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A quantum two-level system immersed in a sub-Ohmic bath experiences enhanced low-frequency
quantum statistical fluctuations which render the nonequilibrium quantum dynamics highly non-
Markovian. Upon using the numerically exact time-evolving matrix product operator approach, we
investigate the phase diagram of the polarization dynamics. In addition to the known phases of damped
coherent oscillatory dynamics and overdamped decay, we identify a new third region in the phase diagram
for strong coupling showing an aperiodic behavior. We determine the corresponding phase boundaries. The
dynamics of the quantum two-state system herein is not coherent by itself but slaved to the oscillatory bath
dynamics.
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Introduction.—Dissipative environments are the cause
of relaxation and decoherence in quantum systems.
Accordingly, understanding and modeling their influence
and subsequently tailoring their impact is relevant to many
research areas [1,2]. At strong system-bath coupling,
dissipative environments may also lead to fully incoherent
dynamics or even complete suppression of the dynamics
(localization). Generally it is believed that, while prominent
environmental modes may well cause coherent oscilla-
tions in a quantum system, a broadband reservoir destroys
coherence at sufficiently strong coupling [3,4].
Typically, a quantum two-state system interacting with

harmonic degrees of freedom (spin-boson model) is studied
[1,2]. At low temperatures and weak coupling damped
coherent oscillations are observed while at stronger dis-
sipation a classical incoherent decay toward thermal
equilibrium is found. For an Ohmic bath with spectrum
JðωÞ ∝ αωs and spectral exponent s ¼ 1 the ratio of the
damping rate and oscillation frequency is independent of
the oscillation frequency. With increasing coupling α the
dynamics turns incoherent and, for even larger coupling, a
zero temperature phase transition toward a localized phase
is observed [1,2].
While super-Ohmic spectra with s > 1 with more

pronounced high-frequency modes do not show incoherent
dynamics or a localization transition, reservoirs with more
pronounced low-frequency spectra such as sub-Ohmic ones
with s < 1 exhibit a localization phase transition [5–7] and
are relevant for quantum impurity systems [8,9]. In con-
trast, the dynamic transition to incoherent behavior is far
less studied although this class of reservoirs constitutes the
dominant noise source in, for example, nanomecha-
nical oscillator systems [10] and superconducting qubit

architectures (specifically charge noise generated by two-
level fluctuators) [11–13]. Although originally believed to
always be incoherent [1], it is now well established that for
1=2≲ s ≤ 1 with increasing coupling the dynamics turns
from damped oscillatory to incoherent, and for larger
coupling a transition to a localized phase takes place
[14–17]. For 0 ≤ s≲ 1=2, however, Kast and Ankerhold
[16] showed that oscillatory dynamics persists for arbitrary
coupling strength for an initially polarized bath. Pure
dephasing sub-Ohmic reservoirs influence a quantum
two-state system in a similar way and result in overdamping
only for ωc → ∞ and s≳ 0.1 [18].
This leaves two important questions: What happens

when crossing the supposed phase boundary at s ≃ 1=2
for a fixed but strong coupling, and why can strong sub-
Ohmic fluctuations not turn the system dynamics incoher-
ent? We investigate the dynamics for 1=2≲ s ≤ 1 and
increasing strength of the coupling to the environment and
observe that it turns from coherent to incoherent for a
coupling αDðsÞ which depends on the spectral exponent s.
For even larger couplings we encounter a sharp phase
boundary at a coupling αBðsÞ to aperiodic behavior, i.e., the
dynamics is not fully incoherent but exhibits a single
turnaround. This new phase extends to all 0 ≤ s ≤ 1. For
0 ≤ s≲ 1=2, where Ref. [16] reports damped oscillatory
dynamics for all couplings, we find with increasing
coupling a sharp transition from oscillatory dynamics with
various minima and maxima to aperiodic dynamics with a
single minimum for an initially unpolarized bath. The
frequency related to the minimum is proportional to the
reservoir cutoff frequency. Accordingly, this dynamics is
not generated by the central quantum system but by the
reservoir, and it turns incoherent for ωc → ∞. We simulate
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the dynamics in a broad range of parameters in order to map
the new phase diagram of the dynamical behavior of the
spin-boson model.
Model.—We consider the symmetric spin-boson model

