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We give a complete characterization of the (non)classicality of all stabilizer subtheories. First, we prove
that there is a unique nonnegative and diagram-preserving quasiprobability representation of the stabilizer
subtheory in all odd dimensions, namely Gross’s discrete Wigner function. This representation is
equivalent to Spekkens’ epistemically restricted toy theory, which is consequently singled out as the
unique noncontextual ontological model for the stabilizer subtheory. Strikingly, the principle of
noncontextuality is powerful enough (at least in this setting) to single out one particular classical realist
interpretation. Our result explains the practical utility of Gross’s representation by showing that (in the
setting of the stabilizer subtheory) negativity in this particular representation implies generalized
contextuality. Since negativity of this particular representation is a necessary resource for universal
quantum computation in the state injection model, it follows that generalized contextuality is also a
necessary resource for universal quantum computation in this model. In all even dimensions, we prove that
there does not exist any nonnegative and diagram-preserving quasiprobability representation of the
stabilizer subtheory, and, hence, that the stabilizer subtheory is contextual in all even dimensions.
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Quantum computers have the potential to outperform
classical computers at many tasks. One of the major
outstanding problems in quantum computing is to under-
stand what physical resources are necessary and sufficient
for universal quantum computation. These resources may
depend on one’s model of computation [1–3], and in some
cases it seems that neither entanglement nor even coherence
is required in significant quantities [2].
The primary obstacle to building a quantum computer is

that implementing low-noise gates is difficult in practice.
While there are no gate sets which are easy to implement
and also universal [4], the entire stabilizer subtheory [5,6]
can in fact be implemented in a fault-tolerant manner
relatively easily. To promote the stabilizer subtheory to
universal quantum computation, one must supplement it
with additional nonstabilizer (or “magic”) processes.
Because these nonstabilizer resources do not have a
straightforward fault-tolerant implementation, they are
typically noisy. To get around this problem, Bravyi and
Kitaev [7] introduced the magic state distillation scheme,
whereby fault-tolerant stabilizer operations are used to
distill pure resource states out of the initially noisy
resources. However, not every nonstabilizer resource can
be distilled in this fashion to generate a state which
promotes the stabilizer subtheory to universal quantum
computation. It is a major open question to determine
which states are in fact sufficient for this purpose.

Quasiprobability representations are a central tool for
making progress on these and related problems. For finite-
dimensional quantum systems, a number of quasiproba-
bility representations have been studied. For example,
Gibbons, Hoffman, and Wootters identified a family of
representations on a discrete phase space [8], and Gross
then singled out one of these with a higher degree of
symmetry [9], by virtue of satisfying a property known as
“Clifford covariance.” All of these have been used to study
quantum computation [10–17].
Gross’s representation in particular has been the most

useful in understanding the resources required for compu-
tation. For instance, Ref. [12] extended the Gottesman-
Knill theorem [6] by devising an explicit simulation
protocol for quantum circuits composed of Clifford gates
supplemented with arbitrary states and measurements that
have nonnegative Gross’s representation. Reference [12]
also proved that every state which is useful for magic state
distillation necessarily has negativity in its Gross’s repre-
sentation. In Ref. [14], this result was leveraged to prove
that every state that promotes the stabilizer subtheory to
universal quantum computation via magic state distillation
must also exhibit Kochen-Specker contextuality [18]. In
recognition that negativity in Gross’s representation is a
resource for quantum computation in this sense, Ref. [13]
introduced an entire resource theory [19] of Gross’s
negativity.
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From a foundational perspective, it is surprising that any
particular quasiprobability representation plays such a
central role. As argued in Ref. [20], negativity of any
one quasiprobability representation is not sufficient to
establish nonclassicality in general scenarios. So how
can it be that Gross’s representation plays such an impor-
tant role, e.g., that negativity in it is associated to a strong
form of nonclassicality, namely computational speedups?
Early clues were provided by Gross [9] and by Zhu [21],
each of whom proved that Gross’s representation was the
unique representation with some natural symmetry proper-
ties. However, it has previously been unclear what these
properties have to do with nonclassicality, and both Gross’s
and Zhu’s arguments relied on auxiliary mathematical
assumptions that were not physically motivated (as we
discuss below).
In this Letter, we resolve this mystery by showing that

the only nonnegative and diagram-preserving [22] quasi-
probability representation of the stabilizer subtheory in any
odd dimension is Gross’s. We also prove that in all even
dimensions (where Gross’s representation is not defined),
there is no nonnegative and diagram-preserving quasiprob-
ability representation of the stabilizer subtheory. This
implies that the stabilizer subtheory exhibits generalized
contextuality in all even dimensions.
In the setting of the full stabilizer subtheory, our result for

