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Molecular motors work collectively to transport cargo within cells, with anywhere from one to several
hundred motors towing a single cargo. For a broad class of collective-transport systems, we use tools from
stochastic thermodynamics to derive a new lower bound for the entropy production rate which is tighter
than the second law. This implies new bounds on the velocity, efficiency, and precision of general transport
systems and a set of analytic Pareto frontiers for identical motors. In a specific model, we identify

conditions for saturation of these Pareto frontiers.
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Introduction.—Molecular transport motors like kinesin
and myosin are constantly at work within the cells of every
living organism on Earth, consuming chemical energy in
order to accomplish important tasks [1]. Their roles include
transporting molecular cargo against concentration gra-
dients [2] and applying directed forces to facilitate cell
division [3] or contract muscle tissue [4]. Motor-driven
transport systems in vivo consist of many coupled sub-
systems moving together: cargo such as vesicles [5],
organelles [6], or actin filaments [4] pulled by anywhere
from only one [7] to several hundred [8] motor proteins.

Many specific models of transport systems have been
explored, including deterministic phenomenological mod-
els [7,9,10], discrete stochastic models [11-13], and
continuous stochastic models [14,15]. A common goal
of these investigations has been to determine how various
parameters (such as coupling strength, stall force, diffu-
sivity, and number of motors) tune the performance of these
systems. Performance metrics of interest include dynamical
quantities such as velocity and precision and thermody-
namic quantities like efficiency and power consumption
[16]. While the behavior of specific model systems has
been explored, considerably less is known about the
fundamental performance limits for transport systems in
general, agnostic of model details.

The behavior of transport systems is restricted by two
fundamental thermodynamic limitations. First and fore-
most, they must obey the second law of thermodynamics,
the most useful form in these contexts stating that at steady
state the ensemble-averaged rate of global entropy pro-
duction cannot be negative [17]. Second, the recently
established thermodynamic uncertainty relation (TUR)
[18-20] lower bounds products of the entropy production
rate and uncertainties in various currents at steady state.
These key inequalities have been used to derive bounds on
various performance metrics, for example, efficiency [21].

In this Letter we consider the thermodynamics of motor-
driven intracellular transport, where a coupled collection of
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active and passive components travel together at steady
state. We show that these systems obey a new bound,
derived from Jensen’s inequality, on their total entropy
production. This bound is always tighter than the second
law, and is often tighter than the TUR (and much easier to
estimate). From this Jensen bound and the TUR, we derive
a set of bounds on performance metrics such as velocity,
efficiency, and precision. These bounds constrain emergent
properties of collective systems for arbitrary number of
motors of any directionality, using only bare properties of
individual subsystems. Our theory holds for a broad class
of collective-transport systems, independent of any model-
specific interaction potentials or spatially inhomogeneous
energy landscapes. For identical motors, we then derive
analytic expressions for several Pareto frontiers con-
straining combinations of performance metrics. Finally,
we simulate an example system to illustrate these bounds
and conditions sufficient for their saturation.

Theory and model—Consider N transport motors
coupled to a diffusing molecular cargo, all moving in
one dimension. Each motor interacts with the cargo via a
molecular linker, and is characterized by a mechanochem-
ical cycle through which it transduces chemical power
into directed forward motion. The cargo undergoes over-
damped Brownian motion (with bare diffusivity D_.) con-
strained by interactions with each motor (with its own bare
diffusivity D).

Each motor in isolation experiences a constant chemical
driving force f;, along with a spatially periodic potential-
energy landscape arising due to interactions with the
substrate it walks along (e.g., microtubules for kinesin).
This may include features such as metastable states and
energy barriers. (Multiple cargos are trivially incorporated
as motors with no chemical driving force, f; = 0.) Motors
and cargo are coupled via the total potential energy V(x)
for x = {xc, X1y ennsXiyonns xN} the vector of cargo position
x. and motor positions {x;}¥ . This potential describes,
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e.g., the molecular linkers attaching each motor to the cargo
and attractive or repulsive interactions between motors.