(ℏ ¼ 1, kB ¼ 1) with the Hamiltonian

Ĥ ¼ ĤS þ ĤB þ Ĥint

¼ Ω
2
σ̂x þ

1

2

X

j

ðp̂2
j þ ωjx̂2jÞ þ

σ̂z
2
ξ̂; ð1Þ

where ξ̂ ¼ P
j cjx̂j, Ω is the tunneling splitting, and σ̂x=z

are the Pauli matrices. The bath consists of harmonic
oscillators with momenta p̂j, angular frequencies ωj,
and positions x̂j which are coupled via coupling constants
cj to the spin. The bath has the spectral density

JðωÞ ¼
X

j

c2j
2ωj

δðω − ωjÞ ¼ 2α
ωs

ωs−1
c

e−ω=ωc ; ð2Þ

with the high-frequency cutoff ωc ¼ 10Ω (unless specified
otherwise) and the coupling strength α. We focus on the
(sub-)Ohmic regime where 0 ≤ s ≤ 1. We calculate the
time-dependent polarization PðtÞ ¼ hσziðtÞ, using a facto-
rizing initial preparation of the system with Pð0Þ ¼ 1 and
the thermal distribution of the initially uncoupled (i.e.,
unpolarized) bath at zero temperature.
Method.—To determine PðtÞ we use the numerically

exact real-time quasiadiabatic propagator path integral
(QUAPI) [19–24]. Once the bath oscillators have been
integrated out, an effective dynamics of the system arises
which is nonlocal in time. To treat the highly entangled
system-bath dynamics of the sub-Ohmic spin-boson model,

we make use of the time-evolving matrix product operator
technique [23,24]; see the Supplemental Material [25] for
further details. It allows us to avoid the conventional
QUAPI memory cutoff as it rewrites the arising discrete
path-sum in terms of a numerically highly efficient tensor
network.
Polarization dynamics.—First, we investigate the

dynamics for a fixed s ¼ 0.7 for increasing coupling α.
Figure 1 shows the time-dependent polarization PðtÞ for
times up to Ωt≲ 10. For α ¼ 0.05 and α ¼ 0.15, we
observe damped oscillatory or coherent dynamics with a
minimum (marked by a red cross in Fig. 1) and a maximum
(marked by a green diamond) visible in the studied time
frame. But for couplings α ¼ 0.2 and α ¼ 0.4, we find a
monotonic decay highlighting purely incoherent dynamics.
Surprisingly, for larger couplings α ≥ 0.5 we find again a
minimum but no subsequent maximum. We denote this
dynamics pseudocoherent in the following.
Next we decrease the spectral exponent s for a large but

fixed system-bath coupling strength α ¼ 0.8with dynamics
in the pseudocoherent phase from s ¼ 0.7 to 0.3. Figure 2
depicts the according time-dependent polarization PðtÞ. In
all cases we observe pseudocoherent dynamics with a
single minimum (marked by a red cross). With decreasing
s, the minimum shifts to earlier times. No qualitative
change in the dynamic behavior is found upon decreasing
s below s ¼ 1=2. For s≲ 1=2, Kast and Ankerhold [16]
have shown that no transition to incoherent dynamics
occurs irrespective of the coupling strength.
Figure 3 shows the polarization for various coupling

strengths for a fixed s ¼ 0.3. For couplings from α ¼ 0.8
down to α ¼ 0.125, we observe pseudocoherent dynamics
with only one minimum. For α ¼ 0.1 and α ¼ 0.05, we
find coherent dynamics with a minimum and a maximum.
Phase diagram.—Next we examine the full parameter

space of 0 ≤ s ≤ 1 and α. We observe sharp transitions

FIG. 1. Polarization PðtÞ for T ¼ 0, s ¼ 0.7, and different
coupling strengths α. The arrow intersects the lines in ascending
order of coupling strengths. Local minima (maxima) are marked
by a red cross (green diamond).