odd dimensions proves that negativity of this particular
quasiprobability representation is a rigorous signature of
nonclassicality, i.e., the failure of generalized noncontex-
tuality. Generalized noncontextuality is a principled [23–
25], useful [26–38], and operational [39–45] notion of
classicality. If one’s process has negativity in Gross’s
representation, then our result establishes that there is no
nonnegative representation of the full stabilizer subtheory
together with that process. Since nonnegative quasi-
probability representations are in one-to-one correspon-
dence with generalized noncontextual ontological models
[20,22,24], this means that there is no noncontextual
representation for the scenario, and hence no classical
explanation of it [46].
Our Letter also extends the body of known connections

between contextuality, negativity, and computation [13–
16,48–53]. Using known links between resources for
quantum computation and negativity in Gross’s represen-
tation, together with our result connecting such negativity
to the failure of generalized noncontextuality, one can
derive connections between resources for quantum com-
putation and generalized noncontextuality.
We illustrate this by giving an analog of the celebrated

result in Ref. [14]: namely, we prove that generalized
contextuality is necessary for universal quantum compu-
tation in the state injection model.
Finally, we note that our main result demonstrates that

the principle of generalized noncontextuality is a much
stronger principle than was previously recognized, at least

in some settings. This is exemplified by the fact that for
stabilizer theories in odd dimensions, it does not merely
provide constraints on ontological representations, it
completely fixes the ontological representation. This offers
some hope that if the notion of a generalized noncontextual
model can be relaxed in such a way [47] that lifts the
obstructions to modeling the entirety of quantum theory,
such a model of the full theory might also be unique. In our
view such a uniqueness result would offer a compelling
reason to take the identified ontology seriously.
The stabilizer subtheory.—The stabilizer subtheory is

one of the most important subtheories of quantum theory in
the field of quantum information, playing an important
role in quantum computing [5–7,14,54,55], quantum error
correction [5,6,56–58], and quantum foundations [59–64].
We introduce it [65] briefly here, with more details in
Supplemental Material [66].
The stabilizer subtheory is built around the Clifford

unitaries. To define these, we first introduce the Weyl
operators (also called generalized Pauli operators).
Consider a d-dimensional quantum system with computa-
tional basis fj0i;…; jd − 1ig. Writingω ¼ expð2πi=dÞ, we
define the translation operator X and boost operator Z via

Xjxi ¼ jxþ 1i Zjxi ¼ ωxjxi: ð1Þ

Note that here and throughout, all arithmetic is within Zd,
the integersmodulod. The single-systemWeyl operators are
then defined as Wp;q ¼ ZpXq, where p; q ∈ Zd. Note that
these are often defined with an additional phase factor ωγp;q ;
however, the resulting operational theory is the same for any
valid [51] phase choice, so we will set γp;q to zero. The
Clifford unitaries are defined as unitaries which—up to a
phase—map Weyl operators to other Weyl operators under
conjugation.
The stabilizer subtheory for a single system in dimension

d is defined as the set of processes which can be generated
by sequential composition of (i) pure states uniquely
identified by being the simultaneous eigenstates of a given
set of Weyl operators, (ii) projective measurements in the
spectral decomposition of the Weyl operators [73], and
(iii) Clifford unitary superoperators on the associated
Hilbert space, as well as convex mixtures of such processes.
This construction is easily generalized to allow for

parallel composition, that is, for systems made up of n
qudits [74], by defining the multiparticle Weyl operators as
tensor products of those defined above, and defining the
multiparticle Clifford operators as unitary superoperators
that preserve the multiparticle Weyl operators under con-
jugation; see Ref. [9] for more details. An important feature
is that in general the stabilizer subtheory defined by parallel
composition of n qudits is not the same as the stabilizer
subtheory defined by a single dn dimensional system—for
instance, the latter generally has far fewer states [9].
Therefore, for a given dimension D there may be multiple
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different stabilizer theories which could be associated to it,
depending on whether one views it as a single monolithic
system of dimension D (which Gross calls the single-
particle view), or views it as some tensor product of
multiple qudits (which Gross calls a multiparticle view).
Quasiprobability representations.—A quasiprobability

representation [22,75,76] is akin to a mathematical re-
presentation of quantum processes as stochastic processes
on a sample space, except that the representation may take
negative values. For the reasons laid out in Refs. [22,47], we
are only interested in quasiprobability representations that
satisfy the assumption of diagram preservation [22,47]—
namely, that the representation commutes with sequential
and parallel composition of processes. This assumption is
satisfied by most of the useful quasiprobability representa-
tions considered in the literature, including the standard
(continuous-dimensional) Wigner function and Gross’s
representation.
The arguments of Ref. [22] imply that every diagram-

preserving quasiprobability representation of a full dimen-
sional subtheory [77] of quantum theory can be written as a
minimal frame representation [75], i.e., one whose frame
elements form a basis, as follows. One first associates to
each system a basis fFλgλ for the real vector space of
Hermitian operators, where

tr½Fλ� ¼ 1: ð2Þ

Every basis has a unique dual basis fDλgλ, as proved in
Supplemental Material [66], where

