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Determining whether a given state can be transformed into a target state using free operations is one of
the fundamental questions in the study of resource theories. Free operations in resource theories can be
enhanced by allowing for a catalyst system that assists the transformation and is returned unchanged, but
potentially correlated, with the target state. While this has been an active area of recent research, very little
is known about the necessary properties of such catalysts. Here, we prove fundamental limits applicable to
a large class of correlated catalytic transformations by showing that a small residual correlation between a
catalyst and target state implies that the catalyst needs to be highly resourceful. In fact, the resource
required diverge in the limit of vanishing residual correlation. In addition, we establish that in imperfect
catalysis a small error generally implies a highly resourceful embezzling catalyst. We develop our results in
a general resource theory framework and discuss its implications for the resource theory of athermality, the
resource theory of coherence, and entanglement theory.
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Introduction.—A quantum resource theory is defined by
a set of free operations [1] and a set of free states with the
property that free operations are closed under composition
and map free states into free states [2,3]. Resource theories
offer a general and versatile framework to quantify the
usefulness of different quantum states and their intercon-
vertibility using free operations. Prominent examples of
resource theories include entanglement theory [4–6] (where
local operations and classical communication are free and
entanglement is considered a resource), athermality in
thermodynamics [7–9] (where transformations that pre-
serve the thermal state are free and states out of thermal
equilibrium are resourceful), and coherence [10–12] (where
incoherent states are free and coherence is a resource).
In the following, we will use the notation ρ↣ρ0 to

indicate that a free transformation exists which maps a
quantum state ρ to a quantum state ρ0. Given a fixed state ρ,
a fundamental question in any resource theory is to find the
set of states FOðρÞ of all ρ0 such that ρ↣ρ0, i.e., all states
that can be reached from ρ using free operations. More
precisely, we are often interested in its closure, FOðρÞ,
which also contains quantum states that can be arbitrarily
well approximated by free operations from ρ [13]. The set
of free operations can be enlarged by allowing for catalytic
transformations, ρ ⊗ ν↣ρ0 ⊗ ν, where the catalyst ν is
returned unchanged. The set COðρÞ then contains all states
ρ0 for which such a catalytic transformation from ρ exists.
Its closure is denoted COðρÞ. More recently, a further

relaxation has been studied where correlations between the
catalyst and the target state after the transformation are
allowed and can be used as a resource in catalytic trans-
formations [16–24]. We say that a state ρ0 can be reached by
a correlated catalytic transformation, or ρ0 ∈ CCOðρÞ, if
there exists a catalyst ν such that ρ ⊗ ν↣τ where τ is any
state that has marginals ρ0 (for the target system) and ν (for
the catalyst system). Wewill similarly be concerned with its
closure, CCOðρÞ.
To the best of our knowledge, the idea of residual

correlations between the system and the catalyst in the
output state while the catalyst returns exactly to its original
form was first introduced in Ref. [25]. In Ref. [26] the
authors first discussed whether the free energy completely
characterizes correlated catalytic transformations in re-
source theory of athermality. This question was answered
positively in the classical case and conjectured for the
quantum case in Ref. [19]. The conjecture for the quantum
case has been recently resolved in the affirmative in
Ref. [22] using the previously known construction that
allows one to reduce the problem to asymptotic intercon-
vertibiliy [27]. This was recently generalized for any
resource theory in Ref. [24].
The sets FO, CO, and CCO are generally difficult to

characterize, but they take on a natural form for certain
resource theories where they are fully characterized by
resource monotones. Let R be a function from quantum
states to positive reals that measures the resourcefulness of
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states. We say that such a map is (i) a resource monotone if
it is nonincreasing under free operations, (ii) tensor-
additive if it is additive under tensor products, and
(iii) super-additive if RðρABÞ ≥ RðρAÞ þRðρBÞ for any
joint state ρAB with marginals ρA and ρB. Resource
monotones play an important role in characterizing the
above sets. It is easy to see that a necessary (but not
generally sufficient) condition for ρ0 to be in the set FOðρÞ
is that RðρÞ ≥ Rðρ0Þ for any resource monotone. For ρ0 to
be in COðρÞ this ordering only needs to be required for
tensor-additive resource monotones, and finally for ρ0 to be
in CCOðρÞ the ordering only needs to be satisfied for tensor-
additive and super-additive resource monotones. Finally,
for ρ0 to be in the closure of the sets we require in addition
the resource monotone to be lower semicontinuous (see
Supplemental Material, Sec. IV, Lemma 6 [28], for a
proof). In general, it is not known which resource monot-
ones characterize these sets, i.e., what are the necessary and
sufficient conditions for ρ0 to be in any of the sets. The
particular appeal of CCOðρÞ is that for some prominent
resource theories it is fully characterized by a single
resource monotone, e.g., the nonequilibrium free energy
[22] or the relative entropy of entanglement [23].
Moreover, the set CCOðρÞ is also of operational interest
since it contains states that are strictly more useful than
COðρÞ for some information-theoretic tasks, for example
quantum teleportation [63]. Figure 1 gives an example of
these sets and their full characterization for the resource
theory of athermality restricted to states that commute with
the Hamiltonian.
While allowing arbitrary correlations between the cata-

