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An anomalous energy splitting of spin triplet states at zero magnetic field has recently been measured in
germanium quantum dots. This zero-field splitting could crucially alter the coupling between tunnel-
coupled quantum dots, the basic building blocks of state-of-the-art spin-based quantum processors, with
profound implications for semiconducting quantum computers. We develop an analytical model linking the
zero-field splitting to the Rashba spin-orbit interaction that is cubic in momentum. Such interactions
naturally emerge in hole nanostructures, where they can also be tuned by external electric fields, and we
find them to be particularly large in silicon and germanium, resulting in a significant zero-field splitting in
the μeV range. We confirm our analytical theory by numerical simulations of different quantum dots, also
including other possible sources of zero-field splitting. Our findings are applicable to a broad range of
current architectures encoding spin qubits and provide a deeper understanding of these materials, paving
the way toward the next generation of semiconducting quantum processors.
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Introduction.—The compatibility of localized spins in
semiconducting quantum dots (QDs) [1] with the well-
developed CMOS technology is pushing these architectures
to the front of the race toward the implementation of
scalable quantum computers [2–7]. Spin qubits based on
hole states in silicon (Si) and germanium (Ge), in particular,
are gaining increasing attention in the community [6,7]
because of their large spin-orbit interaction (SOI) [8–11],
enabling fast and power-efficient all-electric gates [12–15]
and strong transversal and longitudinal coupling to micro-
wave resonators [16–20]. Also, significant steps forward in
material engineering [21,22] as well as fast spin readout
and qubit initialization protocols [23–26] facilitated the
implementation of high-fidelity 2-qubit gates [27,28] and
of a 4-qubit quantum processor with controllable qubit-
qubit couplings [29].
In contrast to electrons, the properties of hole QDs

depend on the mixing of two bands, the heavy-hole (HH)
and light-hole (LH) bands, resulting in several unique
features that are beneficial for quantum computing appli-
cations [30–37]. In addition to the large and externally
controllable SOI [8,30,35], that can be conveniently engi-
neered to be linear or cubic in momentum [9,31,38–41],
hole spin qubits also feature highly anisotropic and electri-
cally tunable g factors [42–47], hyperfine interactions [37],
and anisotropies of exchange interaction at finite magnetic
fields [33]. Because HHs and LHs are strongly mixed in
quasi-one-dimensional (1D) systems, these effects are
significantly enhanced in long QDs.
Recent experiments in Ge QDs with even hole occupa-

tion have also detected a large anomalous lifting of the
threefold degeneracy of triplet states at zero magnetic field
[48], yielding another striking difference between electrons

and holes. A similar zero-field splitting (ZFS) has been
reported in other quantum systems e.g., divacancies in
silicon carbide [49], nitrogen vacancies in diamond [50,51],
and carbon nanotubes [52]. Nevertheless, after two decades
of intense research, the experiment of Ref. [48] is the first
record of the ZFS in any QD system, but the physical
mechanism behind this effect remains unexplained. In this
Letter, we discuss the microscopic origin of the exchange
anisotropy in hole QDs and we propose a general theory
modeling the ZFS in a wide range of devices. Our theory
helps to develop a fundamental understanding of ZFS,
essential to account for its effect in quantum computing
applications. For example, the exchange anisotropy asso-
ciated with the ZFS could enable the encoding of hole
singlet-triplet qubits [53–56] at zero magnetic filed, and
when combined with a Zeeman field it can lift the Pauli
spin blockade [57,58], with critical implications in readout
protocols. Furthermore, ZFS can introduce systematic
errors in 2-qubit gates based on isotropic interactions
between tunnel-coupled QDs [1,33,59].
We associate the large ZFS emerging in hole QDs to the

cubic-in-momentum Rashba SOI [31,32]. As opposed to
the zinc blende crystals (e.g., GaAs, InAs), where the
broken bulk inversion symmetry gives rise to Dresselhaus
SOI terms that are to lowest order cubic in momentum, the
cubic Rashba term is an often neglected correction to the
well-known linear contribution. Rashba SOI is a natural
candidate to explain exchange anisotropies; however, its
dominant contribution—linear in momentum—can be
gauged away in quasi-1D systems [60–62] and cannot lift
the triplet degeneracy without magnetic fields. While in
electronic systems only the linear SOI is sizable, in hole
nanostructures the large mixing of HHs and LHs induces a
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large cubic SOI [31,32] yielding a significant ZFS in Si and
Ge QDs. Strikingly, this ZFS is tunable by external electric
fields and can be engineered by the QD design.
We develop a theory for the cubic-SOI-induced ZFS that