X

λ

Dλ ¼ 1; tr½Dλ0Fλ� ¼ δλλ0 : ð3Þ

In this representation, a completely positive trace-
preserving map [78,79] E is represented by a quasistoc-
hastic map defined by

ξEðλ0jλÞ ¼ tr½Dλ0EðFλÞ�: ð4Þ

As special cases, the representations of a state ρ and an
effect E are given by

ξρðλÞ ¼ tr½Dλρ�; ξEðλÞ ¼ tr½FλE�; ð5Þ

and the quantum probabilities are recovered as

tr½EEðρÞ� ¼
X

λ0;λ

ξEðλ0ÞξEðλ0jλÞξρðλÞ: ð6Þ

A quasiprobability representation is said to be non-
negative if for every process E, 0 ≤ ξEðλ0jλÞ ≤ 1 for every
λ; λ0. In this case, the representation is in one-to-one
correspondence with a noncontextual ontological model
[23,47].
Gross’s representation.—The particular quasiprobabi-

lity representation introduced by Gross [9] is for odd

dimensional quantum systems and takes the sample space
to be a phase space V ¼ Zd × Zd, and so its elements will
be labeled by a ≔ ðp; qÞ, rather than λ. Hence, the basis
operators in Gross’s representation are indexed by a ∈ V,
and we will denote them by Aa.
The basis operators in Gross’s representation can be

written in terms of the Weyl operators as follows:

fAaga ≔
�
1

d

X
b
ω−½a;b�WG

b
†
�

a
; ð7Þ

where Gross’s Weyl operators WG
p;q are related to ours via

WG
p;q ≔ ω2−1pqWp;q. These operators form an orthogonal

basis, and so the basis is essentially self-dual, so that both
fFλg and fDλg are proportional to fAag, with Dλ ¼
ð1=dÞFλ. They moreover satisfy a number of useful
properties (see, e.g., Lemma 29 of Ref. [9]) including a
key feature of translational covariance [9] where

Wp0;q0Ap;qW
†
p0;q0 ¼ Apþp0;qþq0 ∀ p; q; p0; q0: ð8Þ

Main result.—Our main result is a complete characteri-
zation of the (non)classicality of the stabilizer subtheory in
every finite dimension.
Theorem 1.—(a) For any stabilizer subtheory (single- or

multiparticle) in odd dimensions, the unique nonnegative
and diagram-preserving quasiprobability representation
for it is Gross’s representation. (b) For any stabilizer
subtheory (single- or multiparticle) in even dimensions,
there is no nonnegative and diagram-preserving quasi-
probability representation.
The proof is given in Supplemental Material [66].
As shown in Refs. [59,61], Gross’s representation is

identical to Spekkens’ epistemically restricted toy theory
[80] for odd dimensions [59]. Through the equivalences
between various notions of classicality [22], our result can
be stated in a number of ways. Perhaps the most natural
equivalent statement of Theorem 1 is the following: for odd
dimensions, the unique noncontextual representation of the
stabilizer subtheory is Spekkens’ epistemically restricted
toy theory. For even dimensions, the stabilizer subtheory is
contextual.
There are several senses in which our uniqueness result,

Theorem 1(a), is stronger than that proven by Gross [9] or
that proven by Zhu [21]. Most importantly, the principle of
generalized noncontextuality is a well-established notion of
classicality, while Gross’s notion of Clifford covariance and
Zhu’s (weaker) notion of Clifford covariance are not.
Additionally, our result starts from the very weak
assumption of classical realism [47]—that is, the ontologi-
cal models framework—while Gross’s and Zhu’s results
rely on additional assumptions which have not been given
physical motivation. In particular, both Gross’s and Zhu’s
arguments only single out Gross’s representation if one
assumes that one’s representation is on a d × d phase space,
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and that it gives the correct marginal probabilities [81]. In
our approach, both of these are derived. Finally, our
uniqueness result holds in all odd dimensions, while
Gross’s uniqueness result was proven only for odd prime
dimensions, and Zhu’s only for prime power dimensions.
Theorem 1(b) establishes that every stabilizer subtheory

