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We present a protocol for probing the state of a quantum system by its resonant coupling and
entanglement with a meter system. By continuous measurement of a time evolving meter observable, we
infer the evolution of the entangled systems and, ultimately, the state and dynamics of the system of
interest. The photon number in a cavity field is thus resolved by simulated monitoring of the Rabi
oscillations of a resonantly coupled two-level system, and we propose to regard this as a practical extension
of quantum nondemolition measurements with applications in quantum metrology and quantum
computing.
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Introduction.—In most studies and applications of quan-
tum systems, it is required to perform measurements of a
physical observable to detect its value in a given state or
changes of its value due to physical interactions. So-called
quantum nondemolition (QND) measurements employ
interactions with a measurement apparatus that does not
change the value of the observable of interest or any other
property of the system that may subsequently cause
changes of that value [1–3]. QND measurements are useful
for precision monitoring of perturbations or dissipative
state changes of quantum systems and sensors [3–6].
Early experiments employed the optical Kerr effect and

parametric amplification to perform QND measurements
on propagating light fields [7–9]. Real and artificial atoms
and cavity fields permit practical detection schemes where
a sequence of weak measurements accumulates measure-
ment statistics and gradually approaches a projective
measurement on the system [10–18]. Such measurements
may also be used to identify infrequent quantum jumps
among eigenstates [19–26]. The Hamiltonian of a quantum
system constitutes a QND observable, and its energy
eigenstates can be probed by dispersive interactions that
perturb the energy and cause a complex phase evolution of
the eigenstates of qubit or field probes. To ensure that no
energy is exchanged between the system and the probe,
the interactions have to be far-off resonant, and the phase
evolution of the probe system, given by second order
perturbation theory, is typically slow.
Probing by resonant Rabi dynamics.—In this Letter,

we propose a different and faster approach to measure
and monitor the energy eigenstates of a quantum system.

Our proposal relies on weak continuous probing of a meter
system that is subject to resonant interactions and oscil-
latory exchange of energy with the system of interest. We
demonstrate the proposal by simulating the probing of the
excited state population of a two-level system coupled to a
harmonic oscillator by the Jaynes-Cummings interaction.
Figures 1(a) and 1(b) recall how a mixture or superposition
of oscillator eigenstates fjnig leads to the so-called damped
and revived Rabi oscillations, appearing as the weighted
sum of oscillations with different n-dependent frequencies,
cf., experiments with trapped ions [27] and superconduct-
ing qubits [28]. The total number of excitations shared
between the probe and the oscillator is a conserved
quantity, and we suggest to infer its value by measuring
the oscillation frequency of the probe qubit excited state
population. This can be done with a classical far-off
resonant probe, and instead of the repeated projective
measurements applied in [27,28], which successfully
reproduce the average behavior shown in Fig. 1(a), our
continuous observation concerns a single system and
fluctuating rather than average values. The system is hence
simulated by a stochastic master equation [29,30], and
Fig. 1(c) shows how the state of the system conditioned on
the measurement record develops full contrast oscillations
of the probe excitation with a well resolved single fre-
quency and a corresponding well defined value of the
shared number of excitations in the system. We shall refer
to this as degenerate subspace QND detection (DS QND),
while noting that the oscillatory behavior in Fig. 1(c)
determines both the number of excitations, and hence
the pair of states fjnþ 1; gi; jn; eig, and the phase of
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the oscillation, so we are, in fact, tracking a coherent
superposition state, which periodically factors into an
oscillator number state and a probe system energy eigen-
state (at instants when hσ̂eei ¼ 0, 1). We shall now present
the theory leading to Figs. 1(c) and 1(d), and quantify the
performance of DS QND.
Weak continuous measurements.—We consider a har-

monic oscillator resonantly coupled to a qubit with states jgi
and jei, via the resonant Jaynes-Cummings Hamiltonian,

H ¼ ωðâ†âþ σ̂eeÞ þ gðâ†σ̂ge þ âσ̂egÞ; ð1Þ

where ℏ ¼ 1 such that ω is the energy spacing of the
oscillator and the qubit, â† (â) is the creation (annihilation)
operator of the oscillator, σ̂ij ¼ jiihjj and g is the coupling
strength. The Jaynes-Cummings coupling drives oscillations
between product states jn; ei ↔ jnþ 1; gi with angular
frequency 2g

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
, as seen in Fig. 1(b).

