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We study the steady states of translation-invariant open quantum many-body systems governed by
Lindblad master equations, where the Hamiltonian is quadratic in the ladder operators, and the Lindblad
operators are either linear or quadratic and Hermitian. These systems are called quasifree and quadratic,
respectively. We find that steady states of one-dimensional systems with finite-range interactions
necessarily have exponentially decaying Green’s functions. For the quasifree case without quadratic
Lindblad operators, we show that fermionic systems with finite-range interactions are noncritical for any
number of spatial dimensions and provide bounds on the correlation lengths. Quasifree bosonic systems
can be critical inD > 1 dimensions. Last, we address the question of phase transitions in quadratic systems
and find that, without symmetry constraints beyond invariance under single-particle basis and particle-hole
transformations, all gapped Liouvillians belong to the same phase.
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Introduction.—For closed systems, criticality and quan-
tum phase transitions have been studied extensively [1–4].
Particularly, for one-dimensional systems, we have obtai-
ned a thorough classification of gapped states using the
tensor-network ansatz [5–8].
In practice, most quantum systems are not perfectly

isolated from their environment. In addition to posing
challenges for quantum technology, driving and dissipation
in open systems could be designed to stabilize (novel)
phases of matter or particular entangled states [9–11], e.g.,
to facilitate measurement-based quantum computation
[12,13], quantum phase estimation [14,15], and quantum
simulation [16–20]. For Markovian systems, the density
matrix ρ̂ evolves according to a Lindblad master equation
[21–25]:

∂tρ̂ ¼ Lρ̂ ¼ −i½Ĥ; ρ̂� þ
X
α

�
L̂αρ̂L̂

†
α −

1

2
fL̂†

αL̂α; ρ̂g
�
:

In addition to the Hamiltonian part −i½Ĥ; ρ̂�, the
Liouvillian superoperator L captures decoherence proc-
esses with environment couplings described by the
Lindblad operators L̂α.
In this Letter, we elucidate the occurrence of criticality

and phase transitions in the steady states of open quasifree
and quadratic systems of fermions and bosons. Quasifree
open systems are characterized by Hamiltonians that are
bilinear and Lindblad operators that are linear in ladder
operators. Quadratic open systems may have additional
bilinear self-adjoint Lindblad operators [26,27]. A system
is called “critical” if it has a unique steady state with
algebraically decaying correlations. We establish that qua-
dratic one-dimensional (1D) systems with finite-range

interactions and unique steady states necessarily have expo-
nentially decaying Green’s functions. Next, we address
quasifree systems with finite-range interactions. Quasifree
fermionic systems are noncritical for any number of spatial
dimensions [28]. Conversely, one can construct critical
quasifree bosonic systems for D ≥ 2 dimensions. Gapped
quasifree systems are always noncritical. Of course, the
existence of critical steady states does not necessarily imply
phase transitions. In fact we show that, without symmetry
constraints beyond invariance under single-particle basis
and particle-hole transformations, all gapped Liouvillians
of quadratic open systems belong to the same phase.
Experimentally, systems of trapped ions [30,31],

Rydberg atoms [32,33], ultracold atoms in optical lattices
or tweezers [34–36], and superconducting circuits [37,38]
allow for the engineering of such dissipative systems
[39–44]. In circuit QED systems [45–48], linear Lindblad
operators arise naturally from photon loss and pump
process, while the coupling of cavities can lead to bilinear
Lindblad operators [49,50].
Setup and covariance matrix.—Consider a system of

identical bosons or fermions with ladder operators âj and
â†j for modes j ¼ 1;…; N. We employ Majorana operators

ŵjþ ≔ ðâj þ â†jÞ=
ffiffiffi
2

p
and ŵj− ≔ iðâj − â†jÞ=

ffiffiffi
2

p
, which

obey the (anti)commutation relations

fŵiμ; ŵjνg ¼ δi;jδμν for fermions; and

½ŵiμ; ŵjν� ¼ −iμδi;jδμ;−ν for bosons:

We address Markovian systems with quadratic Hamiltonians
Ĥ ¼ P

iμ;jν ŵiμHiμ;jνŵjν. Quasifree systems only have linear

Lindblad operators L̂s ¼
P

jν Ls;jνŵjν. Quadratic systems
may feature additional bilinear self-adjoint Lindblad
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operators M̂u¼ M̂†
u¼

