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Flexoelectricity-based mechanical switching of ferroelectric polarization has recently emerged as a
fascinating alternative to conventional polarization switching using electric fields. Here, we demonstrate
hyperefficient mechanical switching of polarization exploiting metastable ferroelectricity that inherently holds
a unique mechanical response. We theoretically predict that mechanical forces markedly reduce the coercivity
ofmetastable ferroelectricity, thus greatly bolstering flexoelectricity-drivenmechanical polarization switching.
As predicted, we experimentally confirm the mechanical polarization switching via an unusually low
mechanical force (100 nN) in metastable ferroelectric CaTiO3. Furthermore, the use of low mechanical forces
narrows the width of mechanically writable nanodomains to sub-10 nm, suggesting an ultrahigh data storage
density of ≥1 Tbit cm−2. This Letter sheds light on the mechanical switching of ferroelectric polarization
as a viable key element for next-generation efficient nanoelectronics and nanoelectromechanics.
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Ferroelectrics comprise a class of materials with sponta-
neous polarization that is switchable by external excita-
tions, including electrical bias [1] and the chemical
environment [2]. Polarization switching has been the basis
for various device applications (e.g., nonvolatile memories
and field-effect transistors [3]), but may have greater
potential in complex ferroelectrics. Notably, complex ferro-
electrics characteristically exhibit rich coupling between
polarization and other degrees of freedom, allowing mag-
netoelectric switching [4] or scale-free ferroelectricity [5].
This coupling could also result in multiple competing
states, thus lowering the effective energy barrier for
polarization switching [6,7]. Therefore, proper control of
polarization switching in complex ferroelectrics would
maximize its application potential (e.g., by enabling
energy-efficient device operation).
Recently, an exciting new concept based on flexoelec-

tricity [8–11] has emerged, which uses mechanical forces to
switch ferroelectric polarization [12]. This so-called
mechanical polarization switching usually adopts an atomic
force microscope (AFM) geometry [inset of Fig. 1(a)]. The
mechanical loading force (FL) by the AFM tip can generate
strain gradients ∂ε=∂x as large as 106 − 107 m−1 near the
tip-sample contact region. Then, an effective flexoelectric
field (i.e., Eflexo

eff ¼ f∂ε=∂x, where f is the flexocoupling
coefficient) arises and could switch the polarization in
ultrathin ferroelectrics. While this AFM tip-driven flexoe-
lectricity has attracted a wide range of scientific interest
[12–18], the associated mechanical polarization switching

could also be technologically advantageous. In particular, it
can minimize electrical bias-induced side effects, such as
charge injection, Joule heating, and dielectric breakdown.
In addition, mechanically written nanodomains may be
spatially denser than their electrically induced counterparts
[12,19], while exhibiting comparable response time and
retention properties [20,21].
However, wide and practical application of mechanical

polarization switching requires considerable effort to
lower the required FL and enable higher-density nano-
domain writing. There have been a few previous attempts
to reduce the threshold FL for mechanical polarization
switching [19,34–36]. A simple method involves the use
of a material that has low ferroelectric coercivity [34,35].
However, this inevitably increases the critical size of
stable nanodomains [37] and could limit the ultimate
data storage density. Another approach is to explore soft
materials, such as ferroelectric polymers [19,36], which
have a low elastic modulus and can therefore hold large
strain gradients despite low FL. According to contact
mechanics theory [33], however, the low elastic modulus
concurrently increases the tip-sample contact area, thereby
limiting the achievable density of mechanically written
domains. Thus, previous attempts to lower the threshold
FL have seemed innately incompatible with higher-density
nanodomain writing, posing a difficult dilemma. In this
Letter, we overcome this dilemma by utilizing a unique
mechanical response of metastable ferroelectricity in a
complex material.
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We note that under the AFM tip-induced FL, the sample
experiences considerable longitudinal compressive strain,
as well as a strain gradient [Fig. 1(a) and Supplemental
Material Fig. S1]. Therefore, although ferroelectric coer-
civity is initially large, it could be reduced by the AFM
tip-induced longitudinal compressive strain [Figs. 1(b)
and 1(c)] [20]. Such a decrease in ferroelectric coercivity
is key to efficient mechanical polarization switching using
AFM geometry. We propose that exploiting metastable
ferroelectricity would maximize this benefit: when a
ferroelectric state is metastable, the AFM tip-induced
strain could more substantially reduce the ferroelectric
coercivity. Therefore, in metastable ferroelectrics, we
envisage hyperefficient mechanical polarization switching
operable with low FL, without compromising the density
of written nanodomains.
As a relevant metastable ferroelectric system, we adopt