We imagine that the qubit is a real or artificial atom and
that the qubit observable σ̂ee can be continuously measured
by phase sensitive, homodyne detection of a classical probe
field coupling jei off resonantly to a further excited state.
While this probing occurs, the system is governed by the
stochastic master equation [29,30],

dρ ¼ −i½H; ρ�dtþ kD½σ̂ee�ρdtþ
ffiffiffiffiffiffiffiffi
2kη

p
H½σ̂ee�ρdW; ð2Þ

where k denotes the measurement strength and η is the
measurement efficiency. The first term in Eq. (2) describes
coherent Rabi oscillation dynamics. The second term in
Eq. (2) contains the dissipation superoperator

D½Ô�ρ ¼ 2ÔρÔ† − fÔ†Ô; ρg; ð3Þ

describing decoherence due to the disturbance caused by
the measurement. The final term in Eq. (2) contains the
superoperator

H½Ô�ρ ¼ Ôρþ ρÔ† − hÔþ Ô†iρ; ð4Þ

where hÔiρ ¼ Tr½Ôρ�. This term describes the stochastic
measurement backaction. The Wiener noise increment dW
in Eq. (2) is given by the difference between the random
measurement outcome obtained in the experiment dYðtÞ,
and its expected mean value,

dYðtÞ ¼ hσ̂eeiρdtþ
dWffiffiffiffiffiffiffiffi
8kη

p : ð5Þ

dW represents Gaussian noise with zero mean and variance
equal to dt on the phase quadrature of the probe field, and it
can be simulated in numerical studies. Numerical solutions
of the stochastic master equation are obtained using the
QuTiP toolbox [31,32].
To observe how the continuous measurement of σ̂ee

reveals the oscillator dynamics, we will consider a situation
where the qubit is initially prepared in the state jei, while
the harmonic oscillator is in a mixed state described by
ρHO ¼ P

n pnðt ¼ 0Þjnihnj. Results of simulations are
presented in Fig. 2 for η ¼ 1, and they show that the
system converges to states with a definite total number of
excitations. For the case of weak probing [panels (a) and
(b)], we see that the definite value of n occurs together with
a definite harmonic evolution of the excited state popula-
tion (at frequency 2g

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
), while intermediate probing

strengths [panels (c) and (d)], identify a definite value of n
faster, despite the Rabi oscillations being significantly
disturbed by the measurement process. For even stronger
probing [panels (e) and (f)] the coherent Rabi oscillations
are replaced by infrequent jumps between the probe states,
and the distinction between different values of n takes
longer time. For values of the measurement efficiency
η < 1 the signal-to-noise ratio is decreased, cf. Eq. (5), and
the corresponding measurement backaction in Eq. (2) is
reduced. The DS QNDmechanism still applies but it occurs
on a longer timescale.
Optimal probing strength.—In order to assess the time

needed for the continuous measurements to determine the
degree of excitation of the oscillator, we study the con-
vergence toward unity of the purity P ¼ Trðρ2Þ of the
conditional density matrix. As seen in Fig. 3, we can fit its
mean value over many trajectories with an exponential

(a) (b)

(c) (d)

FIG. 1. (a) Unconditioned dynamics of the excited state
population hσ̂eei of a two-level system resonantly coupled to a
harmonic oscillator. The complex behavior is due to its compo-
sition as a sum with weight factors pn of regular quantum Rabi
oscillations with different frequencies shown in panel (b). Panel
(c) shows the stochastic dynamics of the expectation value hσ̂eei,
conditioned on weak continuous measurements of σ̂ee and
simulated by the stochastic master equation (2). The continuous
probing of σ̂ee gradually identifies a single Rabi oscillation
frequency and hence collapses the system from an initial thermal
ensemble with mean excitation hn̂i ¼ 3 into a single energy
subspace as shown by the evolution of the subspace probabilities
pn in panel (d).
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model, and repeating the procedure for different probing
strengths we observe in the inset of Fig. 3 that the time
needed to perform DS QND is smallest in the intermediate
strength probing regime, k ≃ g.
This result can be explained qualitatively, since probing