P
iμ;jν ŵiμðMuÞiμ;jνŵjν. The 2N × 2N

covariance matrix

Γiμ;jν ≔

(
i
2
hŵiμŵjν − ŵjνŵiμi for fermions;

1
2
hŵiμŵjν þ ŵjνŵiμi for bosons

ð1Þ

can be shown to evolve according to the equation of motion
[26,27]

∂tΓ ¼ XΓþ ΓXT þ Y þ
X
u

ZuΓZT
u ; ð2Þ

where the real 2N × 2N matrices X, Y, and Zu depend on
the coupling coefficients H, Ls, and Mu as detailed in the
Supplemental Material [51]. The Zu term vanishes for
quasifree systems.
For a translation-invariant system in D dimensions, each

mode i is associated with a cell location i ∈ ZD and a
crystal-basis index ci ¼ 1;…; b, where b is the number of
bands. The covariance matrix elements and coupling
coefficients are then functions of spatial distances such that

Γiμ;jν≕ γciμ;cjνði − jÞ; Xiμ;jν≕ xciμ;cjνði − jÞ

etc., and the equation of motion (2) takes the form

∂tγðrÞ ¼
X
n

½xðnÞγðr − nÞ þ γðrþ nÞxTðnÞ� þ yðrÞ

þ
X
u;n;j;l

zuðr − n; j − nÞγðr − lÞzTuð−n; l − nÞ; ð3Þ

where γ, x, y, and zu are 2b × 2b matrices depending on
lattice translation vectors r ∈ ZD.
Correlations in quadratic 1D systems.—As a first result,

let us establish the following:
Proposition 1: If a quadratic 1D system with trans-

lation-invariant finite-range couplings has a unique steady
state, then its single-particle Green’s function γðrÞ cannot
follow a power-law decay with respect to the distance jrj.
For the steady-state covariance matrix γðrÞ, the right-

hand side of Eq. (3) needs to be zero. For distances r large
enough such that the local zu and y terms vanish, γðrÞ obeys
a matrix difference equation of the form

C0γðrÞ þ C1γðrþ 1Þ þ � � � þ CRγðrþ RÞ ¼ 0: ð4Þ

Here, γðrÞ is the vectorization of γðrÞ, the 4b2 × 4b2

matrices Cm are determined by the coupling matrices
xðnÞ, and R denotes the interaction range [51].
In the simplest scenario,CR is invertible such that we can

solve Eq. (4) for γðrþ RÞ and

grþ1 ¼

2
6666664

AR−1 AR−2 � � � A1 A0

1 0 � � � 0 0

0 1 � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � 1 0

3
7777775
gr ð5Þ

with gTr ≔ ½γTðrþ R − 1Þ;…; γTðrÞ� and Am ≔ −C−1
R Cm.

The spectrum of the 4b2R × 4b2R transfer matrix in Eq. (5)
characterizes the spatial decay of γðrÞ. As the spectrum is
discrete, all elements of γðrÞ must decay exponentially,
converge to a constant, or oscillate with constant amplitude.
An algebraic decay that characterizes critical systems is not
possible. The transfer matrix may have eigenvalues β with
jβj > 1. These are, however, irrelevant as physical systems
cannot feature indefinitely growing γðrÞ. For fermions, this
is also prohibited by the constraint that all covariance
matrix elements lie in the interval ½−1=2; 1=2� [26]. The
Supplemental Material [51] gives a more general proof
based on generating functions, which does not require
invertibility of CR.
Criticality in quasifree systems.—Stronger results hold

for the systems that have no quadratic Lindblad operators
and, hence, no Zu term in Eq. (2). Let us first consider
“gapped” systems, where the Liouvillian L has a single
zero eigenvalue and the other eigenvalues λ have a nonzero
“dissipative gap” Δ ≔ −maxλ≠0Reλ > 0.
Proposition 2: Gapped quasifree systems with trans-

lation-invariant finite-range couplings are never critical.
Note that, using quasilocality [59], this proposition can

be generalized to interacting systems. But quasifree sys-
tems allow for a more direct proof that provides bounds on
correlation lengths to be reused for Proposition 3:
Because of translation invariance, we can transform to a

momentum-space representation with quasimomenta ka ¼
ð2π=LÞ; ð4π=LÞ;…; 2π for a ¼ 1;…; D. With

