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Quantum sensors outperform their classical counterparts in their estimation precision, given the same
amount of resources. So far, quantum-enhanced sensitivity has been achieved by exploiting the
superposition principle. This enhancement has been obtained for particular forms of entangled states,
adaptive measurement basis change, critical many-body systems, and steady state of periodically driven
systems. Here, we introduce a different approach to obtain quantum-enhanced sensitivity in a many-body
probe through utilizing the nature of quantum measurement and its subsequent wave function collapse
without demanding prior entanglement. Our protocol consists of a sequence of local measurements,
without reinitialization, performed regularly during the evolution of a many-body probe. As the number of
sequences increases, the sensing precision is enhanced beyond the standard limit, reaching the Heisenberg
bound asymptotically. The benefits of the protocol are multifold as it uses a product initial state and avoids
complex initialization (e.g., prior entangled states or critical ground states) and allows for remote quantum

sensing.

DOI: 10.1103/PhysRevLett.129.120503

Introduction.—Quantum sensing as a key application of
quantum technologies [1,2] is now available in various
physical setups, including photonic devices [3-8], nitro-
gen-vacancy centers [9—11], ion traps [12-16], supercon-
ducting qubits [17-20], cavity optomechanics [21-25], and
cold atoms [26-31]. The precision for estimating an
unknown parameter, quantified by the standard deviation
o, is bounded by the Cramér-Rao inequality ¢ > 1/v/MF,
where M is the number of trials and F is the Fisher
information [32,33]. For any resource 7 (e.g., time [34-37]
or number of particles [38-40]), Fisher information, in
general, scales as F ~ T". While classical sensors at best
result in # =1 (standard limit), quantum sensors can
achieve an enhanced sensitivity with # = 2 (Heisenberg
limit) [38—40] or even n > 2 (super-Heisenberg limit) [41].
A fundamental open problem is to determine which
quantum features can be exploited to achieve quantum-
enhanced sensing.

Quantum mechanics is distinct from classical physics by
two main features, namely, quantum superposition and
quantum measurements. So far, the superposition principle
has been exploited for achieving quantum-enhanced
sensitivity through (i) exploiting the Greenberger-Horne-
Zeilinger (GHZ) entangled states [38-40,42—46], (ii) the
ground state of many-body systems at the phase transition
point [8,47-57], (iii) the steady state of Floquet systems
[58,59], (iv) adaptive [10,37,60-62] or continuous mea-
surements [63—65], and (v) variational methods for opti-
mizing the initial state as well as the measurement basis
[66-68]. While these methods have their own advantages,
they also suffer from several drawbacks. In GHZ-based
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quantum sensing, the preparation and manipulation are
challenging [69-71], and interaction between particles
deteriorates the sensitivity [52,72—74]. On the other hand,
in both critical and Floquet many-body quantum sensors,
the interaction between particles is essential and the system
is more robust against imperfections. However, in such
quantum sensors the region of quantum-enhanced sensi-
tivity is very narrow [54,56]. Adaptive measurements are
also not practically available in all physical platforms and
training a programmable variational quantum sensor may
take long times or face convergence issues [75]. Projective
measurement, as another unique feature of quantum phys-
ics, has been employed for quenching many-body systems
[76-80] which may induce new types of phase transitions
[81-86]. One may wonder whether projective measure-
ments and their subsequent wave function collapse can also
be harnessed for obtaining quantum-enhanced sensitivity.

Here, we show that quantum measurement and its
subsequent wave function collapse can indeed be used
for achieving quantum-enhanced sensitivity. In our pro-
posal, a many-body probe, initialized in a product state, is
measured at regular times during its evolution without
reinitialization. As the number of subsequent measure-
ments increases, the protocol becomes far more efficient in
using time as a resource, and the sensing precision is
enhanced beyond the standard limit.

The model.—We consider a spin chain probe made of N
interacting spin-1/2 particles for sensing a local magnetic
field acting upon its first qubit via measuring the last one.
For the sake of simplicity, we consider a Heisenberg
Hamiltonian,
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FIG. 1. Schematic of the protocol. (a) A spin chain probe is
initialized in a product state for measuring a local magnetic field

B at site 1. (b) The readout is performed sequentially on the last
site, separated by intervals of free evolution.