with a small value of k only yields an appreciable signal to
noise when accumulated over times ∝ 1=k. During that
time the system undergoes one or several Rabi oscillations,
and despite the white noise component in the weak probe
signal it is possible to discern a single leading harmonic
component and hence reveal the value of n. While
increasing k increases the data extraction rate, when k
becomes of the order of the value of g the backaction of

the qubit excited state measurements causes significant
disturbance of the Rabi oscillations. Discerning different
n values by the frequency of the Rabi oscillations is
gradually hampered by these disturbances when k exceeds
g. Ultimately, when k is very large, the measurements
effectively project the qubit in its energy eigenbasis and
thus freezes the Rabi oscillations by the quantum Zeno
mechanism [33], see Fig. 2(f). The moderate and strong
measurement backaction does not invalidate the QND
property with respect to distinction of Rabi subspaces,
but they modify the harmonic population oscillation within
the subspaces as shown in Fig. 2. This explains why the
distinction between different subspaces eventually becomes
less effective.
Observation of quantum jumps.—DS QND may be

applied to mechanical oscillators, quantized fields, photons,
and magnons, which are all systems where there has been
an interest in demonstrating the quantized nature of their
interactions [11–18,20,34,35], and dynamical features such
as quantum jumps [19,22–26]. The latter experiments are
often hampered by the time between jumps being compa-
rable to the time needed to detect the change of n in an
experiment. The time, ∼1=g, needed to resolve the resonant
Rabi oscillations frequencies by our method for low values
of n may be much shorter than the time needed for the
dispersive coupling which assumes a detuning δ ≫ g and a
resulting weaker coupling strength ðg2=δÞ ≪ g. DS QND
may thus be particularly useful to resolve quantum jumps,
and we now discuss how to incorporate thermal quantum
jumps in the formalism and present simulations of their
detection from the measurements on the probe system.
If the harmonic oscillator is connected to a thermal

reservoir with an average number of excitations nT and
coupling rate γ, Eq. (2) is modified into

(b)

(a) (c)

(d) (f)

(e)

FIG. 2. Quantum trajectory simulations of the dynamics of the Jaynes-Cummings system subject to weak continuous probing
[k ¼ 0.1g, panels (a) and (b)], intermediate probing [k ¼ g, panels (c) and (d)], and strong probing [k ¼ 10g, panels (e) and (f)] of the
excited state population of the two-level probe system. The harmonic oscillator is prepared initially in a thermal state with mean
excitation number hn̂i ¼ 3 and the qubit is prepared in the excited state. The upper panels show the conditional probabilities for the total
(integer) number of excitations, while the lower panels show the qubit excited state population.

FIG. 3. The average purity hPidW of 200 simulated trajectories
under weak probing (k ¼ 0.1g). The shaded area represents one
standard deviation from the mean. The average time τ, needed to
measure the energy, is extracted by fitting the purity
PðtÞ ¼ 1 − ½1 − Pðt ¼ 0Þ�e−t=τ. The inset shows the average time
of distinction of the excitation of the harmonic oscillator,
prepared with an initial thermal distribution with hn̂i ¼ 3, as a
function of probing strength k.
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dρ ¼ −i½H; ρ�dt − γ