γ̃ðkÞ ≔
X
r

e−ik·rγðrÞ; x̃ðkÞ ≔
X
r

e−ik·rxðrÞ ð6Þ

and an analogous definition of ỹ, according to Eq. (3), the
steady state obeys the continuous Lyapunov equation

x̃ðkÞγ̃ðkÞ þ γ̃ðkÞx̃Tð−kÞ ¼ −ỹðkÞ: ð7Þ

For a quasifree system to be gapped, all eigenvalues of X in
Eq. (2) or, equivalently, all eigenvalues of x̃ðkÞ ∀ k in
Eq. (7) need to have negative real parts [26]. But this means
that we can solve Eq. (7) for γ̃ðkÞ by inverting the matrix
x̃ðkÞ ⊗ 1þ 1 ⊗ x̃ð−kÞ. Because of the finite interaction
range, x̃ðkÞ and ỹðkÞ are polynomials in variables za ≔
eika ∈ C and 1=za. Hence, γ̃ðkÞ is a rational function of the
za which, according to the invertibility of x̃ðkÞ, has no poles
on the manifold jzaj¼1which corresponds to real momenta
ka ∈ ð0; 2π� in the Brillouin zone. For concreteness, let us
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discuss D ¼ 2 dimensions; the generalization to D ≠ 2 is
trivial. The established property of γ̃ðkÞ≕ γ̃ðz1; z2Þ allows
us to determine γðr1; r2Þ using Cauchy’s residue theorem
from complex analysis.
In the thermodynamic limit, the inverse of Eq. (6) is

γðr1; r2Þ ¼ − ∯
jz1j¼jz2j¼1

d2z
ð2πÞ2 z

r1−1
1 zr2−12 γ̃ðz1; z2Þ: ð8Þ

For fixed z2, let ϱðz2Þ ≔ i
P

m Resðγ̃ðζmðz2Þ; z2ÞÞ denote
the sum over the residues of γ̃ at pole locations
z1 ¼ ζmðz2Þ inside the unit circle jz1j ¼ 1 [60]. With
jζj ≔ maxm;jz2j¼1jζmðz2Þj < 1, it follows that

jγðr1; r2Þj ≤ jζjr1−1
I
jz2j¼1

dz2
2π

jzr2−12 ϱðz2Þj: ð9Þ

As the contour integral is independent of r1, this bound
establishes an exponential decay of γðr1; r2Þ with correla-
tion length

ξ1 ≤ −1= ln jζj ¼ −1= max
m;jz2j¼1

ln jζmðz2Þj ð10Þ

in the positive r1 direction. An exponential bound for
negative r1 is obtained by using z1 ≔ e−ik1 instead of eik1 ,
and the same arguments apply to r2 or further dimensions.
The steady states of quasifree systems are Gaussian [26].

Hence, according to Wick’s theorem [61,62], the steady
state is fully characterized by γðrÞ, and the exponential
decay of γðrÞ implies the exponential decay of all con-
nected real-space correlation functions. This concludes the
proof of Proposition 2. Let us now drop the constraint of a
nonzero dissipative gap.
Proposition 3: Quasifree fermionic systems with

translation-invariant finite-range couplings are never
critical.
For a unique steady state, the momentum-space covari-

ance matrix γ̃ðkÞ solving Eq. (7) is again a rational function.
Furthermore, it cannot have poles at real k for any short-
range fermionic system [28]: The covariance matrix Γ in
Eq. (1) is real and antisymmetric. Hence, there exists an
orthogonal transformation O ∈ Oð2NÞ such that Γ0 ≔
OΓOT ¼ ð−χ χÞ, where the elements χi of the N × N
diagonal matrix χ correspond to the imaginary eigenvalue
pairs �iχi. The transformation defines an alternative set of
Majorana operators ŵ0

iμ ≔
P

jνOiμ;jνŵjν with covariance
matrix Γ0 such that χi ¼ ihŵ0

iþŵ
0
i−i. As each fermionic

occupation number operator â†j âj has eigenvalues 0 and 1,

the operators iŵjþŵj− ¼ 1=2 − â†j âj and the operators
iŵ0

iþŵ
0
i− have eigenvalues �1=2. Thus, all χi are in the

interval ½−1=2; 1=2�, and all covariance matrix elements
obey jΓi;jj ≤ kOTΓ0Ok ¼ kχ ⊕ ð−χÞk ≤ 1