CaTiO3 thin films. Recently, we theoretically and exper-
imentally demonstrated metastable ferroelectricity at room
temperature in (111)-oriented CaTiO3 thin films [38].
While CaTiO3 bulk is nonpolar with an orthorhombic

(Pnma) structure, the (111)-oriented heterostructure leads
to artificial metastable ferroelectricity with rhombohedral
(R3c) structure in CaTiO3. The metastable state is defined
as the one located at a local energy minimum (not a global
minimum), but the metastable ferroelectricity itself does
not mean that it has a poor polarization strength or stability;
in fact, our previous work evidenced a strong ferroelec-
tricity of R3c CaTiO3 [38]. We can phenomenologically
describe CaTiO3 with two order parameters, P and Q,
which correspond to polarization (from R3c) and ortho-
rhombic distortion (from Pnma) (Supplemental Material,
Fig. S2 [22]), respectively, and usually compete with each
other [38]. Further considering the AFM tip-induced
longitudinal compressive strain εzz (i.e., εzz < 0), we
construct the free energy as follows:

F ¼ − α2
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FIG. 1. Mechanical response of metastable ferroelectricity. (a) Transverse strain gradient ∂εxx=∂z (black closed squares) and
longitudinal strain εzz (red open circles) as a function of the applied AFM tip loading forces (FL). The spatial distribution of strains
induced by AFM tip loading is analytically calculated with the Hertzian contact model and Boussinesq’s equation (Supplemental
Material Note A [22]) [15,33]. (b) Free energy landscape of CaTiO3 under a certain Eeff . There exists an energy-efficient switching path
with a smaller energy barrier (red line), compared with the direct switching path (blue line). (c) Coercive field (Ec) as a function of the
applied FL, estimated for the direct switching path (blue closed squares) and energy-efficient switching path (red closed circles). We
assume a thermal fluctuation of 0.7 meV (Supplemental Material Note C [22]). In estimating Ec, we only consider the effect of the strain
εzz by FL; that is, the explicit contribution from the strain gradient (by FL) in Eq. (1) is omitted, and we assume a general field for Eeff
(Supplemental Material, Note C [22]). The effect of the strain gradient by FL is separately treated for the flexoelectric field. The black
line denotes the effective flexoelectric field [i.e., Eflexo

eff ¼ fð∂εxx=∂zþ ∂εyy=∂zÞ, where f is the flexocoupling coefficient] as a function
of the applied loading forces; f is typically in the range of 1–10 V [8,11], and we assume f ¼ 2.5 V for CaTiO3, comparable to the value
observed for SrTiO3 (i.e., 2.6 V) [9].
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where we determine the coefficients based on first-principles
density functional theory (DFT) calculations for bulk
CaTiO3 (see Supplemental Material, Note B [22]) and
Eeff indicates an external effective electric field, originating
from electric bias or strain gradient. The two terms ð − η=2Þ
εzzP2 and ð þ ζ=2ÞεzzQ2 in Eq. (1) describe the responses of
P and Q, respectively, to the applied εzz. The other possible
nonpolar states are located energetically higher than R3c
and also would have little energetic interaction with Eeff .
Thus, to the first-order approximation, we can consider only
the two states, i.e., Pnma and R3c, for addressing the
polarization switching process under Eeff.
Figure 1(b) depicts the free energy landscape of CaTiO3

under a certain Eeff , presenting the metastable ferroelectric
(i.e., P ≠ 0 and Q ¼ 0) and Pnma (i.e., P ¼ 0 and Q ¼ 1)
states. Applying a sufficient Eeff into metastable ferroelec-
tric CaTiO3 would lead to a transition from one polarization
state to another, rather than the most stable Pnma state.
This is based on Ostwald’s step rule [39,40], which
explains that a phase transition may end with a metastable
phase with free energy close to that of the parent phase,
rather than the most stable phase. Also, it should be noted
that our DFT calculations were performed in bulk CaTiO3,
so there should be an additional influence from the
underlying substrate, which favors the R3c ferroelectric
phase but is not included in Eq. (1). This additional
influence, along with the Ostwald’s step rule, will help
prevent CaTiO3 from falling into the Pnma state during
ferroelectric polarization switching. Then, polarization
switching could occur through a detour path with a much
lower energy barrier [red line in Fig. 1(b)], compared with
the direct switching path [blue line in Fig. 1(b)]. Such an
energy-efficient switching path stems from “metastable”
ferroelectricity and could vastly facilitate mechanical
polarization switching, as discussed below.
Using the phenomenological model based on DFT