lyst and target state arguably goes against the spirit of
catalysis, recent works [19,22–24] showed that for some
prominent reversible resource theories target states in ρ0 ∈
CCOðρÞ can be achieved with arbitrarily small correlations
with the catalyst.
In this Letter, we investigate the fundamental limits of

such correlated catalytic transformations. Our results apply
to any catalytic transformation between a given pair of
“hard-to-transform” states and are applicable to any re-
source theory in which certain monotones are tensor
additive. We focus on the problem of preparing suitable
catalysts, and we find that for some target states that lie in
the set CCOnCO, correlated catalytic transformations with
small correlations require catalysts that are highly resource-
ful, and in fact, require unbounded resources in the limit of
vanishing correlations. (See Fig. 1 for a depiction of such
states.) In particular, we show a quantitative trade-off
between the error ε achievable in the transformation and
the resources needed for the catalyst.
Formal setting.—We denote by SðHÞ the set of quan-

tum states on a d-dimensional Hilbert space H. We
introduce the purified distance [64], which for normalized
states is defined as Pðρ; σÞ ≔ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Fðρ; σÞp
, where

Fðρ; σÞ ≔ ðTrj ffiffiffi
ρ

p ffiffiffi
σ

p jÞ2 is the Uhlmann fidelity. The
Umegaki relative entropy is defined as DðρkσÞ ¼
Tr½ρðlog ρ − log σÞ�. Since both the fidelity and the relative
entropy satisfy a data-processing inequality under quantum
channels, we can define resource monotones

DðρÞ ¼ min
σ∈F

DðρkσÞ and D1=2ðρÞ ≔ − logFðρÞ

with FðρÞ ≔ maxσ∈FFðρkσÞ. These are the limiting cases
at α ¼ 1 and α ¼ 1=2, respectively, of a larger family of
resource monotones, DαðρÞ ≔ minσ∈F D̃αðρkσÞ where
D̃αðρkσÞ is the sandwiched Rényi divergence [65–67]
and is defined for α ∈ ½1

2
; 1Þ ∪ ð1;∞Þ as [65–67]

D̃αðρkσÞ ≔
1

α − 1
log Trðσ1−α

2α ρσ
1−α
2α Þα:

We say that Dα is additive for the state ρ if Dαðρ ⊗ νÞ ¼
DαðρÞ þDαðνÞ for any catalyst state ν.
We are now ready to define correlated catalytic trans-

formations [22–24] as follows:
Definition 1. Let ρ; ρ0 ∈ SðHÞ be a pair of quantum

states and ε > 0 a small positive constant. We say that ρ can

FIG. 1. Example of the sets FO, CO and CCO for classical
resource theory of athermality with rational Gibbs states
where we fixed the input state p⃗ ¼ f2=3; 1=12; 3=12g and
γ ¼ f7=10; 2=10; 1=10g. We show one corner of the probability
simplex (which is a triangle in this case). Each point in the
triangle corresponds to a (classical) state of a three-dimensional
system. The points in the red region satisfy the conditions of
Theorem 2. The table contains the conditions characterizing each
set, where Dα is the Rényi divergence of order α and D is the
Kullbach-Leibler divergence.
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be transformed into ρ0 by an ε-correlated catalytic trans-
formation if there exists a free operation N and a catalyst
state ν ∈ SðH0Þ such that N ðρ ⊗ νÞ ¼ τ, TrH½τ� ¼ ν,
and Pðρ0 ⊗ ν; τÞ ≤ ε. If this holds for any ε > 0 we say
that ρ is transformable into ρ0 by a correlated catalytic
transformation.
For the specific resource theories we consider, the