2
. The Fourier

transform (6) to momentum space just adds another unitary

transformation. Hence, the elements of γ̃ðkÞ have modulus
≤1=2, i.e., singularities can only occur at complex
momenta ka. Their imaginary parts provide bounds on
correlation lengths as in Eq. (10), and the system is not
critical.
Proposition 3 is in stark contrast to closed fermionic

systems, where tight-binding models have, for example,
critical Fermi-sea ground states. The situation for open
bosonic systems is different. Note that bosonic open
systems can be unstable in the sense that the Liouvillian
can have eigenvalues with positive real parts that lead to
unlimited absorption of energy and particles. In quasifree
systems, however, the existence of a steady state implies
stability [26]. So, stability is implied in the following.
Proposition 4: Quasifree bosonic systems with

translation-invariant finite-range couplings can be critical
in D ≥ 2 dimensions. 1D systems cannot be critical.
The statement on 1D systems follows immediately from

Proposition 1 andWick’s theorem.Furthermore, one can con-
struct quasifree bosonic models that are critical for D ≥ 2
dimensions. Specifically, consider a purely dissipative model

with one Lindblad operator L̂ð1Þ
j ≔

ffiffiffiffiffiffiffiffiffi
2Dη

p ðŵjþ − iŵj−Þ ¼ffiffiffiffiffiffiffiffiffi
2Dη

p
âj for every site j ∈ ZD of the D-dimensional square

lattice as well as four Lindblad operators L̂ð2�Þ
j;a ≔ ŵjþ þ

iŵðj�eaÞ− and L̂ð3�Þ
j;a ≔ ŵjþ � ŵðj�eaÞ− for every edge, where

ea are the unit vectors for directions a ¼ 1;…; D. One finds
that x̃ðkÞ ¼ 2Dðck − ηÞ12, where ck ≔

P
a cos ka=D [51].

The largestX eigenvalue real part determines the dissipative
gapΔ [26]. Here, x̃ðkÞ has the doubly degenerate eigenvalue
ξðkÞ ¼ 2Dðck − ηÞ and, hence, Δ ¼ −maxkReξðkÞ ¼
2Dðη − 1Þ. So the model is stable for loss rates η ≥ 1 and
the gap closes for η ¼ 1 at momentum k ¼ 0. Solving the
Lyapunov Eq. (7) yields the covariance matrix γ̃ðkÞwith the
diagonal and off-diagonal elements

γ̃�;�ðkÞ ¼
ηþ 2

2ðη − ckÞ
and γ̃�;∓ðkÞ ¼

�isk
2ðη − ckÞ

; ð11Þ

where sk ≔
P

a sin ka=D. With a Fourier transform to γðrÞ,
one can assess criticality. ForD ¼ 1 dimensions, the Fourier
integral can be evaluated exactly using the residue theorem.
In agreement with Propositions 1 and 2, we find an
exponential decay of correlations if η > 1. The correlation
length diverges for η → 1, but there is no power-law decay.
For dimensions D ≥ 2, one can expand γ̃ðkÞ in a multipole
series over hyperspherical harmonics [63] to reduce the
Fourier transformation to a radial integral, which takes the
form of a Hankel transform. The leading contributions to
γ̃�;� are isotropicwhile those to γ̃�;∓ are antisymmetric with
respect to reflection. For D ¼ 2 dimensions, the diagonal
correlations γ�;�ðrÞ decay logarithmically in jrj and the off-
diagonal γ�;∓ðrÞ decay as 1=jrj. For D ¼ 3, they decay as
1=jrj and 1=jrj2, respectively. A detailed discussion is given
in the Supplemental Material [51].
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Phase classification for quadratic systems.—Like quan-
tum phase transitions in closed systems [1–3], driven-
dissipative phase transitions are characterized by a
nonanalytic dependence of steady-state expectation values
on system parameters. This requires a nonanalytic change
in the steady-state density matrix and, hence, a level
crossing [64]. So, the dissipative gap Δ needs to close at
the transition point [65,66]. As seen so far, there are some
restrictions on criticality in quadratic open systems, but the
gap can of course close. As another fundamental result, we
will see why, here, closing the gap does generally not lead
to phase transitions.
Proposition 5: For quadratic systems without sym-

metry constraints beyond invariance under single-particle
basis transformations and fermionic particle-hole sym-
metry, all gapped systems belong to the same phase.
For any pair of gapped systems L1 and L2, one can
construct a continuous path of gapped Liouvillians that
links the two.
In particular, we claim that for any quadratic Liouvillian

