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Cell monolayers are a central model system in the study of tissue biophysics. In vivo, epithelial tissues
are curved on the scale of microns, and the curvature’s role in the onset of spontaneous tissue flows is still
not well understood. Here, we present a hydrodynamic theory for an apical-basal asymmetric active
nematic gel on a curved strip. We show that surface curvature qualitatively changes monolayer motion
compared with flat space: the resulting flows can be thresholdless, and the transition to motion may change
from continuous to discontinuous. Surface curvature, friction, and active tractions are all shown to control
the flow pattern selected, from simple shear to vortex chains.
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Had Gaudi been a developmental biologist rather than an
architect, he might have said that there are no flat epithelial
tissues in nature. Tissue flows occur in the intrinsically
curved environments encountered during morphogenetic
processes or inner organs’ self-renewal, e.g., in the gut,
where flows of cells occur along a curvature gradient [1,2].
Yet, for practical reasons, most in vitro studies on collective
epithelial tissue flows were performed on flat surfaces.
These verified several predictions of active nematic theory,
which, applied to tissue, predicts the relations between
mechanical stress, flows, and cell shape fields, defined
through a coarse-grained procedure [3–6].
Here, motivated by recent developments in 3D micro-

patterning and live-3D imaging techniques [7], we inves-
tigate theoretically the emergence of spontaneous flows
within a covariant active nematic framework for epithelial
tissues.
The effect of curvature on active nematics was explored

in several recent studies [8–10] that extended previous
equilibrium frameworks [11–14]. These theories are quad-
ratic in the curvature tensor. Yet, epithelial tissues, which
have lumen and substrate facing sides—called apical and
basal, respectively, permit a linear coupling to curvature.
Indeed, a body of recent work has shown that the under-
lying substrate curvature regulates the cellular architecture
[15–17], with cells’ orientation depending on the substrate
convexity or concavity, both at the single cell [16,18,19] or
collective tissue scale level [20–24]. Theoretical models
that do consider such apico-basal asymmetry [25–27] do
not, however, address the possibility of a mechanical
feedback loop between flows and active stresses.
Here we show that, by affecting the cell orientation, the

sign and intensity of the curvature alters the nature of the

transition to flows in confined active nematic geometry
and, in stark contrast to the noncurved case, can lead to
thresholdless shear flows at vanishing activity or confine-
ment size.
We first derive an active nematic hydrodynamic frame-

work in the presence of up-down asymmetry within a curved
manifold. We then predict new cell-shape and tissue flows
patterns within monolayers placed on curved substrates. We
show that there exists a critical curvaturevalue abovewhich a
uniform state becomes unstable, distorts, and starts to flow.
The flow mode depends on the magnitude and sign of the
curvature. Then, we numerically show the existence of a
discontinuous transition in the value of the flow velocity
between these previously identified modes, as well as more
complicated 2D modes such as vortex chains. We also
highlight the existence of multiple steady state patterns in
regions of the phase diagram previously thought to be stable.
We start by describing a fully developed active nematic

phase with a unit-length director field n. Surfaces are
characterized by both the metric tensor gij, and the extrinsic

curvature tensor Cj
i [28]. For convenience, we write an

effective free energy F ¼ F0 þ FC, and define the mole-
cular field hi ¼ −δF=δni, the functional derivative of the
total free energy, with (h⊥, hk) those components res-
pectively perpendicular and parallel to the director field n.
F has a part analogous to the Frank free energy of classic
liquid crystals: F0¼

R
dS½K1ð∇jnjÞ2=2þK3ðnj∇jniÞ2=2−

h0knin
i=2�, where dS ¼ ffiffiffi

g
p

dx1dx2, K1, and K3 are the

splay and bend elastic moduli respectively, and h0k is

the Lagrange multiplier enforcing the constraint n2 ¼ 1.
In this Letter, we use the one-constant approximation K1¼
K3¼K [29], motivated by recent observations in epithelial
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tissues [30]. All ∇i terms refer to covariant derivatives. We
use Einstein notation for summation over repeated indices.
Here, we consider a linear curvature free energy,

FC ¼ 1

2

Z
dS hcC

j
in

inj; ð1Þ

which is the simplest first order expansion in the curvature
field allowed by nematic symmetry. If hc > 0, cells prefer
to align parallel to directions of greatest negative curvature,
and perpendicular to directions of greatest positive curva-
ture, and vice versa for hc < 0; see Fig. 1(a).