In the long-time limit the subsystems (cargo and motors)
must stay together; i.e., the relative coordinates x; — x,.
reach time-independent distributions at steady state so that
each subsystem has the same mean velocity, (v) = (x.) =
(x;). In terms of the potential V(x), this requires that all
subsystems are coupled and at long distances any repulsive
interactions are dominated by attraction.

The system dynamics are assumed multipartite [22],
meaning that each subsystem (cargo and each motor) is
subject to independent thermal fluctuations, so that the
system’s probability distribution evolves according to the
Fokker-Planck equation [23]:

0,P(x.1) = =0, J (x.1) - XN: o0 x.0). (1)
i=1

Here d,_is the partial derivative with respect to x,, and the
subsystem probability currents are
av 0
Jo(x,t)=D,|— - P(x,1), 2
50 =D\ 5 Pl 2
ov. o
Ji(x,t) =D;|pfi — p=———|P(x,1). 2b
) =Dy, p G - ). (20)

Here 8 = (kgT)~! is the inverse temperature.

We focus on system behavior at its “steady state’: the
limiting regime in which time evolution is independent of
initial conditions. Mathematically, the relevant limit is that
the time 7 > 7,,,, the system’s longest relaxation time. We
assume that this limit exists, and that steady-state properties
such as velocity, efficiency, energy flows, and entropy
production all have well-defined constant averages.

The mean velocity is an integral over the probability
current for each subsystem [17]:

o~
)

<;<(§ :>>' (3b)

Angle brackets denote ensemble averages.

Each subsystem exchanges heat with the thermal reser-
voir at temperature 7, and each motor exchanges chemical
energy with a chemical reservoir at constant chemical
potential. Likewise, motors and cargo exchange energy
with each other through their interaction potentials. Of
particular interest is the average rate of total chemical-
energy consumption by the N motors:

N

Pehem = Z(f iXi) (4a)

i=1

N
=" filo). (4b)
i=1

This definition implicitly assumes each motor tightly
couples its chemical and mechanical degrees of freedom,
consistent with experiments on kinesin and myosin motors
[24-26].

Transport systems do not in general store energy, so their
thermodynamic efficiency is zero. A natural (and positive)
measure of their efficiency is the Stokes efficiency [27],

ns =

which quantifies the fraction of the consumed chemical
energy that produces work pulling the cargo against
viscous friction, characterized by friction coefficient
=1/ (/}D c)‘

The above metrics [Egs. (3)—(5)] quantify the average
behavior of transport systems; we quantify long-time
stochasticity by the effective diffusivity

(6x2)
-0 2t

P chem

D = lim

: (6)
and precision by the coefficient of variation

(0x2)
<xL> ’ (7)

with (6x2) the variance of the cargo position x,.
Reference [15] evaluates and discusses the above metrics
in a specific example system.

The average rates of dimensionless entropy production
for each subsystem are [22]

(e
a(fhe o

The total entropy production rate is their sum, =

T+ >N, 3. For a diffusive cargo with no external forces,
the entropy production equals the total chemical power:

2 = PP chem- (9)

Bounds for general systems.—Given the functional form
of the average velocity (3), Jensen’s inequality [28] requires

o <{[an] ) (10

Three inequalities follow from this, constraining the partial
and total entropy production rates:

0=

1
5,2 Lo (i
11
T > D_C<U>2’ (11b)
. 1
> > v)2. 11c
Dbare< ) (11c)
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Here Dy, is the “bare collective diffusivity,” the inverse of
the total friction coefficient from summing the individual
friction coefficients (inversely proportional to bare diffu-
sivities) of each subsystem:

Do = (1+i1)_1. (12)

D. =D

Physically, Dy, is the effective diffusivity under a poten-
tial that only depends on relative subsystem positions.

This “Jensen bound” [Eq. (11c)] is our first major result:
a general, model-independent, lower bound [non-negative
and thus tighter than the second law (8)] on the entropy
production required for a collective-transport system with
N motors to maintain mean velocity (v).