L with gap Δ, the auxiliary Liouvillian

Lþ κD has a gap Δ0 ≥ Δþ κ: ð12Þ

For fermionic systems, the added dissipator D comprises
two linear Lindblad operators L̂i� ¼ ŵi� for every
mode i [67]. For bosons, D comprises one operator L̂i ¼
ŵiþ − iŵi− ¼ ffiffiffi

2
p

âi per mode. With this choice and any
κ0 > 0, the gap stays nonzero, e.g., along the path
ð1 − gÞL1 þ gL2 þ κD, where the parameters are tuned
as ðg; κÞ∶ð0; 0Þ → ð0; κ0Þ → ð1; κ0Þ → ð1; 0Þ to connect L1

to L2. Note that this proposition does not require short-
range interactions.
The Eq. (12) statement can be proven by employing the

third-quantization formalism [26,68–70] as detailed in the
companion paper [26]: (a) There exist ladder superoper-
ators ajν and a0jν that obey canonical (anti)commutation
relations and form a basis for the superoperator algebra.
(b) One can then construct a biorthogonal operator basis

⟪nj and jn⟫ with ⟪njn0⟫ ¼ δn;n0 ; ð13Þ

occupation numbers nT ¼ ðn1þ;…; nNþ;…; nN−Þ, and
a0jνajνjn⟫ ¼ njνjn⟫. The Dirac notation with superbras

⟪Âj and superkets jB̂⟫, where Â and B̂ are operators on
the Hilbert space, is based on the Hilbert-Schmidt inner
product ⟪ÂjB̂⟫≡ TrðÂ†B̂Þ. (c) The ladder superoperators
can be chosen such that the matrix representation ⟪njLjn0⟫
of L assumes a block-triangular form when ordering the
basis [Eq. (13)] according to increasing eigenvalues
Na ∈ N of the number superoperator N a ≔

P
jν a

0
jνajν.

The spectra of the blocks LjNa
on the diagonal determine

the full Liouvillian spectrum [71]. The only terms due to D
that affect the blocks LjNa

are [26]

−a0T
BþB�

2
a; −aT

BþB�

2
a0; a0TU†τ

B−B�

2
Ua ð14Þ

for fermions with even Na, fermions with odd Na, and
bosons, respectively. In Eq. (14), aT ¼ ða1þ;…; aN−Þ and
a0T ¼ ða01þ;…; a0N−Þ are vectors containing all ladder
superoperators, U is a unitary matrix, τ ¼ ð 0

i1N
−i1N
0
Þ, and

Biμ;jν ¼
P

s Ls;iμL�
s;jν is a positive-semidefinite matrix,

characterized by the expansion coefficients of the linear
Lindblad operators L̂s ¼

P
jν Ls;jνŵjν.

For fermions, the Lindblad operators of dissipator D
have coefficients Li�;jν ¼ δi;jδ�;ν and, hence, B ¼ 12N
such that the first two terms in Eq. (14) are simply −N a
and N a − 2N, respectively. This implies that the spectrum
of block LjNa

is shifted by −Naκ and ðNa − 2NÞκ for even
and odd Na, respectively. As the Na ¼ 0 block that con-
tains the steady-state eigenvalue zero is one-dimensional,
the spectral shifts due to κD necessarily increase the gap to
Δ0 ≥ Δþ κ. For bosons, we have Li;jþ ¼ δi;j and Li;j− ¼
−iδi;j. Hence, B ¼ ð 1N−i1N

i1N
1N
Þ and τðB − B�Þ=2 ¼ −12N such

that the third term in Eq. (14) reads −N a. Thus, also in the
bosonic case, the gap increases at least by κ. For quasifree
fermionic and bosonic systems, the gap increases exactly
by κ, i.e., Δ0 ¼ Δþ κ. Dissipator D is invariant under
single-particle basis transformations âj ↔