relies exclusively on single-particle properties of the QD
and the Bohr radius, providing an accurate estimate of the
ZFS in a wide range of common architectures. In realistic
systems, this ZFS is in the μeV range, orders of magnitude
larger than alternative mechanisms. For example, we find
that ZFS of a few neV can also be induced by short-range
corrections of the Coulomb interaction arising from the
p-type orbital wave functions of the valence band [36,63].
In addition, our theory relates the axis of the exchange
anisotropy to the direction of the SOI, and corroborates the
observed response of the QDs to small magnetic fields
[48]. Importantly, because in a long QD comprising two
holes the Coulomb repulsion of the two particles leads to a
formation of Wigner molecule [64–67] that is analogous to
a double QD in one-dimensional systems, our theory
describes the exchange anisotropy also in tunnel-coupled
QDs, the prototypical building blocks of current spin-based
quantum processors [33,59,68], and thus our findings have
profound implications in the growing research field of
quantum computing with holes.
Analytical theory.—Large SOI emerges naturally in hole

spin qubits encoded in long quantum dots, where the
confinement potential in two directions is stronger than
in the third one. Such nanostructures include a wide range
of common spin qubit architectures, such as Si fin field
effect transistors (finFETs) [25,30,35,69], squeezed QDs
in planar Ge [39], and Si and Ge nanowires (NWs)
[8,10,66,70]. Their response is well described by an
effective 1D low-energy Hamiltonian acting only on a
few subbands.
We now focus on a QD defined in a NW with a square

cross section of side L. By resorting to Schrieffer-Wolff
perturbation theory [71] discussed in detail in Sec. S1 of
Ref. [72], we find the effective Hamiltonian acting on the
lowest pair of subbands as

H1 ¼
p2
z

2m� þ vpzσ
y þ v3p3

zσ
y þ ℏ2

2m�l4z
z2; ð1Þ

up to third order in the momentum pz in the long direction.
Here, m� is the effective mass, v and v3 are the linear and
cubic SOI, respectively, and σy is a Pauli matrix. The cubic
SOI term is typically strongly suppressed compared to the
subband splitting Δsub ∼ ℏ2=2m�L2, i.e., v3ðℏ=LÞ3=Δsub∼
10−3 − 0.05, whereas the linear term can be extremely
strong for hole states, i.e., vðℏ=LÞ=Δsub ∼ 1–10 [8–11].
The QD is defined by a harmonic potential parametrized by
the length lz and modeling the smooth electrostatic confine-
ment produced by metallic gates. Equation (1) is valid
when lz ≳ L=π. Two holes confined in the same QD are

described by the Hamiltonian H2 ¼ Hð1Þ
1 þHð2Þ

1 þ Vð1;2Þ
c ,

where Vð1;2Þ
c is the effective Coulomb potential in the

lowest subband sector. Coulomb interactions with higher
subbands are negligible when L=π < aB, where aB ¼
4πϵrℏ2=m�e2 is the effective Bohr radius with ϵr being
the dielectric constant of the material. The Coulomb

potential Vð1;2Þ
c together with the effective harmonic poten-

tial acting on the relative coordinate ðℏ2=4m�l4zÞðz1 − z2Þ2
is sketched in Fig. 1(a) and is discussed in Ref. [72].
The linear SOI v in Eq. (1) can be eliminated exactly by a

spin-dependent shift of momentum that leaves the potential
unchanged, and only negligibly renormalizes the effective
mass m� [72]. The two-particle Hamiltonian is then
given by

H2 ¼
1

4m� P
2 þ ℏ2

m�l4z
Z2 þ 1

m� p
2 þ ℏ2

4m�l4z
z2 þ VcðzÞ

þ Pþ
3 ðσy1 þ σy2Þ þ P−

3 ðσy1 − σy2Þ; ð2Þ

where Z ¼ ðz1 þ z2Þ=2 is the center-of-mass (c.m.) coor-
dinate with conjugate momentum P ¼ pz1 þ pz2 , and
z ¼ z1 − z2 is the relative coordinate with momentum
p ¼ ðpz1 − pz2Þ=2. The cubic SOI yields the perturbative
corrections Pþ