The monolayer’s velocity with respect to a fixed sub-
strate v enters into tensors for the strain rate uji¼
ð∇ivjþ∇jvi−∇kvkg

j
iÞ=2, and vorticity ωj

i ¼ ð∇ivj−
∇jviÞ=2. For simplicity, we assume incompressibility,
∇ · v ¼ 0. The stress constitutive equation reads σji ¼
−Pgji þ σ̃ji þ σAji þ σaji for active gels [4], where P collects
all the isotropic stresses; σ̃ji ¼ 2ηuji þ ðν=2Þðnihjþ
njhi − nkhkg

j
iÞ, where η is the kinematic viscosity, and ν

is the shear alignment coefficient; σAji ¼ −ðnihj − njhiÞ=2;
and σaji ¼ −ζðninj − gji=2Þ is the active stress [32]. The
equation for the evolution of the director field reads as

Dni
Dt

¼ hi
γ
− νujinj þ νcC

j
inj; ð2Þ

where Dni=Dt ¼ ∂ni=∂tþ vj∇jni þ ωj
inj is the corota-

tional derivative of the director field ni; ν is the shear
alignment coefficient. The last term of Eq. (2) is an active
term different from the terms generated by the coupling in
the effective free energy. We explore the role of this term in
the Supplemental Material [31], Fig. S3; in the main text
figures we set νc ¼ 0.
The force balance between internal stresses and momen-

tum exchanges with the substrate reads as

∇jσji ¼ ξvi þ λbnj∇jni þ λsni∇jnj; ð3Þ

where ξ is a substrate friction coefficient; λb (resp. λs) is an
active bend (resp. splay) coefficient, expressing that an
active nematic can specifically extract momentum from the
substrate for bend or splay conformations [33,34]. In
Eq. (3), we refrain from introducing a curvature-dependent
friction for the sake of simplicity. The sum λs þ λb
combination of these terms simply amounts to a shift in
the overall value of the active stress ζ. Their difference,
λs − λb, has no bulk counterpart in classical active gel
theory [32]. It has been recently considered, but only within
unbound domains [33].
We focus here on the geometry of an infinite strip of

width L [Fig. 1(a)]. For in-plane curvilinear coordinates
ðs; yÞ, CssðsÞ ¼ C0 cos ks is the only nonzero component
of the curvature tensor, with C0 being the curvature
magnitude and k ¼ 2π=L. In the spirit of Voituriez et al.
[35], we first assume that the flow and orientation patterns
are invariant along the y direction. Coupled with the
incompressibility condition, this y invariance of the system
implies that vs ¼ 0. Thus, the force balance in the s
direction defines the pressure P. We need only consider
one off diagonal stress component: σsy. We write σsy, the
force balance, and Eq. (2), in terms of the molecular field
components ðh⊥; hkÞ and the director field angle θ [see
Fig. 1(b)], such that n ¼ ðcos θ; sin θÞ (Supplemental
Material [31], Sec. I). The y-invariant system admits two
uniform nonmoving solutions at steady state, θ ¼ 0 and

FIG. 1. (a) Cells with alignment parameter hc > 0 in the free
energy (blue cells, e.g., fibroblasts [16]), will align along the
direction with the most negative (or least positive) curvature,
whereas cells with hc < 0 (red cells, e.g., MDCK cells [16]) will
align oppositely. (b) The surface geometry: a strip, infinite in y,
with curvature in the transverse s direction Css ¼ C0 cos 2πs=L,
where L is transverse contour length and C0 > 0, showing single
cells aligning according to their alignment parameter. (c)–(f)
Typical cell orientation and velocity patterns of (c) passive
uniform pattern, (d) passive nonuniform pattern, (e) active single
shear flow pattern and (f) active double shear flow pattern. The
color code refers to vy, and the red arrows indicate flow
directions. Cartesian plots of the orientation and velocity are
given in the Supplemental Material, Fig. S1 [31].
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θ ¼ π=2, depending on the boundary conditions. Here, we
focus on the homogeneous alignment condition (observed
in experiments [6]) which permits one uniform solution,
θ ¼ π=2 (the director field aligned parallel to the
boundaries).
We first analyze the linear stability of a perturbation to the