P
i Uj;iâi and

also under particle-hole transformations âj ↔ â†j for fer-
mions. This completes the proof of Proposition 5.
Example.—To illustrate some of the above results, con-

sider the quadratic fermionic 1D model with Hamiltonian

Ĥ ¼
X
j

ðâ†j âjþ1 þ αâ†j â
†
jþ1 þ H:c:Þ − μ

X
j

â†j âj; ð15Þ

corresponding to a spin-1=2 XY chain, and Lindblad
operators L̂j ¼ ffiffiffi

η
p ðŵjþ þ eiϕŵðjþ1ÞþÞ as well as M̂j ¼ffiffiffi

ζ
p ð2â†j âj − 1Þ. In accordance with Proposition 1, γðrÞ is
always found to decay as βr for an eigenvalue β of the

FIG. 1. The open fermionic model (15) with η ¼ 1 and μ ¼ 0.
Left: Both in the quasifree case (ζ ¼ 0) and quadratic case
(ζ ¼ 1=4) with α ¼ 1=5 and ϕ ¼ 2π=5, correlations decay
exponentially, where the asymptotic form ∼βr (dashed lines) is
determined by an eigenvalue β of the transfer matrix in Eq. (5).
Right: The dissipative gap Δ for ζ ¼ 0 and α ¼ 1=2 vanishes at
ϕ ¼ 0, π. It can be increased using the additional dissipator κD
from Eq. (12).
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transfer matrix in Eq. (5). Proposition 3 implies that the
quasifree model (ζ ¼ 0), considered in Ref. [29], is never
critical, and x̃ðkÞ determines the full many-body spectrum
[26]. In particular, if the Hamiltonian is gapped and η > 0,
the dissipative gap Δ closes only at ϕ ¼ 0 and π. The
correlation length diverges at those points (β → 1) but, at the
same time, γðrÞ → 0 for all r. Furthermore, employing the
additional dissipator κD from Eq. (12), any two gapped
points can always be connected by a path of gapped
Liouvillians as explained by Proposition 5 and illustrated
in Fig. 1 for the points ϕ ¼ π=4 and ϕ ¼ 9π=4. So, the
system is neither critical at ϕ ¼ 0 or π, nor does it undergo
phase transitions. Details are presented in the Supplemental
Material [51].
Discussion.—We have found fundamental prerequisites

for criticality and phase transitions in driven-dissipative
many-body systems that are in stark contrast to properties of
closed systems. For any number of spatial dimensions, there
exist fermionic and bosonic closed systems with phase
transitions and critical ground states, i.e., states featuring an
algebraic decay of spatial correlations, even if the systems
are quasifree. In contrast, steady states of open 1D quasifree
systems as well as higher-dimensional quasifree fermionic
systems are never critical. For quadratic systems, we found
that, while the dissipative gap may close and the system
might even be critical for certain points in parameter space,
all steady states basically belong to the same phase. The only
way for realizing phase transitions in such systems is to
impose symmetries on the considered Liouvillians that go
beyond invariance under single-particle basis transforma-
tions (e.g., lattice symmetries) and fermionic particle-hole
transformations or combinations thereof. A notable example
are topological transitions in quasifree systems, occurring
under the (strong) restriction that the Lindblad operators
from a complete anticommuting set [72,73]. The observa-
tion that dissipative phase transitions are, in the above sense,
more rare than phase transitions in closed systems adds to
the idea that steady states are in certain scenarios related to
thermal states of closed systems [10,74–76] such that
continuous symmetries cannot be broken in D ≤ 2 dimen-
sions according to the Mermin-Wagner theorem [77,78].
Interactions and more complex Lindblad operators can
break the block-triangular Liouvillian structures [26,71]
that underlie our results on quasifree and quadratic systems
and can cause true phase transitions [75,79–83] as long as
we are below an upper critical dimension where all systems
become effectively quasifree.
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well as support through US Department of Energy grant
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M. D. Lukin, Fast Quantum Gates for Neutral Atoms, Phys.
Rev. Lett. 85, 2208 (2000).

[33] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D.
Jaksch, J. I. Cirac, and P. Zoller, Dipole Blockade and
Quantum Information Processing in Mesoscopic Atomic
Ensembles, Phys. Rev. Lett. 87, 037901 (2001).

[34] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics
with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[35] M. A. Norcia, A.W. Young, and A.M. Kaufman, Micro-
scopic Control and Detection of Ultracold Strontium in
Optical-Tweezer Arrays, Phys. Rev. X 8, 041054 (2018).