quantity D completely characterizes the set CCO, namely
the necessary and sufficient condition for ρ0 to be in
CCOðρÞ is that DðρÞ ≥ Dðρ0Þ (see the discussion of the
individual resource theories below). Motivated by this, we
identify D as the relevant resource measure to evaluate the
resourcefulness of the catalyst. We remark that the dimen-
sion of the Hilbert space of the catalyst, without adding
any further constraints, does not quantify the resourceful-
ness of the catalyst. For example, in the resource theory of
athermality, states with large free energy can be constructed
easily in low dimension using a sufficiently gapped
Hamiltonian.
Main result and discussion.—We are now ready to state

our main theorem.
Theorem 1. Assume that ρ; ρ0 ∈ SðHÞ and α ∈

½1=2; 1Þ such that Dα is additive for the state ρ0 and
DαðρÞ < Dαðρ0Þ. Then, for any ε-correlated catalytic trans-
formation with catalyst ν mapping ρ into ρ0, we have

DðνÞ ¼ Ω
�
log

1

ε

�
:

In particular, when α ¼ 1=2 and, thus, FðρÞ > Fðρ0Þ, we
have the quantitative bound

ffiffiffiffiffiffiffiffiffiffi
FðνÞ

p
≤

εffiffiffiffiffiffiffiffiffiffi
FðρÞp

−
ffiffiffiffiffiffiffiffiffiffiffi
Fðρ0Þp :

We formulated the above theorem for any resource
theories, but it is only meaningful when there exist a pair
of states and α satisfying the assumptions. Quantitative
bounds for α ≠ 1=2 can be found in the Supplemental
Material, Sec. V [28]. The quantitiesDα can be interpreted
as a measure of distance between a state and the free set. In
the following, we refer to the quantity

ffiffiffiffiffiffiffiffiffiffi
FðρÞp

−
ffiffiffiffiffiffiffiffiffiffiffi
Fðρ0Þp

as
fidelity gap.
The condition DαðρÞ < Dαðρ0Þ for some α ∈ ½1=2; 1Þ,

together with the additivity assumption, implies that the
output state ρ0 lies outside the set COðρÞ (see the
Supplemental Material, Sec. IV, Lemma 6 [28] for a
detailed discussion). Hence, catalytic transformation from
ρ to ρ0 is possible only by allowing correlations (see Fig. 1).
For this reason, we say that the pair of states ðρ; ρ0Þ is “hard
to transform,” and we will establish the existence of such
state pairs for the resource theories we consider.
For correlated catalysis, i.e., when there are nonzero

residual correlations between the catalyst and the system
in the output state, the theorem implies that, as the error

decreases, the distance between the catalyst and the free set
must increase. In particular, in the limit of zero error, the
catalyst state must be orthogonal to the set of free states,
i.e., its resourcefulness is unbounded. As we discuss in the
Supplemental Material, Sec. V [28], we can also derive
bounds for the robustness of the catalyst.
We point out that the above theorem actually also holds if

we lift the restriction TrH½τ� ¼ ν, and hence we do not need
to exactly recover the catalyst after the transformation. If
we allow a small error in the catalyst after the trans-
formation, any state transformation is possible. This phe-
nomenon is called embezzling [68–70]. Our result shows
that to achieve small errors we need a highly resourceful
embezzling catalyst. In particular, we recover the optimal
lower bound for embezzlement already established for
entanglement theory [69,71,72] and we extend it, in
principle, to any resource theory.
Sketch of the proof of Theorem 1.—We only give a sketch

of the proof below but leave the formal derivation to the
Supplemental Material, Sec. V [28], and Appendix A. We
will need the smoothed sandwiched quantum Rényi diver-
gence, which is defined for two states ρ; σ ∈ SðHÞ and
α ∈ ½1=2; 1Þ as

D̃ε
αðρkσÞ ≔ max fD̃αðρ̃kσÞ∶ρ̃ ∈ S•ðHÞ; Pðρ̃; ρÞ ≤ εg;

where S•ðHÞ is the set of subnormalized states. An
important ingredient in the proof of the above theorem
is the data-processing inequality for this quantity. We
believe this result to be of independent interest. In the
Supplemental Material, Sec. II [28], and Appendix B, we
give a proof and we also argue why a similar result does not
hold for some other generalizations of Rényi divergence.
We note that the use of subnormalized states in the
definition of the smoothed sandwiched quantum Rényi
divergence turns out to be crucial for α ∈ ½1