calculations, we estimate the threshold FL for polarization
switching in metastable ferroelectric CaTiO3. Considering
thermally assisted polarization switching at finite temper-
atures [41], we find that FL-induced compressive εzz could
markedly reduce ferroelectric coercivity [Fig. 1(c) and
Supplemental Material, Note C [22] ]. In contrast, Eflexo

eff
tends to grow with FL, eventually exceeding ferroelectric
coercivity at a specific FL; polarization switching occurs at
this threshold FL. The estimated threshold FL is around
130 nN, which is much smaller than in the case of the direct
switching path (around 400 nN) or other conventional
ferroelectrics (around 500 nN) [12,34,35]. Furthermore, the
low threshold FL could guarantee mechanical writing of
ultrahigh-density ferroelectric nanodomains due to the
decreased tip–sample contact area [33]. Notably, even if
ferroelectric coercivity decreases significantly with the
applied FL, it is initially >108 Vm−1, large enough to
ensure the stability of mechanically written nanodomains.
Therefore, metastable ferroelectric CaTiO3 could exhibit

enhanced mechanical polarization switching that satisfies
both low threshold FL and high-density nanodomain
writing.
To examine this intriguing possibility, we fabricated

epitaxial CaTiO3 thin films on LaAlO3ð111Þ single crystal
substrate with a buffer layer LaNiO3 as a bottom electrode
by pulsed laser deposition. First, we conduct electrical and
mechanical switching of ferroelectric polarization in
CaTiO3 using a piezoresponse force microscope (PFM).
All the experimental details and methods are in the methods
section of Supplemental Material [22]. We first examine
the typical electrical switching behaviors of ferroelectric
polarization in 5 nm-thick CaTiO3 (111) films (Fig. 2). To
minimize any mechanical force effect during electrical
switching, we carry out the experiments in Fig. 2 with a
low FL (i.e., 30 nN). We then investigate mechanical
polarization switching by scanning the sample with a tip
under a higher FL while turning off the external electric
field. Importantly, although the coercive voltage of CaTiO3

is initially high [i.e., 2.5 V; Fig. 2(a)], applying a slightly
increased FL reverses the upward polarization downward
(Fig. 3). Based on PFM phase and amplitude line profiles,
we estimate the threshold FL for polarization switching to
be as small as 100 nN [Figs. 3(c) and 3(d)]. By exploring
the polarization switching hysteresis as a function of FL,
we also confirm the low threshold FL of around 100 nN
(Supplemental Material, Fig. S8 [22]). The measured low
threshold FL quantitatively agrees with our predictions
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FIG. 2. Local ferroelectric characterization of CaTiO3 (111)
films by PFM. (a) and (b) Local hysteresis curves of phase vs
voltage (a) and amplitude vs voltage (b). (c) and (d) PFM
phase (c) and amplitude (d) images of bipolar polarization states.
Image scan size: 2 × 2 μm2.
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(Fig. 1) and could enable mechanical writing of ultradense
ferroelectric nanodomains.
Figure 3(e) shows downward-polarization domain lines,

which we mechanically write by scanning the CaTiO3 film
with a tip under several different FL. With FL ≥ 100 nN, a
domain line is perfectly writable and remains stable for at
least several hours. From the cross-sectional line profile
of the domain written with FL ¼ 100 nN [Fig. 3(f)], we
determine the minimum domain width wm achievable
by mechanical writing. This yields a mean of wm ¼
9.4� 1.3 nm, suggesting an ultrahigh recording density
of ≥1 Tbit cm−2 (extrapolated from the individual domain
size of 9.4 × 9.4 nm2). Therefore, our CaTiO3 promises a
markedly improved domain density, compared with pre-
vious studies [e.g., wm ¼ 30 nm, corresponding to around
110 Gbit cm−2, in PbðZr;TiÞO3] [34].
Mechanically written, ∼10 nm-wide FE domains remain

quite stable for a long time, without any noticeable change
in the PFM phase profile [Figs. 4(a) and 4(b)]. PFM signals
(or amplitudes) usually decay, following a power-law
PðtÞ ∝ t−α with a decay exponent α. Referring to the α
value [Fig. 4(c)], mechanically written, <10 nm-wide
domains of 5 nm-thick CaTiO3 film seems to have