FIG. 2. Polarization PðtÞ for T ¼ 0, α ¼ 0.8, and different
spectral exponents s. The arrow intersects the lines in ascending
order of spectral exponents. Local minima are marked with a
red cross.

PHYSICAL REVIEW LETTERS 129, 120406 (2022)

120406-2



between three dynamical phases: coherent dynamics, i.e.,
damped oscillatory behavior with minima and maxima;
incoherent dynamics, i.e., purely monotonic decay; and
pseudocoherent dynamics, i.e., a single minimum and
subsequent decay into localization. The observed phase
diagram is sketched in Fig. 4. For α ¼ 0, the time-
dependent polarization is PðtÞ ¼ cosðΩtÞ with its first
local minimum at Ωt ¼ π. As the dynamics depends
continuously on the parameters α and s, we can track this
local minimum when increasing the coupling strength. For
s≳ 0.45, we find that this minimum vanishes if the
coupling strength is sufficiently increased leading to the
transition from coherent to incoherent dynamics at αDðsÞ
(depicted as blue crosses in Fig. 4). Our results coincide
with the results shown in Fig. 5 of Ref. [17] for s > 0.5.
Increasing the coupling strength further, we enter the
pseudocoherent phase at αBðsÞ (depicted by orange dia-
monds). For s ≤ 0.45 we track the first local maximum of
the coherent phase, which vanishes in the transition to the
pseudocoherent regime (see Fig. 3 for s ¼ 0.3). The green
circles in Fig. 4 depict the coupling strength αBðsÞ of the
respective phase transition from coherent to pseudocoher-
ent dynamics. Note that while maxima in the dynamics of
the pseudocoherent phase at very long times, i.e., time-
scales not determined by Ω or ωc (which we cannot strictly
rule out due to finite simulation times), would add to the
characteristics of the pseudocoherent phase, they would not
change the phase diagram which is determined by sharp
transitions between different dynamic behavior at times
well within our simulation time window.
Pseudocoherent phase.—Next, we investigate the pseu-

docoherent phase in more detail. Figure 5 shows the
quantity 1 − PðtÞ versus the rescaled time ωct for various

ωc for s ¼ 0.3 and α ¼ 0.8. (Note that the minima in PðtÞ
are maxima in this plot). We observe that the maximum in
1 − PðtÞ [corresponding to a minimum in PðtÞ] for suffi-
ciently large values of ωc ≳ 10Ω occurs at a time
tmin ≃ const=ωc. Hence, the observed oscillatory behavior
in this phase is purely bath driven and therefore distinct
from coherence, which generally refers to a behavior
inherent to the system. This furthermore suggests that
for ωc → ∞ the polarization PðtÞ approaches 1 and the
minimum is attained at tmin → 0. Thus, only incoherent
fully localized behavior emerges, i.e., the observed oscil-
latory behavior in the pseudocoherent phase is a result of

FIG. 3. Polarization PðtÞ for T ¼ 0, s ¼ 0.3, and different
coupling strengths α. The arrow intersects the lines in ascending
order of coupling strengths. Local minima (maxima) are marked
by a red cross (green diamond).

FIG. 4. Phase diagram of the (sub-)Ohmic spin-boson model at
T ¼ 0 and ωc ¼ 10Ω. The symbols represent coupling strengths
αðsÞ at which a transition occurs and are linearly interpolated for
better visibility. Blue cross: the first local minimum vanishes
when increasing coupling out of the coherent to the incoherent
domain. Orange diamond: a local minimum appears for Ωt < 8
when increasing coupling strength out of the incoherent domain.
Green circle: the first local maximum vanishes when going from
the coherent to the pseudocoherent domain.