The collective-transport system is also constrained by the
long-time limit of the thermodynamic uncertainty relation
[18-20], whose most useful form for this system is

x2
fwz > 2. (13)

Identifying (v) = (x..)/t and D (6) recasts this inequality as

. 1
> > v)2, 14
> 5 (0) (14)
which has the same form as our Jensen bound Eq. (11c).
Equations (11c) and (14) thus constitute two bounds on the
entropy production. In general, either of these bounds can be
tighter. Even for a single particle in a tilted sinusoidal
potential, either Dy, < Deg Or Dy > Do 1S possible,
depending on the ratio of the barrier height to the driving
force [29].
Substituting Eq. (9) and the Stokes efficiency (5) into
Eq. (11c) gives an upper bound on #g:

>t

(15)

This is similar, but not equivalent, to a previous bound [21]:
ns < D/ D.. Like the Jensen bound (11c) and TUR (14),
either of these two bounds can be tighter in different
circumstances.

Likewise, substituting Eq. (9) and P e = fio(v) (for
total force fio, = >N, f; which we assume without loss of
generality to be non-negative) into Eq. (11c) yields an
upper bound on the average velocity:

<U> < ﬂDbareftot~ (16)

Finally, substituting Eq. (9) and the coefficient of
variation Eq. (7) into the TUR (13) and employing the
velocity inequality (16) gives an upper bound on the
precision through a lower bound on the coefficient of

variation:
1 [ 2
0> . 17
ﬁftot Dbaret ( )

These three bounds[Egs. (15)-(17)] constitute our sec-
ond major result, constraining global system properties
using only properties (Dy,e, D, and f,) of each individ-
ual subsystem in isolation.

Identical motors.—We illustrate the utility of these
performance bounds with the special case where transport
motors are identical, each with diffusivity D,, and driving
force fepem- This reflects many biological systems of
interest, such as identical kinesin motors towing a large
vesicle, or identical myosin motors pulling an actin
filament. The Jensen bound (11c) becomes

> (l;c+DI\;><v>2. (18)

Our general performance bounds [Egs. (15)—(17)] can be
rewritten in terms of more natural variables as

D -1
nNs < (1 + ]\Il)mc> , (19a)
ND_\ !
(v) SﬂNDcfchem(l +5 ) : (19b)
1 2 ND\ /2
0> 1 ¢ . 19
_[}Nfchem Dct< * Dm) ( C)

Since ND./D,, > 0, a looser upper bound on the mean
velocity is

Umax = ﬂDmfchem’ (20)

the mean velocity of a single motor in a flat potential
subject to constant force fg.n. Likewise, since N > 1,
the Stokes efficiency has a looser upper bound of
(1+D./D,)™".

Combining Eq. (19a) with Eq. (19b) gives a Pareto
frontier between the Stokes efficiency and scaled mean
velocity:

ns+ <1, (21)

Umax
Similarly, combining Eqgs. (18) and (16) gives

Pchem > % (<D>/Umax)2
PI " D 1= (0)/ Vmax

(22)

a Pareto frontier constraining velocity and power con-
sumption. Here P"%* = f em¥max 1S the mean power
consumption of a single motor at maximum velocity.
These two Pareto frontiers follow solely from the Jensen
bound (11c); the TUR (13) alone gives a Pareto frontier for

power consumption and precision:
:BPcheme2 >2. (23)

So far the cargo has only encountered resistance from
viscous drag; similar considerations also constrain perfor-
mance for an additional external force f., on the cargo, in
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the direction opposite to f .- The entropy production rate
is then

2= ,B(Nfchem - fext)<v>
> <§+Dﬁ><v>z~ (24)

Here thermodynamic efficiency #7 = fex/(Nfchem) 18
positive. Applying the Jensen bound leads to a Pareto
frontier for thermodynamic efficiency and mean velocity:

D
n () <l (25)
NDbaIe Umax

nr +

Since D,,/NDy,. > 1, a looser bound analogous to

Eq. (21) is
mt <, (26)

max

Example system.—Consider an example with tunable
parameters that can saturate our derived bounds. Each
motor has periodic potential V;(x;) = 5 E* cos (27x;/£)
with barrier height E*, period #, and maximum
conservative force fp., = E*/(2¢). Each motor is linked
to the cargo by a Hookean spring with spring constant x and
zero rest length [30], U, (x,, x;) = 3x(x; — x.)*. The motors
do not directly interact. The total system potential is thus

Vix) = XN: B E*cos (2zx;/€) + %K(x,» -x)%. (27)

i=1

Equating the Kramers rate [31] for a single uncoupled
motor hopping between adjacent landscape minima with
experimentally measured rates for kinesin-1 motors [32]
(see Supplemental Material “Barrier heights in real sys-
tems” for details [33]) yields f /[ chem = 0.4, which sets
the scale of our parameter sweep.