2
; 1Þ, which is in

contrast to the case α > 1.
Theorem 2. Let ρ; σ ∈ SðHÞ be two states and E a

quantum channel. For any α ∈ ½1=2; 1Þ

D̃ε
αðρkσÞ ≥ D̃ε

αðEðρÞkEðσÞÞ:

Another key ingredient of our proof is the following
continuity bound for the quantum sandwiched Rényi
divergences in the interval α ∈ ð0; 1Þ.
Proposition 1. Let α ∈ ð0; 1Þ and ρ; σ ∈ S•ðHÞ. Then

for any ρ̃ ∈ S•ðHÞ such that Δðρ; ρ̃Þ ≤ ε ≤ Q̃αðρkσÞð1=αÞ
we have

jD̃αðρkσÞ − D̃αðρ̃kσÞj ≤
1

α − 1
log

�
1 −

εα

Q̃αðρkσÞ
�

where we introduced generalized trace distance [67] which
for normalized states is defined as 2Δðρ; σÞ ≔ kρ − σk1 and
the function Q̃αðρkσÞ ¼ exp ðα − 1ÞD̃αðρkσÞ. We remark
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that the previous bound does not depend explicitly on the
dimension of the Hilbert space of the states. Moreover,
the previous proposition implies that the resourcemonotones
Dα are also continuous (see the Supplemental Material,
Corollary 4 [28]).
The main idea of the proof of the main theorem is that we

choose a pair of states ðρ; ρ0Þ such that DαðρÞ < Dαðρ0Þ,
and hence, since Dα is tensor additive by assumption, the
data-processing inequality for Dα for any (uncorrelated)
catalytic transformation taking ρ to ρ0 is strictly violated.
Moreover, for any ε-correlated catalytic transformation
with catalyst ν mapping ρ into ρ0, we have both

Dαðρ ⊗ νÞ < Dαðρ0 ⊗ νÞ and

Dε
αðρ ⊗ νÞ ≥ Dε

αðτÞ ≥ Dαðρ0 ⊗ νÞ;

where the inequalities on the second line are due to the
monotonicity for the transformation (Theorem 2), including
the catalyst and our assumption that τ is ε-close to ρ0 ⊗ ν.
However, these two inequalities lead to a tension with the

continuity of Dα, which ensures that Dαðρ ⊗ νÞ and
Dε

αðρ ⊗ νÞ are arbitrarily close as ε decreases. We then
show that this tension can only be relieved if DαðνÞ grows
large when ε decreases.
In the following, we quickly summarize the conse-

quences of Theorem 1 for the resource theory of athe-
rmality, entanglement theory, and resource theory of
coherence. In each resource theory we will specify the
set of free states; our results apply to any resource theory
compatible with this choice of free states. To apply
Theorem 1, for each resource theory we first discuss the
additivity of Dα, and we then check if there exist states in
CCO that satisfy the conditions of the theorem. In particular,
in each resource theory we find states that satisfy both
DðρÞ ≥ Dðρ0Þ and FðρÞ > Fðρ0Þ.
Resource theory of athermality.—In resource theory of

athermality the thermal or Gibbs state γ ¼ e−βh=Z is the
only free state. Here, β is the inverse temperature, H is the
Hamiltonian of the system and Z is the normalisation factor
(partition function). The relevant resource measure is the
non-equilibrium free energy [1], DðρÞ ¼ DðρkγÞ. We
remark that our results apply to both the resource theory
of athermality with thermal operations and resource theory
of athermality under Gibbs preserving maps since in both
resource theories free operations keep the Gibbs state
invariant [8,73]. However since for the former we do not
know the resource monotone characterizing the set CCO,
for our considerations we will mainly focus on the latter
where the relevant resource monotone is the nonequili-
brium free energy [19,22].
The resource monotones Dα are trivially additive, and

we prove in the Supplemental Material, Sec. VI [28],
that there exist states in CCO satisfying conditions of
Theorem 1. In particular, we find numerically pairs of

qubit states with a nonzero fidelity gap, and we construct
analytically pairs of classical qutrit states with a fidelity gap
arbitrarily close to 1.
From Theorem 1, we get that the nonequilibrium free