FIG. 5. Polarization 1 − PðtÞ for T ¼ 0, α ¼ 0.8, s ¼ 0.3, and
different bath cutoff frequencies ωc. The arrow intersects the lines
in ascending order of cutoff frequencies. Local maxima are
marked with a green diamond. Note that the ωc ¼ 10Ω line
corresponds to the s ¼ 0.3 line in Fig. 2.
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the finite bath reaction time of Oð1=ωcÞ only after which
the system is drawn into localization. Similarly, purely
dephasing sub-Ohmic reservoirs with small s renormalize
the oscillation frequency to values larger than its damping
rate, with the effect that the renormalized effective fre-
quency vanishes in that regime [18]. Thus, the dynamics
never becomes fully overdamped.
Because the oscillation frequency is renormalized in the

case of a polarized bath that is initially equilibrated to a spin
pointing up, the oscillatory behavior in Ref. [16] also shows
maxima in the pseudocoherent phase. Nevertheless, the
dynamics in that case is generated by the bath in the same
way (for details, see the Supplemental Material [25]).
Increasing ωc also changes the phase separation line

αBðsÞ. To determine the phase separation line αBðsÞ, we
simulate the polarization dynamics to roughly similar
times, i.e., Ωt ≃ 10 for every ωc. Thus, we are here limited
to a fairly small regime of ωc ≤ 50Ω to ensure numerical
accuracy. For all studied values of ωc we find that αBðsÞ >
αcðsÞ with the critical coupling strength αcðsÞ for the
thermodynamic T ¼ 0 phase transition to localization. We
find that αBðsÞ decreases with increasing ωc.
Our investigation allows us to conclude that for ωc → ∞

the pseudocoherent phase turns fully incoherent. Thus, for
s≳ 0.45 it seems reasonable that αBðs;ωcÞ → αcðs;ωcÞ
since for couplings smaller than αBðs;ωcÞ the dynamics is
already incoherent for all ωc. For s≲ 0.45 the situation is
less clear, and it remains open whether for ωc → ∞ there is
a coupling regime with damped coherent dynamics. We
should point out that the limit of infinite ωc is also not
clear for αc, i.e., the thermodynamic localization transi-
tion, except for Ohmic bath spectra where αcðs ¼ 1;
ωc → ∞Þ ¼ 1. For 0 ≤ s ≤ 1=2 a variational approach
yields αcðs;ωc → ∞Þ → 0 [26].
Spectral crossover.—Investigations of the thermody-

namic localization phase transition [6], i.e., the according

critical exponents, conclude that s ¼ 1=2 is the border
between mean-field behavior for s < 1=2 and non-mean-
field for s > 1=2. We find a crossover scross with a possible
incoherent phase for s > scross and no incoherent phase for
s < scross at scross ≃ 0.45 (see Fig. 4), which is consistent
with the results of Duan et al. [17] that imply scross ≲ 0.525.
Figure 6 shows the polarization for T ¼ 0, s ¼ 0.45, and
different coupling strengths α. For α ¼ 0.12, we observe
coherent dynamics with a minimum and maximum. For
increasing couplings, i.e., α ¼ 0.14 and 0.157, both merge.
For α ¼ 0.16, a new single minimum at latest observed
time appears which for further increasing coupling shifts to
earlier times. For s < 0.45 (see, for example, Fig. 3), the
observed minimum in the pseudocoherent phase emerges
from the first minimum in the coherent phase. It remains an
open question how this crossover s depends on ωc and how
far it is connected to the crossover from mean-field to non-
mean-field type thermodynamics phase behavior.
Conclusion.—By means of numerically exact real-time

path integral simulations, we have studied the nonequili-
brium dynamics of the (sub-)Ohmic spin-boson model.
Analyzing the polarization dynamics, we find for all
spectral exponents 0 ≤ s ≤ 1 at strong coupling a pseudo-
coherent phase whose hallmark is a single oscillatory
minimum. In particular for 0.45 ≤ s ≤ 1, we observe this
new dynamical phase at strong coupling beside the well-
known coherent dynamics at weak coupling and incoherent
dynamics at intermediate coupling. Oscillatory dynamics
for 0 ≤ s ≤ 1=2 for all couplings has been observed by
Kast and Ankerhold [16] before. We show that for these s
there is nevertheless a transition from coherent (many
minima and maxima in the polarization dynamics) to
pseudocoherent dynamics (with a single minimum). The
frequency related to the oscillatory minimum in the
pseudocoherent phase is proportional to the bath cutoff
frequency. Accordingly, this dynamics is not generated by
the two-level system but by the reservoir, and it turns
incoherent for ωc → ∞. We map the full dynamical phase
diagram with now three distinct phases.