N-1

H=-]Y 6, -6, + B0} + B0, (1)

j=1

where 6; = (c},0},07) is a vector composed of Pauli
matrices acting on qubit site j, J is the exchange inter-
action, and B = (B,, 0, B.) is the local magnetic field to be
estimated. While we consider the unknown local field B to
be in the xz plane, the generalization to the case of B, # 01is
straightforward. The probe is initialized in the ferromag-
netic state |yw(0)) = || }}...) as schematically shown in
Fig. 1(a). Because of the presence of the local magnetic
field B, the system evolves under the action of H as
lw(t)) = =™y (0)). During the evolution, the quantum
state accumulates information about the local field B,
which can be inferred through later local measurements
on the qubit site V, as shown in Fig. 1(b). As discussed in
the Supplemental Material [87], the orientation of the Nth
qubit follows the evolution of qubit 1 with a certain delay.
This synchronization allows for remote sensing of B by
looking at the dynamics at site N.

Sequential measurement protocol.—In a conventional
sensing protocol, after each evolution followed by a
measurement, the probe is reinitialized, and the procedure
is repeated. Typically, initialization is very time consuming,
making a significant overhead time for accomplishing the
sensing. We propose a profoundly different yet straightfor-
ward strategy to use the time resources more efficiently by
exploiting measurement-induced dynamics [76—80] and the
distinct nature of many-body systems. After initialization, a
sequence of ng, successive measurements in a single basis
is performed on the readout spin, each separated by
intervals of free evolution, without reinitializing the probe.
For simplicity, we first focus on the single-parameter
estimation, namely, B, = 0, in which B, is the only param-
eter to be estimated. In this case, we assume that a simple
fixed projective measurement in the o, basis is performed on
the last qubit. The steps for the data gathering process is then
as follows: (i) The system freely evolves according to
ly')(z;)) = e~y ()(0)). (ii) The ith measurement out-
come |y;) =|1),|}) at site N appears with probability

P = (@) Il (=), where T} = (I + 03)/2 and
H}v = (I - o%)/2 are spin projections. (iii) As a result of

obtaining the outcome y, the wave function collapses to the
quantum state [+ (0)) = [pi]V21T, |y (z,)). (iv) The
new initial state from (iii) is substituted into (i), and the steps
are repeated until ny,, measurements outcomes are consecu-
tively obtained. Note that |1 (0)) = [ (0)) is the probe’s
ferromagnetic initial state, and z; is the evolution time
between the i — 1 and i measurements. After gathering a
trajectory of length ng., of outcomes y = (y1,72, ... ¥u, )
the probe is reset and the process is repeated to generate a new
trajectory. The protocol does not need any prior entangle-
ment, as it is built up naturally during the evolution. Because
of the entanglement between the readout qubit and the rest of
the system, the quantum state of the system after the wave
function collapses still carries information about the local
field, which further helps the sensing in the next sequence.
Note that the conventional sensing is a special case of our
sequential protocol with ngq = 1.

Classical precision bound.—The sensing precision for
estimating B = (B,, 0, 0) given a measurement basis (here
o%) is determined by the classical Fisher information
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In the above, P, is the probability of obtaining the
trajectory ¥ and the Zy runs over 2"« configurations from
y=U. 4, ) toy=(11,....1). To see the impact of
sequential measurements on the precision of sensing, in
Fig. 2(a) we plot the inverse of classical Fisher information
F~! as the bound in the Cramér-Rao inequality, versus Ngeq
for two different probe lengths N when the unknown
parameter B, is set to be B, =0.1J and 7;, =7t=15/J
for all sequences. As the figure clearly shows, F~!
decreases very rapidly by increasing ng, indicating the
significant advantage of sequential measurements for
enhancing the sensing precision. Our numerical data can
be fit by g(ny,) = ans_e/f] + ¢, in which € is vanishingly
small and f is always found to be f > 1. This is indeed an
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FIG. 2. Inverse of the Fisher information F~! as a function of
the number of sequential measurements ng., performed at site N
for B, =0.1J. We consider two cases for the time interval
between measurements: (a) Jr; =5 and (b) Jr; = N. A fitting
function g(nq) with exponent # > 1 is shown.
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indicator of possible quantum-enhanced sensitivity beyond
the standard limit, which will be discussed later. Note that,
for larger system sizes, the probe needs more time to
transfer information from site 1 to site N, and thus, 7 has to
be larger. Our numerical investigations show that 7 ~ N/J
provides the best estimation. To evidence this, in Fig. 2(b)
we plot F~! as a function of Ngeq When z; = 7 = N/J for all
sequences. In contrast to Fig. 2(a), the performance of the
longer probe becomes better for this choice of z. This
is an interesting observation, as it shows that using a longer
probe facilitates remote sensing and achieves better
precision.