[36] A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S.
Safronova, and M. Endres, Alkaline-Earth Atoms in Optical
Tweezers, Phys. Rev. X 8, 041055 (2018).

[37] R. J. Schoelkopf and S. M. Girvin, Wiring up quantum
systems, Nature (London) 451, 664 (2008).

[38] M. H. Devoret and R. J. Schoelkopf, Superconducting
circuits for quantum information: An outlook, Science
339, 1169 (2013).

[39] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[40] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M.
Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt,
An open-system quantum simulator with trapped ions,
Nature (London) 470, 486 (2011).

[41] M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Engineered
open systems and quantum simulations with atoms and ions,
Adv. At. Mol. Opt. Phys. 61, 1 (2012).

[42] Z. Leghtas, U. Vool, S. Shankar, M. Hatridge, S. M. Girvin,
M. H. Devoret, and M. Mirrahimi, Stabilizing a Bell state of
two superconducting qubits by dissipation engineering,
Phys. Rev. A 88, 023849 (2013).

[43] A.W. Carr and M. Saffman, Preparation of Entangled and
Antiferromagnetic States by Dissipative Rydberg Pumping,
Phys. Rev. Lett. 111, 033607 (2013).

[44] D. D. Bhaktavatsala Rao and K. Mølmer, Dark Entangled
Steady States of Interacting Rydberg Atoms, Phys. Rev.
Lett. 111, 033606 (2013).

[45] M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio,
Strongly interacting polaritons in coupled arrays of cavities,
Nat. Phys. 2, 849 (2006).

[46] D. G. Angelakis, M. F. Santos, and S. Bose, Photon-
blockade-induced Mott transitions and XY spin models
in coupled cavity arrays, Phys. Rev. A 76, 031805(R)
(2007).

[47] M. J. Hartmann, Quantum simulation with interacting pho-
tons, J. Opt. 18, 104005 (2016).

[48] M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and
A. A. Houck, Observation of a Dissipative Phase Transition
in a One-Dimensional Circuit QED Lattice, Phys. Rev. X 7,
011016 (2017).

[49] D. Marcos, A. Tomadin, S. Diehl, and P. Rabl, Photon
condensation in circuit quantum electrodynamics by engi-
neered dissipation, New J. Phys. 14, 055005 (2012).

[50] A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller,
Reservoir engineering and dynamical phase transitions in
optomechanical arrays, Phys. Rev. A 86, 033821 (2012).

[51] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.129.120401 for details
on the steady-state equation for the covariance matrix, the
proof of Proposition 1 for noninvertible CR in Eq. (4), the
criticality of the D > 2 dimensional bosonic models for
Proposition 4, and a discussion of an illustrative quadratic
fermionic model, which includes Refs. [52–57].

[52] P. C. Parks, A. M. Lyapunov’s stability theory—100 years
on, IMA J. Math. Control Inf. 9, 275 (1992).

[53] V. Simoncini, Computational methods for linear matrix
equations, SIAM Rev. 58, 377 (2016).

[54] S. Sastry, Nonlinear Systems: Analysis, Stability, and
Control, Interdisciplinary Applied Mathematics Vol. 10
(Springer, New York, 1999).

[55] H. K. Khalil, Nonlinear Systems, 3rd ed. (Prentice Hall,
Upper Saddle River, NJ, 2002).

[56] H. S. Wilf, Generatingfunctionology, 3rd ed. (A. K. Peters,
Ltd., USA, 2006).

[57] P. Jordan and E. Wigner, About the Pauli exclusion
principle, Z. Phys. 47, 631 (1928).

[58] E. H. Lieb, T. Schultz, and D. Mattis, Two soluble models of
an antiferromagnetic chain, Ann. Phys. (N.Y.) 16, 407
(1961).

[59] T. Barthel and M. Kliesch, Quasi-Locality and Efficient
Simulation of Markovian Quantum Dynamics, Phys. Rev.
Lett. 108, 230504 (2012).

[60] This statement and the following considerations actually
concern matrix elements of γ and γ̃, but we drop the matrix
indices for brevity of notation.

[61] G. C. Wick, The evaluation of the collision matrix, Phys.
Rev. 80, 268 (1950).

[62] J. W. Negele and H. Orland, Quantum Many-Particle
Systems (Perseus Books, Reading, MA, 1988).