Figure 1 illustrates that for N = 2 motors the dynamics
change significantly as the barrier height increases. For
Smax/ fehem << 1, the motors move continuously, while for
Smax/ S chem = 1, the motors hop between distinct states.

Figure S1 of Supplemental Material [33] compares the
entropy production rate for the numerical model to the
Jensen bound, TUR, and second law. The Jensen bound is
generally the tightest constraint for our best estimates of
reasonable model parameters in kinesin-vesicle systems.

More generally, the Jensen bound is tighter whenever
Dt > Dyye. We numerically explore the ratio Degr/ Dpgre
over a 2D region of parameter space in Fig. S2 of
Supplemental Material [33], finding that D > Dyge
(the Jensen bound is tighter) over a wide range of coupling
strengths and barrier heights. For sufficiently large energy
barriers and motor-cargo coupling, however, D¢ < Dyyre
and thus the TUR is tighter. This is consistent with a
previous study of coupled Brownian particles diffusing in a
single periodic potential [35]. At high coupling strengths,
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FIG. 1. Motor and cargo trajectories for the example system

with N = 2 motors, for different f ../ fchem- Dark curves, cargo;
lighter curves, two motors. Dashed gray horizontal lines show
local minima of motor potential energy. The start times of
different trajectories are staggered for clarity. Position and time
are, respectively, scaled by # and 7 = #?/D,,. Parameters used
are ffem? = 15, px?> =17, and D,./D,, = 1/30.

subsystems can only cross energy barriers simultaneously
[36], making forward progress only with much larger
fluctuations whose rarity leads to decreased effective
diffusivity. Likewise, high energy barriers could lead to
phenomena like hindered diffusion, which lowers the
effective diffusivity [37]. (Recall that any details of
interactions with other subsystems or the substrate only
affect D¢, with Dy, uniquely determined by the diffusion
coefficients of the components making up the system.)
Figure 2 shows for N = 2 motors the trade-off between
Stokes efficiency and velocity due to parametric variation
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FIG. 2. Trade-off between Stokes efficiency 7y and scaled
velocity (v)/vp. in the example system with N = 2 motors,
plotted parametrically for D./D,, = 1073-10%. Colors show
different f,,.. Black dotted line shows the Pareto frontier
(21). Stars show single uncoupled motor. Other parameters same
as Fig. 1.
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of the diffusivity ratio D./D,,, for different barrier heights.
When the motors face no barriers (fmax/fchem = 0), the
system exactly saturates the Pareto frontier Eq. (21). As
Smax/ [ chem increases, the performance trade-off degrades,
falling increasingly far from the Pareto frontier.

While the ng—(v) curve is linear for f ./ fchem = 0s
as fimax/fechem iNCreases it becomes increasingly convex.
This suggests that for large energy barriers high efficiency or
high velocity are more easily achieved than a compromise
between the two. As expected, the velocity in the
ND./D,, - oo limit is exactly that of a single uncoupled
motor on the same energy landscape, while the Stokes
efficiency is zero. In the limitas ND./D,, — 0, the velocity
approaches zero and the Stokes efficiency approaches unity.

Beyond this trade-off between efficiency and velocity, the
system behaves analogously for other performance trade-
offs and metrics; specifically, when fax/fchem = O this
model exactly saturates all our derived bounds. [Figure S3
[33] illustrates the P, — (v) Pareto frontier (22)].