uniform state, δθ ¼ θ − π=2, with boundary conditions
δθð0Þ ¼ δθðLÞ ¼ 0. In the zero friction ξ ¼ 0 limit and
with stress-free boundary conditions σsyð0Þ ¼ σsyðLÞ ¼ 0,
the force balance in the y direction can be integrated to
give σsy ¼ −λsδθ. Replacing σsy in the stress equation
shows that the active splay renormalizes the contractility,
ζ → ζ þ λs ≡ ζs. The curvature free energy coefficient
is also renormalized, hc → hc − η̃νc ≡ h̃c, where η̃ ¼
4ηγ=½γðνþ 1Þ2 þ 4η� is an effective viscosity. Introducing
adimensional units s̃ ¼ ks=2, τ ¼ ðKk2=4η̃Þt, the dynamical
equation for theperturbation δθ can bewritten (Supplemental
Material [31], Sec. II) as

∂δθ

∂τ
¼

�
−
2ζsðνþ 1Þη̃

Kk2η
−
4h̃cC0

Kk2
cos 2s̃

�
δθ þ ∂

2δθ

∂s̃2
; ð4Þ

or _δθ ¼ Lðs̃Þδθ, where Lðs̃Þ is the operator of the Mathieu
equationLðs̃Þ ¼ ða − 2q cos 2s̃Þ þ ∂

2
s̃ [36]. The eigenvalues

and eigenfunctions of this operator, Lðs̃Þϕm ¼ λmϕm [36],
determine the stability of the system; since _ϕm ¼ λmϕm, any
λm > 0 implies that the uniform solution is unstable. For
δθð0Þ ¼ δθðLÞ ¼ 0, the eigenvalues are related to the odd
characteristic numbers bmðqÞ of the Mathieu equation [36].
The lowest eigenfunction ϕ1 is a single shear (SS) pattern,
akin to Fig. 1(e). The second eigenfunction ϕ2 is a double
shear (DS) pattern, as in Fig. 1(f), where two shear bands are
stitched together in the center of the strip. For a continuous
transition from the nonflowing (NF) state to a single shear
state, the lowest mode must vanish:

λ1ðqÞ ¼ −
ζsðνþ 1Þη̃L2

2π2ηK
þ b1ðqÞ ¼ 0. ð5Þ

We found an excellent agreement between Eq. (5) and
numerical simulations throughout the ðC0; ζs; LÞ phase
space (Fig. 2 and the Supplemental Material [31]).
For small values of curvature q ¼ 2h̃cC0=Kk2 ≪ 1, the

expansion b1ðqÞ ∼ 1þ q yields the following curvature
threshold for flow:

h̃cC0;cr

2K
¼

�
π

L

�
2

þ ζsðνþ 1Þη̃
2ηK

: ð6Þ

Such approximation of the critical curvature C0;cr agrees
well with simulations [Supplemental Material [31],
Fig. S2(a)]. When C0 ¼ 0, Eq. (6) reduces to that of the
active Fredericksz transition found in Ref. [35]. As shown
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FIG. 2. Flow patterns and transitions in the zero friction limit
(ξ ¼ 0) obtained from numerical simulations (Supplemental
Material [31], Sec. I). (a) C0–L flow pattern diagram for
ζs ¼ 4: no flow (gray, NF); single shear (blue, SS); and double
shear (red, DS), and analytical prediction [Eq. (5)] of the
continuous NF-SS transition (black solid curve). (b) Constant
C0 ¼ −0.8 cut through (a) (the dotted box) showing continuous
NF-SS transition, and discontinuous SS-DS transition. (c) ζs–C0