of even dimension exhibits contextuality. While this result
has previously been claimed to be true, it had not in fact
been proven (to our knowledge). For d ¼ 2, there are well-
known proofs of contextuality, e.g., in Ref. [63]. It follows
that every subtheory which contains all the processes in the
qubit stabilizer subtheory is also contextual. However, it is
not known whether every even-dimensional stabilizer
subtheory contains the qubit stabilizer as a subtheory
(see Ref. [9]), and so the claim of Theorem 1(b) does not
trivially follow in this manner.
Generalized contextuality as a resource for quantum

computation.—The stabilizer subtheory is efficiently sim-
ulable [6]. However, if one supplements it with appropriate
nonstabilizer states, one can achieve universal quantum
computation through magic state distillation [7].
Any state which promotes the stabilizer subtheory to

universal quantum computation must have negativity in its
Gross’s representation [12]. Reference [14] further showed
that Kochen-Specker contextuality is necessary for univer-
sality in this model of quantum computation.
The key argument of Ref. [14] was a graph-theoretic

proof that if a state is negative in Gross’s representation,
then it admits a (state-dependent) proof of Kochen-Specker
contextuality using only stabilizer measurements. Our main
theorem, Theorem 1, is analogous, establishing that if a
state is negative in Gross’s representation, then it admits a
proof of generalized contextuality.
Hence, we immediately arrive at a result akin to that

of Ref. [14]: generalized contextuality is necessary for
universality in the state injection model of quantum
computation.
Theorem 2.—Consider any state ρ which promotes the

stabilizer subtheory to universal quantum computation.
There is no generalized noncontextual model for the
stabilizer subtheory together with ρ.
We comment in the Supplemental Material [66] on two

other routes to proving this theorem.
On the sufficiency of generalized contextuality for

universal quantum computation.—Thus far we have
focused on the necessity of contextuality for quantum
computation. However, the fact that Gross’s representation
provides the unique noncontextual representation of the
stabilizer subtheory may also be useful for discovering in
what sense (if any) generalized contextuality is sufficient
for quantum computation.
Without any caveats, generalized contextuality is clearly

not sufficient for universal quantum computation. This can
be seen by the example of the stabilizer subtheory in
dimension 2, which admits proofs of contextuality [63] and
yet is efficiently simulable [6].

Still, it is conceivable that there is a more nuanced
sufficiency result relating contextuality and computation,
e.g., by leveraging quantitative measures of generalized
contextuality [45,82] or by focusing on particular dimen-
sions and models of quantum computation. We now prove a
related result (without explicit reliance on Theorem 1).
From Refs. [12,83], we know that access to enough

copies of any nonstabilizer pure state promotes the stabi-
lizer subtheory to universal quantum computation.
Similarly, access to enough copies of any nonstabilizer
unitary promotes the stabilizer subtheory to universal
quantum computation, since the Clifford unitaries together
with any other unitary gate forms a universal gate set
[84,85].
It is well known that every pure nonstabilizer state is

negatively represented in Gross’s representation [9].
Additionally, it is not hard to see that every nonstabilizer
unitary gate is negatively represented in Gross’s represen-
tation. By the universal gate set property [84,85], combin-
ing the positively represented Clifford gates with any given
nonstabilizer unitary allows the approximation of any other
unitary—including one that maps some pure stabilizer state
to some pure nonstabilizer state. Since the stabilizer state is
represented positively and the nonstabilizer state must be
represented negatively in Gross’s representation, the uni-
tary mapping between them must have negativity in its
Gross’s representation, and hence so must the given non-
stabilizer unitary used to construct it. Hence we obtain the
following theorem:
Theorem 3.—A (necessary and) sufficient condition for

any unitary or pure state to promote the stabilizer subtheory
to universal quantum computation is that it be negatively
represented in Gross’s representation. For the case of pure
states, this result was pointed out in Refs. [12,83]. Perhaps
the most important open question that remains is whether
an analogous sufficiency result holds for mixed states and
generic quantum channels.
Conclusion.—We have proved that noncontextuality

picks out a unique classical explanation for every stabilizer
subtheory in odd dimensions, and that there is no non-
contextual model for any stabilizer subtheory in even
dimensions. We then proved that, as a consequence,
generalized contextuality is a necessary resource for
universal quantum computation in the state injection
model. We expect these results connecting contextuality
and negativity to continue to be useful for understanding
the resources needed for quantum information processing.
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