Bayesian estimation.—While Fisher information pro-
vides a bound for precision, one always needs to use an
estimator to actually infer the value of the unknown para-
meter. Here, we feed the experimental data into a Bayesian
estimator, which is known to be optimal for achieving the
Cramér-Rao bound [32,88-98]. By repeating the procedure
for M times, one gets a set of I' = {y, 75, ...,7u }, where
each trajectory y; contains n, spin outcomes. Therefore, the
total number of measurements performed on the probe is
NeqM. By assuming a uniform prior over the interval of
interest, which is assumed to be B, € [-0.2/,0.2J], one can
estimate the posterior distribution f(B,|I'). For detailed

discussions, see the Supplemental Material [87]. There are
numerous ways to infer B, as the estimate for B,. Here, we
assume that B, is directly sampled from the posterior

distribution f(B,|T). Since B, is sampled from the proba-
bility distribution f(B,|T'), one can quantify the quality of the
estimation by defining the dimensionless average squared
relative error as

5B — /f (B.D) ('BB | ') dB.. 3)

where the integration is over the interval of interest, and

|B, — B,|/|B,|is the relative error of the estimation. A direct
calculation simplifies the above figure of merit as

62 + |<Bx> B Bx|2

2
=" e

; (4)

where 62 and (B,) are the variance and the average of the
magnetic field with respect to the posterior distribution,
respectively. The average squared relative error simultane-
ously quantifies the uncertainty of estimation (i.e., o) as well
as the bias in the estimation (i.e., (B,) — B,). Inthe case of an
unbiased estimator, 8B, is reduced to ¢/|B,|, which is the
inverse of the signal-to-noise ratio.

In Fig. 3(a), we plot the posterior as a function of B, /J
when the actual value is B, = 0.1J for different values of
Neq- By increasing the number of sequences, the posterior
gets narrower, indicating enhancement of the precision. To
show the generality of this across all values of B, one can
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FIG. 3. (a) Posterior distribution as a function of B,/J for
several ng, for sensing B, = 0.1J. (b) Average of 8B2 as a
function of B,/J for two values of ny,, where each point is
averaged over 100 samples. In both panels, the posterior is
obtained by repeating the procedure for M = 1000 times in a
probe of N = 6 with fixed Jr; = N

compute the e average of B2 for 100 different samples,
denoted by 6B2, at each value of B,/J. In Fig. 3(b), we plot

5B§ as a function of B, /J for a probe of length N = 6 and
two different values of ny,. Evidenced by the figure,
increasing ng significantly enhances the precision across
the whole range of B, /J. Note that, as B,./J tends to zero,
the average error diverges due to the presence of B, in the
denominator of Eq. (3).

Trajectory-based sensing.—Recently, a numerical ana-
lysis [99], which was followed by analytical proof [100], has
shown that by using a single long trajectory y with ngq > 1
one can reduce the variance of the posterior distribution such
that one can asymptotically reach f(B,|y) = 6(B, — B=¥),
where B® is the real value of B, and §(x) is the Dirac delta
function. This means that a single trajectory with ngq > 1 is
indeed enough to provide an estimation of arbitrary preci-
sion. However, it is unclear how the precision scales with
Ngq- In what follows, we numerically address this issue.

Time as resource.—From a practical point of view, the
total time spent for accomplishing the sensing is the main
resource to determine the performance of a sensing pro-
tocol. While the coherent time evolution of a quantum
system is fast, measurement and initialization empirically
are 1 and 2 orders of magnitude slower, respectively [10].
Therefore, for a given total time, it would be highly
beneficial to reduce the number of initialization and use
the saved time for increasing the number of measurements.
This time compensation allows for a better inference of the
information content about the quantity of interest. The total
time can be written as

T = M(tinit F levo + tmeasnseq)v (5)

where £, feyo, and fc, are the initialization, evolution,
and measurement times, respectively. By fixing 7, =7 =
N/J, one gets tey, = Neqt. In addition, we fixed fiy =
600/J and t,,.,s = 50/J, to be consistent with experimental
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FIG. 4. Estimating B, = 0.1J with a probe of N =6 and

Jz; = N. (a) Averaged squared relative error 6B> versus Ngeq
for two total execution times 7. (b) Fitting coefficient a(T) as
function of time 7. (c) Fitting exponent 3(7') as function of time.