flow pattern diagram and analytical prediction [Eq. (5)] of the
NF-SS transition (solid, continuous; dashed, discontinuous). The
two black circular spots separate the continuous transition and
the discontinuous transition. The blue dashed curve represents the
discontinuous SS-NF (or SS-SS) transition while increasing (or
decreasing) ζs from a SS pattern (see Supplemental Material [31],
Fig. S7). The parameter paths e1-e2-e3 (e) and f1-f2-f3 (f) are
quenching simulations, as shown in (e),(f). Diagrams in (a),(c) are
obtained from an initial NF state. (d) Constant C0 cuts [C0 ¼ 0
and C0 ¼ 0.4, dashed boxes in (c)] showing a discontinuous NF-
SS transition for the curved case, with thresholdless flows around
zero activity. (e) Pattern selection upon varying C0 quasistatically
[orange path in (c); see Supplemental Material [31], Sec. I.D]
with ζs ¼ −1.5. See also Supplemental Material [31], Movie S1.
(f) Pattern selection upon varying ζs quasistatically [magenta path
in (c); see Supplemental Material [31], Sec. I.D] with C0 ¼ −1.6.
See also Supplemental Material [31], Movie S2. The initial SS
state (f1) was prepared through quenching of C0 [see the point
(f1) in (c) and (e)]. Parameters other than ξ are those in the
Supplemental Material [31], Table 1, including νc ¼ 0, ζ ¼ 0,
and λb ¼ 0.
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in Eq. (6), the curvature field induces a new length scale,
ð2K=h̃cC0Þ1=2, which pits the cost of nonalignment with
the curvature against the cost of director field deformations.
As in flat space [6,35], increasing the strip width L can
induce a continuous NF-SS transition [Figs. 2(a) and 2(b)].
For fixed L, the NF-SS threshold is a nonmonotonic
function of the curvature [see Fig. 2(c)]; such behavior,
which contrasts with the linear relation Eq. (6), is a
consequence of the higher-order terms in the b1ðqÞ expan-
sion at larger q.
Our simulations also reveal transitions to higher-order

shear modes, each differentiated by their velocities in the
center vyðL=2Þ and the edge vyðLÞ of the strip: vyðL=2Þ ¼
vyðLÞ ¼ 0 for NF; vyðL=2Þ ¼ 0, vyðLÞ ≠ 0 for SS; and
vyðL=2Þ, vyðLÞ ≠ 0 for DS. In particular, the DS pattern
emerges for h̃cC0 < 0 [see Figs. 2(a) and 2(c)]. When
h̃cC0 > 0, cells in the center of the strip prefer to align
toward θ ¼ 0; the central portion is biased toward a large
perturbation from θ ¼ π=2, favoring the SS pattern. When
h̃cC0 < 0, this is reversed. The cells in the center of the
strip prefer to align toward θ ¼ π=2, favoring the DS
pattern. There is no direct NF-DS transition for ξ ¼ 0; see
Fig. 2(b). The SS-DS transition is discontinuous, with a
transition zone of metastability.
We find that the NF-SS transition is not always continuous

[see Fig. 2(d) and Supplemental Material [31], Fig. S5]. At
two tricritical points [the black dots in Fig. 2(c)], the
transition changes from continuous (solid black line) to
discontinuous (dashed black line). The upper tricritical point
occurs right at ζs ¼ 0; see Fig. 2(c) and the Supplemental
Material [31], Fig. S5. Close to the lower tricritical point, the
growth rates of the SS and DS modes are nearly degenerate,
λ1 ≈ λ2. A higher-order analysis of a mixed state in this
region shows that couplings between the shear modes can
effectively reverse the sign of the third order term of the
amplitude equation (Supplemental Material [31], Sec. II), a
typical hallmark of a tricritical point, offering excellent
agreement with the numerical simulations.
We then explored the regimes of hysteresis along the

discontinuous NF-SS transition upon performing a quasi-
static variation of the curvature (Fig. 2). Indeed, the NF-SS
transition and the SS-NF transition occur at different values
of C0; see Fig. 2(e) and the Supplemental Material [31],
Fig. S6 and Movie S1. The lines of these transitions are
known as the spinodal lines. The boundary of linear
stability of the NF state λ1 ¼ 0 gives one of these spinodal
lines for each tricritical point. To find the other spinodals
[the blue dashed lines in Fig. 2(c)], we prepare a single
shear state and then transform the system quasistatically
(varying C0 or ζs) until the shear state has lost absolute
stability [Fig. 2(f); Supplemental Material [31], Sec. I,
Fig. S7, and Movie S2]. We note that the upper blue
spinodal line crosses C0 ¼ 0, implying that a single shear
state can be at least metastable in flat space for both signs of

ζs. Such a behavior is a departure from the established work
on the continuous active shear transition in flat strips [35].
We find that the ζs ¼ 0 line cuts through the domain of

stability of the single shear patterns. There, curvature
destabilises the uniform director field pattern [see
Eq. (6) and Figs. 1(c) and 1(d)]. The resulting orientation
gradients drive motion even for arbitrarily small active
stresses, and the flow velocity scales linearly as vy ∝ ζs; see
Fig. 2(d). Similar thresholdless active flows are found in
Ref. [37] as a consequence of the constraints imposed by
the anchoring condition.
When friction is nonzero, there is no tidy equation in δθ.