F. O. is grateful for the kind hospitality at the Flatiron
Institute where parts of this work have been carried out. The
Flatiron Institute is a division of the Simons Foundation.
M. T. acknowledges support by the Cluster of Excellence
“CUI: Advanced Imaging of Matter” of the Deutsche
Forschungsgemeinschaft (DFG)—EXC 2056—project ID
390715994.

*florian.otterpohl@physik.uni-hamburg.de
[1] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,

A. Garg, and W. Zwerger, Dynamics of the dissipative two-
state system, Rev. Mod. Phys. 59, 1 (1987).

[2] U. Weiss, Quantum Dissipative Systems, 4th ed. (World
Scientific, Singapore, 2012).

FIG. 6. Polarization PðtÞ for T ¼ 0, s ¼ 0.45, and different
coupling strengths α. The arrow intersects the lines in ascending
order of coupling strengths. Local minima (maxima) are marked
with a red cross (green diamond).

PHYSICAL REVIEW LETTERS 129, 120406 (2022)

120406-4

https://doi.org/10.1103/RevModPhys.59.1


[3] J. Iles-Smith, N. Lambert, and A. Nazir, Environmental
dynamics, correlations, and the emergence of noncanonical
equilibrium states in open quantum systems, Phys. Rev. A
90, 032114 (2014).

[4] H. Maguire, J. Iles-Smith, and A. Nazir, Environmental
Nonadditivity and Franck-Condon Physics in Nonequili-
brium Quantum Systems, Phys. Rev. Lett. 123, 093601
(2019).

[5] F. B. Anders, R. Bulla, and M. Vojta, Equilibrium and
Nonequilibrium Dynamics of the Sub-Ohmic Spin-Boson
Model, Phys. Rev. Lett. 98, 210402 (2007).

[6] A. Winter, H. Rieger, M. Vojta, and R. Bulla, Quantum
Phase Transition in the Sub-Ohmic Spin-Boson Model:
Quantum Monte Carlo Study with a Continuous Imaginary
Time Cluster Algorithm, Phys. Rev. Lett. 102, 030601
(2009).

[7] A. Alvermann and H. Fehske, Sparse Polynomial Space
Approach to Dissipative Quantum Systems: Application to
the Sub-Ohmic Spin-Boson Model, Phys. Rev. Lett. 102,
150601 (2009).

[8] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Locally
critical quantum phase transitions in strongly correlated
metals, Nature (London) 413, 804 (2001).

[9] P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S.
Paschen, C. Geibel, F. Steglich, E. Abrahams, and Q. Si,
Multiple energy scales at a quantum critical point, Science
315, 969 (2007).

[10] S. Gröblacher, A. Trubarov, N. Prigge, G. D. Cole, M.
Aspelmeyer, and J. Eisert, Observation of non-Markovian
micromechanical Brownian motion, Nat. Commun. 6, 7606
(2015).

[11] O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, and
J. S. Tsai, Quantum Noise in the Josephson Charge Qubit,
Phys. Rev. Lett. 93, 267007 (2004).

[12] A. Shnirman, G. Schön, I. Martin, and Y. Makhlin, Low-
and High-Frequency Noise from Coherent Two-Level
Systems, Phys. Rev. Lett. 94, 127002 (2005).

[13] X. You, A. A. Clerk, and J. Koch, Positive- and negative-
frequency noise from an ensemble of two-level fluctuators,
Phys. Rev. Research 3, 013045 (2021).

[14] A. Chin and M. Turlakov, Coherent-incoherent transition in
the sub-Ohmic spin-boson model, Phys. Rev. B 73, 075311
(2006).

[15] P. Nalbach and M. Thorwart, Ultraslow quantum dynamics
in a sub-Ohmic heat bath, Phys. Rev. B 81, 054308
(2010).

[16] D. Kast and J. Ankerhold, Persistence of Coherent Quantum
Dynamics at Strong Dissipation, Phys. Rev. Lett. 110,
010402 (2013).

