curvature and tidal effects). Although in that
reference the results were given only for quasicircular
orbits, their authors have kindly provided us with an
expression of the flux FðPNÞ

tid and the conserved energy E
and angular momentum J for generic orbits, written in
terms of r, _r, and _ϕ, respectively the two-body distance,
the radial velocity, and the angular velocity in the

TABLE I. Functions specifying the radiated four-momentum in Eq. (19).

fE1 ¼ f1=½2ðγþ 1Þ3
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�g½937γ9 þ 1551γ8 − 2463γ7 − 5645γ6þ20415γ5 þ 65965γ4 − 349541γ3 þ 535057γ2 − 360356γþ 92160�

fB1 ¼fðγ−1Þ=½4ðγþ1Þ3
ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

p
�g½1559γ8þ3716γ7−1630γ6−11660γ5−28288γ4þ155292γ3−543442γ2þ535212γ−180775�

fE2 ¼ 30
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ð21γ4 − 14γ2 þ 9Þ

fB2 ¼ 210ðγ2 − 1Þ3=2ð1þ 3γ2Þ, fX3 ¼ −fX2 ½γð2γ2 − 3Þ=4ðγ2 − 1Þ�
FE ¼ f3ðγ − 1Þ2=½ðγ þ 1Þ3

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�g½42γ8 þ 210γ7 þ 315γ6 − 105γ5 − 944γ4−1528γ3 þ 22011γ2 − 33201γ þ 16272�

FB ¼ −f3ðγ − 1Þ3ð105γ5 þ 630γ4 þ 1840γ3 þ 3690γ2 − 17769γ þ 15984Þ=½ðγ þ 1Þ3
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
�g
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center-of-mass frame. We have used the expressions for E
and J to replace _r ¼ _rðr; E; JÞ and _ϕ ¼ _ϕðr; E; JÞ in the
flux and we have computed the emitted energy for generic
closed orbits by integrating it in the variable r over one
period.
The resulting energy reduces to that given in [26] for

circular orbits. Moreover, it is consistent with the expansion
Eq. (26) [taking into account the factor of −2 according to
Eq. (27)]. Since all the powers of γ in Table I intervene in
this expansion, this is a rather nontrivial check of our

calculation. Moreover, the PN flux FðPNÞ
tid coincides with the

low-velocity expansion of Eq. (29), up to total derivatives
in the balance equations—the so-called Schott terms.
Although the two fluxes are written in different gauges
[in harmonic and isotropic gauge, respectively, in Ref. [26]
and in Eq. (29)] the gauge difference is 2PM orders higher
and can be neglected. For the reader’s convenience, we
report the explicit expression of the PM flux in the ancillary
file submitted with the arXiv version of this article.
High-energy limit.—Going back to the energy loss for

hyperboliclike orbits, Eq. (22), for large γ we find EX
HE¼

ðaXþbX logγÞγ5þOðγ3Þ and FX
HE¼cXγ6þdXγ4þOðγ2Þ,

with aE ¼ 937=2 − 945 log 2, aB ¼ 1559=4 − 945 log 2,
bE ¼ bB ¼ 315, cE ¼ 126, cB ¼ 0, dE ¼ −504, and
dB ¼ −315. While EE

HE and EB
HE scale in the same

way with γ, FE
HE and FB

HE behave differently. Our
perturbative expansion is valid for γðGm=jbjÞ ≪ 1
[54,149,150] (see also Ref. [122]). In this regime
ΔEtid ≪ ΔE ∼ ðGm=jbjÞ3ðm=hÞγ3 ≪ E.
Conclusion.—We have computed the four-momentum

and the flux emitted in gravitational waves by the scattering
of tidally interacting bodies at leading order in the post-
Minkowskian approximation. Our computation uses the
worldline effective field theory approach and the results
obtained are, to our knowledge, new. We focused on
electric and magnetic-type quadrupolar effects but our
computations can be straightforwardly extended to higher
multipoles or to higher orders in the curvature fields.
We have derived the emitted energy for bound orbits

using the B2B dictionary and verified that it is consistent
with PN results for eccentric orbits. Considering the
ultrarelativistic limit of the energy loss, we observe that
the contributions of the electric and magnetic component
scale differently unlike the case of the conservative scatter-
ing angle. It would be interesting to use the derived PM flux
to study the corresponding modifications of the waveform.
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