We expand in Fourier space and find that the spatial
dependence of the curvature field leads to mode coupling
(Supplemental Material [31], Sec. II). We find the critical
curvature C0;cr for small curvature values:

hξC0;cr

2K
¼

�
π

L

�
2
�
1þ ðνþ 1Þζs

2K½ξ=γ þ ðπ=LÞ2ðη=η̃Þ�
�
; ð7Þ

where we define a renormalized curvature-coupling
coefficient: hξ ¼ hc − νc½ξþ ηðπ=LÞ2�=ðξ=γ þ π2η=L2η̃Þ.
Equation (7) shows excellent agreement with numerical
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FIG. 3. The effect of active bend traction λb. Results shown
here were obtained from full 2D simulations. (a) Phase diagram
of the flow patterns [stable (light gray); single shear (blue);
double shear (red) and vortex chain (magenta)] with respect to the
active splay traction λs and the active bend traction λb. (b) Phase
transition regulated by the active splay traction λs, which
corresponds to the horizontal dash box in (a) with λb ¼ 3.5.
(c),(d) The perturbed double shear flow pattern (c) and the vortex
chain pattern (d), which correspond to the dataset shown in (a). In
the velocity map, the color code represents vy and arrows denote
velocity vectors; in the orientation map, the color code refers to θ
and lines for orientation directors. Parameters: ξ ¼ 0.6, L ¼ 8,
and C0 ¼ 0.
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simulations [Supplemental Material [31], Fig. S2(b)] and
matches Eq. (6) for a vanishing substrate friction ξ ¼ 0.
Higher absolute curvatures are needed to initiate flows
with larger friction; see the Supplemental Material [31],
Fig. S2(b). In contrast to the zero friction case, we find a
direct and continuous transition from the nonflowing to
double shear patterns; see the Supplemental Material
[31], Fig. S9.
To check the assumption of y invariance, we perform

two-dimensional simulations (Supplemental Material,
Sec. I [31]). For λb ¼ 0, the assumption holds very well
[Fig. 3(a) and Supplemental Material [31], Fig. S10].
However, for large enough active bend traction λb > 0,
longitudinal instabilities appear [Fig. 3(c)], eventually lead-
ing to a vortex chain pattern [Fig. 3(d) and Supplemental
Material [31], Fig. S12] [38]. The vortex chain state shares a
phase boundary with the NF, SS, andDS patterns [Fig. 3(a)].
Recalling that the sum of the active bend and splay
correspond to a bulk renormalization of the contractility,
ζ → ζ þ ðλs þ λbÞ=2, we can consider systems of equal
contractility by taking diagonal cuts of Fig. 3(a) such as the
green line. For a given value of the contractility, we may
observe each of the four flow patterns, depending on the ratio
between the active splay and bend tractions.
Perspectives.—In this Letter, we have traveled beyond

the existing paradigm of continuous transition to flows in
confined active nematics [35]. The introduction of a
curvature field allows for tight control of a wider variety
of flow structures than simple shear states, each with unique
biological significance (e.g., a double shear flow permits
net transport for weak anchoring boundary conditions).
Further, by suppressing the threshold to motion, curvature
vastly increases the range of tissue parameters that allow for
flows. Finally, our findings of discontinuous transitions and
hysteresis offer new perspectives on tissue dynamics: even
transient mechanical perturbations, such as a brief shock to
the tissue, may lead to long-term changes from a quiescent
state to a spontaneously flowing one. This concept that living
matter, epithelial tissues included, could existwithhair triggers
to motion has the potential to transform our understanding of
morphogenesis, cancer spreading, or biofilm growth.
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