2
ðnT þ 1ÞD½â�ρdt − γ

2
nTD½â†�ρdt

þ kD½σ̂ee�ρdtþ
ffiffiffiffiffiffiffiffi
2kη

p
H½σ̂ee�ρdW: ð6Þ

The terms involving D½â� and D½â†� are responsible for the
loss or absorption of excitations to or from the bath.
Figure 4 shows a simulation of the dynamics described

by Eq. (6). For this particular simulation, we assumed
that no quanta were emitted into or absorbed from the bath
until gt ¼ 25 where we simulated an incoherent heating
event. The blue curve in the lower panel shows the mean
excitation of the oscillator, inferred by a hypothetical
observer of both the probing dynamics and the occurrence
of the energy exchange between the oscillator and the heat
bath, while the orange curve shows the mean excitation of
the oscillator inferred by an observer having only access to
the continuous probing record. In the upper panel, the
change in n at t ¼ 25=g accompanies a change in the Rabi
oscillation frequency appearing instantly in the regular blue
curve inferred by the hypothetical observer. The more
erratic orange curve reveals the uncertainty of the real
observer who realizes the change of state and agrees with
the hypothetical observer only after the signal has accu-
mulated to permit distinction of the different n values.
Figure 5 shows a longer measurement record with

multiple jumps inferred as the rapid transfer of near unit
probability weights among different values of n. As in
[21,36], it is possible to use the entire measurement record
and not only previous data for the theoretical estimation of
the state at any given time to improve the agreement
between the inferred and the true jumps in Figs. 4 and 5.
General picture.—The characteristic property of our DS

QND is the convergence and subsequent restriction of the
system to follow trajectories within a single degenerate

subspace of a certain operator Â which commutes with the
Hamiltonian, ½Â; Ĥ� ¼ 0. An interaction term in the
Hamiltonian Ĥ causes a time evolution of a meter observ-
able B̂, which commutes with Â, and the temporal outcome
of measurements of B̂ gradually collapses the system to a
definite degenerate eigenspace of Â. For this detection to
work, it is important that the characteristic measurement
records differ when the system occupies different such
subspaces. In our example, Â is the total number of
excitations and B̂ is the qubit meter excitation, and the
Rabi oscillation frequencies, indeed, have distinct values in
each eigenspace of Â. Notably, the measurements both
reveal the degenerate subspace (of Â) and the actual time
dependent entangled state of the system and meter within
the subspace. If we assume unit measurement efficiency,
and an initial mixture of pure states jψnðtÞi, each occupying
a single degenerate subspace of Â,

ρðtÞ ¼
X

n

pnðtÞjψnðtÞihψnðtÞj; ð7Þ

we may generalize (2) to the measured observable B̂

dρ ¼ −i½H; ρ�dtþ kD½B̂�ρdtþ
ffiffiffiffiffi
2k

p
H½B̂�ρdW: ð8Þ

The ansatz in Eq. (7) then leads to the following
equations:

dpn ¼
ffiffiffiffiffi
8k

p
pnðhψnðtÞjB̂jψnðtÞi − hB̂iρðtÞÞdW; ð9Þ

and we observe that, if only one state jψni is populated,
pn ¼ 1, hψnjB̂jψni ¼ hB̂iρ, and the stochastic noise terms
do not affect the future evolution of the unit value of pnðtÞ,
while the state jψnðtÞi may still evolve within the given
occupied subspace.
To further understand why the system collapses on a

single subspace, we note that the purity of the system is
PðtÞ ¼ P

n p
2
nðtÞ, and applying Itô’s rule for dðp2

nÞ yields

FIG. 4. Observation of a quantum jump. The orange curve in
the upper (lower) panel shows the excited state population
(average excitation of the oscillator) inferred from weak con-
tinuous measurements on the qubit meter. The oscillator is subject
to a single quantum jump occurring at gt ¼ 25, and the blue
curves show the inferred qubit excited state population and
oscillator number of quanta, assuming the added knowledge of
when the jump happened. Parameters used for the simulation are
k ¼ 0.1g, γ ¼ 10−3g, and hn̂i ¼ nT ¼ 3.