good stability (α ¼ 0.11), even slightly better than that
(α ¼ 0.12) of electrically written, a few micrometers-wide
domains of 5 nm-thick BaTiO3 film [42]. We also find that
the nanoscale array of dot-shaped domains is stable over
time (Fig. S9 [22]). These results support that high-density
nanoscale domains of metastable ferroelectrics can remain
stable once mechanically written.
The key parameters for assessing mechanical polariza-

tion switching are its threshold FL and the achievable
density of the written nanodomains. We combine these two
factors by defining a figure of merit as 1=ðFL;th × w2

mÞ,
where FL;th is the threshold FL. Since a low FL;th and a
small w2

m have been incompatible with each other, the
reciprocal of their product could be a suitable figure of
merit. Based on this, we compare the performance of
mechanical polarization switching of our CaTiO3 (111)
films with those of other ferroelectric perovskite oxides
(details in Supplemental Material Note G, Table S1 [22]).
In particular, for an appropriate comparison, we grow
BaTiO3 (001) and (111) films and then examine their
mechanical polarization switching using the same exper-
imental setup as for CaTiO3. Also, all samples in com-
parison have a similar thickness of 5 nm. Figure 5 shows
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FIG. 3. Mechanical switching in CaTiO3 (111) films. (a) and (b) PFM phase (a) and amplitude (b) images after mechanical writing of
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that our CaTiO3 exhibits a greatly enhanced figure of merit,
as well as markedly reduced threshold FL, compared with
other ferroelectrics. As proposed, this enhanced perfor-
mance of mechanical polarization switching could origi-
nate from the unique mechanical response of metastable
ferroelectricity. Therefore, we demonstrate the feasibility of
a new strategy exploiting metastable ferroelectricity to
realize hyper-efficient mechanical polarization switching.
Thanks to advances in experimental and theoretical

techniques, recent studies have revealed that metastable
ferroelectricity could occur commonly in complex materi-
als, such as BiFeO3 and HfO2. In BiFeO3, many competing
phases, such as tetragonal-like phase, rhombohedral phase,
and the mixed phase, have emerged, e.g., when it is
epitaxially strained [13,43]. Some of the competing phases
are ferroelectric, so that the actual polarization switching
process could be accompanied with rich phase transforma-
tions, and the consequent elastic softening might benefi-
cially improve the efficiency of polarization switchings.
On the other hand, CaTiO3 contains only the two states
(i.e., Pnma and R3c) that simply govern the polarization
switching process under an applied electric (or flexo-
electric) field. Thanks to this simplicity, the minimal

Landau free energy could successfully explain the ex-
perimentally studied mechanical polarization switching in
CaTiO3 (Fig. 1). Another interesting system, i.e., an HfO2

thin film, has the nonpolar ground state and the ferroelectric
metastable state, quite similar to our CaTiO3 (111) films.
Possibly, due to this similarity, an HfO2 thin film also
exhibited a low threshold loading force as small as 100 nN
for mechanical polarization switching [44]. Although the
previous work on HfO2 did not explicitly examine the high-
density domain writing and the critical role of metastable
ferroelectricity, it suggests that the unique mechanical
response of the “detour-switching path” could generally
be present in metastable ferroelectricity. We believe that our
approach could be generally applicable to a variety of
metastable ferroelectric systems that have recently been in
the spotlight.
Our study reveals a genuinely intrinsic aspect of mechani-

cal polarization switching, which has both scientific and
technological implications. Newly employing metastable
ferroelectricity, we maximize the beneficial role of AFM
tip-induced strain to reduce the thresholdFL for polarization
switching. The use of low FL would also reduce damage to
both sample and tip, thereby promising more reliable and
reproducible mechanical polarization switching. Rather
surprisingly, despite chemical and structural similarities,
our CaTiO3 exhibits distinctly superior mechanical polari-
zation switching, compared with other perovskite oxides.
This underlines the rich physics behind mechanical polari-
zation switching; the efficiency of mechanical polarization
switching could be sensitive to the detailed characteristics of
ferroelectricity (e.g., whether it is stable or metastable, as in
this study). Moreover, AFM tip-induced strain can be useful
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not only for mechanical polarization switching but also
generally for controlling local free energy landscapes in
complex materials. Therefore, our study suggests another
opportunity to access exotic metastable quantum states and
even write them locally at the nanoscale.
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