Discussion.—For motor-driven intracellular transport
systems, we have derived a new inequality (11c) which
lower bounds the entropy production rate of a collective-
transport system. This Jensen bound (11c¢) is always tighter
than the second law for a nonstationary transport system,
and can be tighter or looser than the thermodynamic
uncertainty relation (14), depending on the relative magni-
tudes of the bare collective diffusivity Dy,. and the
effective diffusivity Dy Because of its dependence solely
on parameters and averaged quantities, the Jensen bound is
much easier to compute than the TUR which depends on
D (a function of the variance, which requires more data to
accurately estimate), provided that diffusion coefficients
and driving forces are known for each subsystem in
isolation.

Once these properties are known for a given set of
subsystems, the Jensen bound is easily computed for any
collective system assembled from a combination of such
modular components. The TUR by contrast does not take
advantage of information about the subsystems composing
a collective system, and must be computed de novo for
every such combination by measuring emergent properties
of the collective system. This makes the Jensen bound
particularly well suited for collective motor-driven trans-
port systems, which are assembled out of parts (cargo and
motors) that can be identified and studied in isolation.

Using the Jensen bound and the TUR, we have derived
several bounds on performance metrics such as velocity,
efficiency, and precision, as well as three analytic expres-
sions for Pareto frontiers when motors are identical. These
bounds, which restrict emergent properties of collective
systems, depend only on properties of each of arbitrarily
many subsystems in isolation. Our results hold quite
generally, for arbitrarily many motors (of any direction-
ality) and cargos. The system’s joint potential V(x) is only
required to keep the components of the system together at

steady state, but may in general capture phenomena not
included in our example, such as non-Hookean
motor-cargo linkers, motor-motor interactions, or more
complex periodic energy landscapes.

Our numerical investigations show that the performance
bounds and Pareto frontiers derived in this Letter are
attainable for systems with no energy barriers. This is
unsurprising, as it is well known that decreasing energy
barriers (catalysis) speeds up a chemical reaction without
affecting the energetics. All our bounds and frontiers are
saturated for a model with only quadratic couplings
between the cargo and each motor. This system, whose
dynamics and thermodynamics have been solved analyti-
cally [15], is Pareto optimal for the class of systems
considered here. More generally, the Jensen bound (11c)
is always saturated for linear systems within the class of
models considered here (see Supplemental Material
“Linear systems saturate the Jensen bound” for proof
[33]). Our simulations focus on N =2 motors due to
computational constraints; however, our derived bounds
hold for arbitrarily large N: indeed, their utility is most
significant for N > 1, where direct simulation is computa-
tionally intractable.

Many of these performance metrics are difficult to mea-
sure experimentally, in particular, thermodynamic quanti-
ties like the chemical power consumption and efficiency;
nonetheless, limited experimental measurements of perfor-
mance trade-offs for in vivo systems do exist. Figure S4
of Supplemental Material [33] shows measurements of
velocity and efficiency for myosin motors in several differ-
ent animal tissues from Ref. [38]; for maximum velocity
Vmax = 12 pm/s (to our knowledge, the highest observed in
animal muscle tissue [39]), our predicted Pareto frontier (26)
indeed bounds the experimentally observed performance.
Consistently, theoretical studies of the trade-off between
efficiency and velocity in other types of molecular machines
have found that high velocity and high efficiency are
mutually exclusive [40,41].

While our results apply to a broad class of systems, they
do rely on three key assumptions: (1) all components of the
transport system stay together, achieving at long times the
same mean velocity, (2) the dynamics are multipartite, such
that the entropy production can be split into subsystem-
specific contributions [22], and (3) motor motion is tightly
coupled to chemical-energy consumption. Multipartite
dynamics are a standard assumption in stochastic thermo-
dynamics [22,42,43], generally necessary to analyze the
behavior of multicomponent systems. Experiments in
kinesin [24,25] and myosin [26] motors do support tight
coupling between the mechanical and chemical degrees of
freedom; nonetheless, futile cycles and backsteps have
been observed to occur infrequently [44], and are beyond
the scope of this Letter. We speculate that such phenomena
can only degrade the performance metrics discussed in this
Letter, but generalizing our results to looser mechanochem-
ical coupling will be an important future direction.
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