(d) Universal behavior of 6_33 versus (JT)‘”ns_e{'fl for several
values of ngq and total time 7.

values [10]. For a given total time T, the choice of ng,
changes the reinitialization M and thus the total number of

measurements. In Fig. 4(a), we plot 5—B)26 computed through
Bayesian estimation for B, = 0.1/, as a function of n, for
two given values of 7. Up to a vanishingly small constant,

one can use the fitting function g(7', nyy) = a(T )n;/;(T). To

have a proper resource analysis, one has to determine the
dependence of a(T') and 3(T) exponents with respect to total
time 7. In Figs. 4(b) and 4(c), we plot a(T) and f(T) as a
function of time. While a(7) shows clear dependence on
time as a(T) ~ T, with v — 1, the exponent B(T) fluc-
tuates around 1.21. Thus, the fitting function is reduced to

SBE ~T*nd. (6)

This is the main result of our Letter. Note that, although v ~ 1,
one should not be misled by interpreting it as standard
scaling. The key point is that, for a fixed total time 7', one can
always enhance the precision by increasing nyq. In Fig. 4(d),
we show the universal behavior of Eq. (6), through choosing
different values of T and ng,. To better understand

the dependence of 5—3)2( on time 7T, one can get ngq =
(T — Mtpi)/ M (7 + tyess) from Eq. (5) and replace it in
Eq. (6). For T > M¢#,,;, one obtains

SB2 ~ T-Hh), (7)

Asv~1 and > 1, one can see that quantum-enhanced
sensing can indeed be achieved. Note that the condition

T > Mt can always be satisfied by decreasing the
reinitialization M and spending all the time resource 7 on
sequential measurements. In the extreme case of M =1
(n4eq >> 1), one could truly achieve the scaling of Eq. (7). Itis
also worth emphasizing that, though # > 1 suggests that our
protocol can asymptotically achieve super-Heisenberg scal-
ing (namely, f+ v > 2), one has to be careful for this
generalization in the limit of ne, > 1. Therefore, a more
careful investigation remains open for verifying a possible
super-Heisenberg precision.

Protocol robustness.—We consider two sources of
imperfections, namely, dephasing and disordered cou-
plings. As we quantitatively show in the Supplemental
Material [87], both of these imperfections are destructive
for sensing. Nonetheless, quantum-enhanced sensitivity,
i.e., superlinear scaling of ', can be found until dephasing
or disorder strength are greater than a threshold value.
Beyond these threshold values, F scales linearly with ng.
and quantum-enhanced sensitivity is lost. Our numerical
simulations, see Supplemental Material [87], show that for
both dephasing and disorder strengths of up to ~5%J the
quantum-enhanced sensitivity can be achieved.

Two-parameter estimation.—For the sake of complete-
ness, we also consider two-parameter sensing, in which
both B, and B, are nonzero. In this case, a single oy
measurement is not enough to estimate both of the
parameters. Hence, we consider a positive operator-valued
measure built from the eigenvectors of o5, and oy, [87]. To
exemplify the performance of our protocol, we consider
B = (0.15,0,0.1)J, and for a given time 7 we perform
Bayesian analysis for two values of ng4. In Figs. 5(a) and
5(b), we plot the posterior f(B|T') in the plane of B, /J and
B./J for neq = 1 and nyq = 7, respectively. Remarkably,
the posterior shrinks significantly as ng. increases, indicat-
ing the effectiveness of sequential measurements for
enhancing the precision for a given time. To further clarify
this, we can generalize the average squared relative error in
Eq. (3) by replacing B, with B (and | - | represents the norm
of the vector) to obtain 5B2. In Fig. 5(c), we plot 6B as a
function of ny, for B = (0.15,0,0.1)J, which shows rapid

0.15|sea=1 * ()
BN
N
@ 0.2F 4
0.05F,
(@) N
ol N=JT;=6 |% True Field
0.15Msea = 7 True Field © B=(0.15,0,0.1)
B .
)
0.0 o1r ., 1
(b) R |
0.13 0.15 1 2 3 4 5 6 7
Byl Nseq
FIG. 5. (a) and (b) Posterior distributions for ne, =1 and

ngeq = 7 for the estimation of B = (0.15,0,0.1)J, respectively.

(c) Averaged squared relative error B> as a function of Ngeq-
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enhancement as the number of sequences increases. This
clearly shows the generality of our protocol for multi-
parameter sensing.

Conclusions.—We propose a protocol for remotely
sensing a local magnetic field through a sequence of local
measurements performed on a single qubit of a quantum
many-body probe initialized in a product state. By increas-
ing the sequence of measurements, one can avoid the time-
consuming probe’s reinitialization, allowing for taking
more measurements within the same amount of time.
This naturally enhances the sensing precision, which
asymptotically reaches the Heisenberg bound. Unlike
previous schemes, our procedure utilizes the nature of
quantum measurement and its subsequent wave function
collapse and thus avoids the need for complex initial
entangled states, quantum criticality, and adaptive mea-
surements. Unlike the protocols based on deferred meas-
urement schemes [101], our protocol neither requires
ancilla qubits nor relies on feedback control. Thus, our
minimal control scheme is expected to be less demanding
for practical implementations.
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