FIG. 5. Observation of multiple quantum jumps. The harmonic
oscillator starts in a thermal distribution with mean excitation
number hn̂i ¼ 3. The probing strength k ¼ g, such that it is close
to the optimal value. The coupling to the bath is γ ¼ 10−3g and its
mean excitation is nT ¼ 3.
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dP ¼
X

n

½8kp2
nðhψnjB̂jψni − hB̂iρÞ2dt

þ
ffiffiffiffiffiffiffiffi
32k

p
p2
nðhψnjB̂jψni − hB̂iρÞdW�: ð10Þ

The average of dW is zero and hence the average evolution
of the purity obeys

dhPidW ¼
X

n

8khp2
nðhB̂in − hB̂iρÞ2idWdt; ð11Þ

which is positive and causes hPidW to increase until the
time evolution of hB̂iρ is indistinguishable from the one in

just one of the subspaces hB̂in. If several subspaces display
the same evolution, they are not distinguished and our
measurement only distinguishes their union from other
subspaces with other evolution properties. While our
analysis used the example of system and meter entangled
state dynamics, the method is not restricted to bipartite
quantum systems. The commutator requirements between
Ĥ and Â and between Â and B̂ suffice for our scheme to
resolve the value of Â for any multilevel quantum system
with nontrivial eigensubspaces that can be distinguished by
the continuous measurement of B̂.
Conclusion and outlook.—We have presented a new

principle for continuous QND measurements which does
not project the system on the eigenstate of the QND
observable but rather on a superposition state persistently
evolving within a specific subspace. Different subspaces
are discerned by the characteristic frequency of evolution of
the mean value of an observed quantity, which may be
monitored faster than the accumulation of dispersive phase
shifts in the more usual QND setting.
Let us finally point to similarities between our Letter and

a process referred to as emergent QND measurements
[35,37]. This method probes a physical observable very
weakly and, averaged over time, it determines its expect-
ation value in one of the (nondegenerate) energy eigenstates
and hence also identifies that state in a QND-like manner.
Another variant of QND measurements is formed by brief
position measurements carried out around times tn ¼ nπ=ω
of an harmonic oscillator with frequency ω [38–40], to
enable the measurement of nonconserved but periodically
evolving properties of quantum systems. Joint or sequential
applications of these different approaches in combination
with DS QND measurements may form interesting
schemes to monitor quantum dynamics of more complex
systems in real time and to use measurements for rapid state
control.
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[20] C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S.
Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, Progressive
field-state collapse and quantum non-demolition photon
counting, Nature (London) 448, 889 (2007).

[21] T. Rybarczyk, B. Peaudecerf, M. Penasa, S. Gerlich, B.
Julsgaard, K. Mølmer, S. Gleyzes, M. Brune, J. M.
Raimond, S. Haroche, and I. Dotsenko, Forward-backward
analysis of the photon-number evolution in a cavity, Phys.
Rev. A 91, 062116 (2015).

[22] R. Vijay, D. H. Slichter, and I. Siddiqi, Observation of
Quantum Jumps in a Superconducting Artificial Atom,
Phys. Rev. Lett. 106, 110502 (2011).

[23] A. Delteil, W. B. Gao, P. Fallahi, J. Miguel-Sanchez, and A.
Imamoğlu, Observation of Quantum Jumps of a Single
Quantum Dot Spin Using Submicrosecond Single-Shot
Optical Readout, Phys. Rev. Lett. 112, 116802 (2014).

[24] Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R.
Gutiérrez-Jáuregui, R. J. Schoelkopf, M. Mirrahimi, H. J.
Carmichael, and M. H. Devoret, To catch and reverse a
quantum jump mid-flight, Nature (London) 570, 200
(2019).

[25] S. Peil and G. Gabrielse, Observing the Quantum Limit of
an Electron Cyclotron: QND Measurements of Quantum
Jumps between Fock States, Phys. Rev. Lett. 83, 1287
(1999).

[26] L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair,
K. M. Sliwa, A. Narla, M. Hatridge, S. Shankar, J. Blumoff,
L. Frunzio, M. Mirrahimi, M. H. Devoret, and R. J.
Schoelkopf, Tracking photon jumps with repeated quantum

non-demolition parity measurements, Nature (London) 511,
444 (2014).

[27] D. M. Meekhof, C. Monroe, B. E. King, W.M. Itano, and
D. J. Wineland, Generation of Nonclassical Motional States
of a Trapped Atom, Phys. Rev. Lett. 76, 1796 (1996).