[17] C. Duan, Z. Tang, J. Cao, and J. Wu, Zero-temperature
localization in a sub-Ohmic spin-boson model investigated
by an extended hierarchy equation of motion, Phys. Rev. B
95, 214308 (2017).

[18] P. Nalbach and M. Thorwart, Crossover from coherent to
incoherent quantum dynamics due to sub-Ohmic dephasing,
Phys. Rev. B 87, 014116 (2013).

[19] N. Makri, Numerical path integral techniques for long time
dynamics of quantum dissipative systems, J. Math. Phys.
(N.Y.) 36, 2430 (1995).

[20] N. Makri and D. E. Makarov, Tensor propagator for iterative
quantum time evolution of reduced density matrices. I.
Theory, J. Chem. Phys. 102, 4600 (1995).

[21] N. Makri and D. E. Makarov, Tensor propagator for iterative
quantum time evolution of reduced density matrices. II.
Numerical methodology, J. Chem. Phys. 102, 4611
(1995).

[22] N. Makri, Small matrix path integral for system-bath
dynamics, J. Chem. Theory Comput. 16, 4038 (2020).

[23] A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B.W.
Lovett, Efficient non-Markovian quantum dynamics using
time-evolving matrix product operators, Nat. Commun. 9,
3322 (2018).

[24] A. Strathearn,Modelling Non-Markovian Quantum Systems
Using Tensor Networks, Springer Theses (Springer
International Publishing, Cham, 2020).

[25] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.120406 for a sum-
mary of the time-evolving matrix product operator method,
details on the numerical convergence, and additional results
for polarized initial conditions of the bath.

[26] A.W. Chin, J. Prior, S. F. Huelga, and M. B. Plenio,
Generalized Polaron Ansatz for the Ground State of the
Sub-Ohmic Spin-Boson Model: An Analytic Theory of the
Localization Transition, Phys. Rev. Lett. 107, 160601
(2011).

PHYSICAL REVIEW LETTERS 129, 120406 (2022)

120406-5

https://doi.org/10.1103/PhysRevA.90.032114
https://doi.org/10.1103/PhysRevA.90.032114
https://doi.org/10.1103/PhysRevLett.123.093601
https://doi.org/10.1103/PhysRevLett.123.093601
https://doi.org/10.1103/PhysRevLett.98.210402
https://doi.org/10.1103/PhysRevLett.102.030601
https://doi.org/10.1103/PhysRevLett.102.030601
https://doi.org/10.1103/PhysRevLett.102.150601
https://doi.org/10.1103/PhysRevLett.102.150601
https://doi.org/10.1038/35101507
https://doi.org/10.1126/science.1136020
https://doi.org/10.1126/science.1136020
https://doi.org/10.1038/ncomms8606
https://doi.org/10.1038/ncomms8606
https://doi.org/10.1103/PhysRevLett.93.267007
https://doi.org/10.1103/PhysRevLett.94.127002
https://doi.org/10.1103/PhysRevResearch.3.013045
https://doi.org/10.1103/PhysRevB.73.075311
https://doi.org/10.1103/PhysRevB.73.075311
https://doi.org/10.1103/PhysRevB.81.054308
https://doi.org/10.1103/PhysRevB.81.054308
https://doi.org/10.1103/PhysRevLett.110.010402
https://doi.org/10.1103/PhysRevLett.110.010402
https://doi.org/10.1103/PhysRevB.95.214308
https://doi.org/10.1103/PhysRevB.95.214308
https://doi.org/10.1103/PhysRevB.87.014116
https://doi.org/10.1063/1.531046
https://doi.org/10.1063/1.531046
https://doi.org/10.1063/1.469508
https://doi.org/10.1063/1.469509
https://doi.org/10.1063/1.469509
https://doi.org/10.1021/acs.jctc.0c00039
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1038/s41467-018-05617-3
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120406
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120406
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120406
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120406
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120406
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120406
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120406
https://doi.org/10.1103/PhysRevLett.107.160601
https://doi.org/10.1103/PhysRevLett.107.160601