energy of any catalyst must satisfy DðνÞ ¼ Ω½logð1=εÞ�.
Therefore, a correlated catalytic transformation between
any two states would require one to prepare a catalyst with
an unbounded amount of free energy as the error vanishes.
Moreover, we show that the protocol discussed in Ref. [22]
is optimal, i.e., DðνÞ ¼ Θ½logð1=εÞ�. With this protocol,
any state in CCO can be reached up to arbitrary accuracy.
This means that it reaches exactly some states in CCOnCO
(with finite residual correlations for finite resourceful
catalysts). This method generalizes to correlated catalytic
transformations the already known construction of the
catalyst introduced in Ref. [27] for (uncorrelated) catalytic
transformations. This method provides a recipe to construct
the catalyst whenever the states are asymptotically
transformable.
To prove that it is optimal we use the exponential upper

bound for the convergence of the error in approximate
asymptotic pairwise state transformation [74]. In Ref. [74]
the authors provided a method to obtain a lower bound for
the error exponent which controls the exponential con-
vergence of the error to zero with the number of copies. In
this Letter, we give a qualitative first order expansion of the
error exponent for small relative entropy gaps. We find that,
under some mild regularity conditions, the error exponent
γ satisfies γ ≥ ΔD2 log e=8ðV1 þ V2Þ þOðΔD3Þ where
ΔD ≔ Dðρ1kσ1Þ −Dðρ2kσ2Þ is the relative entropy
gap and Vi≔VðρikσiÞ¼Tr½ρiðlogρi−logσiÞ2�−DðρikσiÞ2
s the relative entropy variance. We remark that the above
expression shows the appropriate scaling behavior with the
number of copies of the states (see the Supplemental
Material, Sec. VI [28], and Appendix C for more details).
Entanglement theory.—In this case, the separable states

are the free states of the theory [4,6]. In the following, we
consider input and output bipartite pure states jψABi, jψ 0

ABi,
but allow general mixed catalysts during the protocol.
The resource monotone characterizing the set of pure states
in CCO is the relative entropy of entanglement [23].
Moreover, the resource monotones Dα are additive when
one state is pure [75].
Therefore, our main theorem implies that for pairs of

pure states satisfying the conditions of the main theorem
any correlated catalytic transformation needs a catalyst with
a diverging amount of relative entropy of entanglement as
the error approaches zero. We then construct states with a
fidelity gap arbitrarily close to 1 (see the Supplemental
Material, Sec. VII [28], for more details).
Resource theory of coherence.—Fixing a basis

fjii; i ¼ 1;…; dg, we say that a state is free if it is diagonal
in such a basis [10]. We consider output pure states where
the monotone that characterizes the set CCO is the relative
entropy of coherence [10,24,76]. All the monotones Dα
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are additive [[77], Theorem 3]. In our work, we give
an independent proof of additivity of D1=2 by finding
an Alberti’s form of the fidelity of coherence FðρÞ ≔
maxσ∈FFðρ; σÞ through semidefinite program (SDP)
formulation.
Theorem 3. Let ρ ∈ SðHÞ. The fidelity of coherence

is the solution of the minimization problem

FðρÞ ¼ inf
R>0

Tr½ρR−1�kΔðRÞk∞

where Δ is the dephasing operator Δð·Þ ¼ P
i jiihij · jiihij.

We believe that this result is of independent interest since
it allows one to efficiently compute this quantity for which,
to the best of our knowledge, an analytic form is known
only for pure states [77].
Also in this case, we prove the existence of states

in CCO satisfying the conditions of Theorem 1 with
a fidelity gap arbitrarily close to 1. We obtain from
Theorem 1 for the relative entropy of coherence of the
catalyst DðνÞ ¼ DðνkΔðνÞÞ ¼ Ω½logð1=εÞ�. Hence, we
establish that to perform the correlated catalytic trans-
formation we would need, at least for some states, to
prepare a catalyst with a diverging amount of coherence
as the error vanishes. (See the Supplemental Material,
Sec. VIII [28], for more details).
Conclusion and open questions.—In this Letter, we

established that for some correlated catalytic processes a
small residual correlation between the system and the
catalyst implies a highly resourceful catalyst. We also
show similarly how in the context of imperfect catalysis
a small error is only possible with a highly resourceful
embezzling catalyst. Our results apply to resource theories
for which certain resource monotones are tensor additive.
We point out that a characterization of the sets CO and CCO,
and therefore of the set CCOnCO, is not known for many
resource theories. Hence, the range of applicability of our
main theorem and whether unbounded resources for the
catalyst are required in such theories are still open
questions.
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