[28] M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E.
Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M.
Martinis, and A. N. Cleland, Generation of Fock states in
a superconducting quantum circuit, Nature (London) 454,
310 (2008).

[29] Howard M. Wiseman and G. J. Milburn, Quantum Measure-
ment and Control (Cambridge University Press, Cambridge,
England, 2010).

[30] R. Blattmann and K. Mølmer, Conditioned quantum motion
of an atom in a continuously monitored one-dimensional
lattice, Phys. Rev. A 93, 052113 (2016).

[31] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-
source Python framework for the dynamics of open quan-
tum systems, Comput. Phys. Commun. 183, 1760 (2012).

[32] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A
PYTHON framework for the dynamics of open quantum
systems, Comput. Phys. Commun. 184, 1234 (2013).

[33] L. S. Schulman, Continuous and pulsed observations in the
quantum Zeno effect, Phys. Rev. A 57, 1509 (1998).

[34] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C.
Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank,
H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N.
Cleland, Quantum ground state and single-phonon control
of a mechanical resonator, Nature (London) 464, 697
(2010).

[35] L. Dellantonio, O. Kyriienko, F. Marquardt, and A. S.
Sørensen, Quantum nondemolition measurement of
mechanical motion quanta, Nat. Commun. 9, 3621 (2018).

[36] S. Gammelmark, B. Julsgaard, and K. Mølmer, Past
Quantum States of a Monitored System, Phys. Rev. Lett.
111, 160401 (2013).

[37] D. Yang, C. Laflamme, D. V. Vasilyev, M. A. Baranov, and
P. Zoller, Theory of a Quantum Scanning Microscope for
Cold Atoms, Phys. Rev. Lett. 120, 133601 (2018).

[38] G. Vasilakis, V. Shah, and M. V. Romalis, Stroboscopic
Backaction Evasion in a Dense Alkali-Metal Vapor, Phys.
Rev. Lett. 106, 143601 (2011).

[39] G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B.
Chen, and E. S. Polzik, Generation of a squeezed state of an
oscillator by stroboscopic back-action-evading measure-
ment, Nat. Phys. 11, 389 (2015).

[40] A. C. J. Wade, J. F. Sherson, and K. Mølmer, Squeezing and
Entanglement of Density Oscillations in a Bose-Einstein
Condensate, Phys. Rev. Lett. 115, 060401 (2015).

PHYSICAL REVIEW LETTERS 129, 120402 (2022)

120402-6

https://doi.org/10.1038/s41586-018-0717-7
https://doi.org/10.1038/s41586-018-0717-7
https://doi.org/10.1038/s41586-019-1386-x
https://doi.org/10.1103/PhysRevX.9.021056
https://doi.org/10.1103/PhysRevX.9.021056
https://doi.org/10.1126/science.aaz9236
https://doi.org/10.1038/nature05589
https://doi.org/10.1038/nature06057
https://doi.org/10.1103/PhysRevA.91.062116
https://doi.org/10.1103/PhysRevA.91.062116
https://doi.org/10.1103/PhysRevLett.106.110502
https://doi.org/10.1103/PhysRevLett.112.116802
https://doi.org/10.1038/s41586-019-1287-z
https://doi.org/10.1038/s41586-019-1287-z
https://doi.org/10.1103/PhysRevLett.83.1287
https://doi.org/10.1103/PhysRevLett.83.1287
https://doi.org/10.1038/nature13436
https://doi.org/10.1038/nature13436
https://doi.org/10.1103/PhysRevLett.76.1796
https://doi.org/10.1038/nature07136
https://doi.org/10.1038/nature07136
https://doi.org/10.1103/PhysRevA.93.052113
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.57.1509
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/s41467-018-06070-y
https://doi.org/10.1103/PhysRevLett.111.160401
https://doi.org/10.1103/PhysRevLett.111.160401
https://doi.org/10.1103/PhysRevLett.120.133601
https://doi.org/10.1103/PhysRevLett.106.143601
https://doi.org/10.1103/PhysRevLett.106.143601
https://doi.org/10.1038/nphys3280
https://doi.org/10.1103/PhysRevLett.115.060401