[63] J. E. Avery and J. S. Avery, Hyperspherical Harmonics and
Their Physical Applications (World Scientific, Singapore,
2017).

[64] T. Kato, Perturbation Theory for Linear Operators, 2nd ed.,
Classics in Mathematics (Springer, Berlin, 1995).

PHYSICAL REVIEW LETTERS 129, 120401 (2022)

120401-6

https://doi.org/10.1063/1.522979
https://doi.org/10.1007/s00220-008-0411-y
https://arXiv.org/abs/2112.08344
https://doi.org/10.1103/PhysRevA.87.012108
https://doi.org/10.1103/PhysRevA.87.012108
https://arXiv.org/abs/1012.5013
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1038/nature07125
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevX.8.041054
https://doi.org/10.1103/PhysRevX.8.041055
https://doi.org/10.1038/451664a
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nphys1614
https://doi.org/10.1038/nature09801
https://doi.org/10.1016/B978-0-12-396482-3.00001-6
https://doi.org/10.1103/PhysRevA.88.023849
https://doi.org/10.1103/PhysRevLett.111.033607
https://doi.org/10.1103/PhysRevLett.111.033606
https://doi.org/10.1103/PhysRevLett.111.033606
https://doi.org/10.1038/nphys462
https://doi.org/10.1103/PhysRevA.76.031805
https://doi.org/10.1103/PhysRevA.76.031805
https://doi.org/10.1088/2040-8978/18/10/104005
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1103/PhysRevX.7.011016
https://doi.org/10.1088/1367-2630/14/5/055005
https://doi.org/10.1103/PhysRevA.86.033821
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120401
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120401
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120401
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120401
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120401
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120401
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.120401
https://doi.org/10.1093/imamci/9.4.275
https://doi.org/10.1137/130912839
https://doi.org/10.1007/BF01331938
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevLett.108.230504
https://doi.org/10.1103/PhysRevLett.108.230504
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1103/PhysRev.80.268


[65] E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin,
M. D. Lukin, and J. I. Cirac, Dissipative phase transition
in a central spin system, Phys. Rev. A 86, 012116 (2012).

[66] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, Spectral
theory of Liouvillians for dissipative phase transitions,
Phys. Rev. A 98, 042118 (2018).

[67] A dissipator D comprising Lindblad operators L̂1;…; L̂n

acts as Dρ̂ ¼ P
n
α¼1ðL̂αρ̂L̂

†
α − 1

2
fL̂†

αL̂α; ρ̂gÞ.
[68] T. Prosen, Third quantization: A general method to solve

master equations for quadratic open Fermi systems, New J.
Phys. 10, 043026 (2008).

[69] T. Prosen, Spectral theorem for the Lindblad equation for
quadratic open fermionic systems, J. Stat. Mech. (2010)
P07020.

[70] T. Prosen and T. H. Seligman, Quantization over boson
operator spaces, J. Phys. A 43, 392004 (2010).

[71] T. Barthel and Y. Zhang, Superoperator structures and no-go
theorems for dissipative quantum phase transitions, Phys.
Rev. A 105, 052224 (2022).

[72] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A.
İmamoğlu, P. Zoller, and S. Diehl, Topology by dissipation,
New J. Phys. 15, 085001 (2013).

[73] J. C. Budich, P. Zoller, and S. Diehl, Dissipative preparation
of Chern insulators, Phys. Rev. A 91, 042117 (2015).

[74] A. Mitra, S. Takei, Y. B. Kim, and A. J. Millis, Nonequili-
brium Quantum Criticality in Open Electronic Systems,
Phys. Rev. Lett. 97, 236808 (2006).

[75] R. Rota, F. Minganti, C. Ciuti, and V. Savona, Quantum
Critical Regime in a Quadratically Driven Nonlinear
Photonic Lattice, Phys. Rev. Lett. 122, 110405 (2019).

[76] J. T. Young, A. V. Gorshkov, M. Foss-Feig, and M. F.
Maghrebi, Nonequilibrium Fixed Points of Coupled Ising
Models, Phys. Rev. X 10, 011039 (2020).

[77] P. C. Hohenberg, Existence of long-range order in one and
two dimensions, Phys. Rev. 158, 383 (1967).

[78] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional Iso-
tropic Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).
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