3 ¼v3ð18P3þ3
2
Pp2Þ and P−

3 ¼v3ð34P2pþp3Þ
in the second line of Eq. (2); these terms mix relative and
c.m. coordinates and are crucial for the ZFS.
At v3 ¼ 0, the Hamiltonian of the c.m. coordinates is a

harmonic oscillator with an orbital energy Δo ¼ ℏ2=m�l2z,

(a)

(b)

FIG. 1. Exchange interaction in long quantum dots. (a) The
effective 1D potential Δ0ðz1 − z2Þ2=4l2z þ Vcðz1 − z2Þ is shown
in gray (without units) as a function of relative coordinate
z ¼ z1 − z2, where �z0 are the minima of the potential. The
energy levels corresponding to the lowest singlet and triplet states
and the corresponding orbital wave functions are overlayed with
blue and red, respectively. Vertical arrows show the definition of
the exchange splitting and ZFS, J and D, respectively. Note that
the energy scale of the singlet-triplet energy levels is only
schematic, not matched with that of the effective potential.
(b) Splitting ε of the three triplet states when the Zeeman field
is aligned with the SOI (Δy, left-hand panel), and when it is
perpendicular to it (Δ⊥, right-hand panel).
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while the Hamiltonian of the relative coordinates is
Hrel ¼ p2=m� þ ℏ2z2=4m�l4z þ VcðzÞ. In a NW with a
square cross section and when lz ≳ aB, the effective 1D
Coulomb interaction is well approximated by VcðzÞ≈
Δo½z2 þ ðL=4Þ2�−1=2l2z=aB, where L=4 is a short-range
cutoff of the potential derived in Sec. S1.1 of Ref. [72].
In this case, the system is fully described by two relative
length scales lz=aB and L=aB. Because the effective
potential in Hrel is an even function of z, the corresponding
eigenfunctions have either even or odd parity, enabling the
distinction between singlets (even) and triplets (odd) states.
While in this work we focus on a single QD occupied by

two holes, we emphasize that our theory is also valid for
two tunnel-coupled QDs, the basic components of current
spin-based quantum processors [28,29]. In fact, as sketched
in Fig. 1(a), in a doubly occupied long QD, with lz ≳ aB,
the Coulomb repulsion forces the two particles toward
opposite ends of the dot [64–66], effectively resulting in
two coupled dots. That is why the distinct peak of the
effective two-particle potential, i.e., Vcð0Þ ≈ 4Δol2z=aBL, is
comparable to the orbital splitting. We also remark that
because aB ∼ 12 nm (aB ∼ 3 nm) in Ge (Si), the condition
lz ≳ aB of long QDs is typically respected in current
experimental setups [15,48,73].
By a second-order Schrieffer-Wolff transformation [71]

and projecting the two-particle Hamiltonian onto the
lowest-energy singlet and triplet states, we find that the
exchange Hamiltonian is

Heff ¼
1

4
ðJ þDÞσ1 · σ2 −

1

2
Dσy1σ

y
2

þ 1

2
Δ⊥ · ðσ⊥1 þ σ⊥2 Þ þ

1

2
Δyðσy1 þ σy2Þ; ð3Þ

where Δy is the Zeeman field parallel to the SOI, while
Δ⊥ ¼ ðΔx;ΔzÞ are components perpendicular to it. The
exchange splitting J ¼ εT� − εS > 0 only weakly depends
on v3 and it is well approximated by J 0 ¼ ζℏ2a2B=m

�l4z, the
energy gap between the lowest odd and even eigenstates of
the relative coordinate Hamiltonian. We introduce the
dimensionless coefficient ζ ∼ 0.3–1 for 0.8 < L=aB < 2
and aB ≲ lz [72]. Note that the ZFS appears in Hamiltonian
(3) as a spin-spin interaction term (∝ σy1σ

y
2). Therefore, as

discussed in the following, it originates from the inter-
play of many-particle Coulomb interaction and the cubic
Rashba SOI.
Without magnetic fields, Δi ¼ 0 and Eq. (3) correspond

to an exchange Hamiltonian with a uniaxial anisotropy; i.e.,
Jxx ¼ Jzz ¼ J and the anisotropy axis is aligned to the
SOI (i.e., y direction) with Jyy ¼ J þD. As sketched in
Fig. 1(a), the ZFS D lifts the degeneracy of the triplets T�
and T0, where the three triplets T�;0 are defined with
quantization axis along the y direction. From perturbation
theory, we obtain [72]

D ¼ m�v23
ℏ4

l4z
η: ð4Þ

Here the dimensionless coefficient η ∼ 0.4–0.8 includes
various combinations of dimensionless momentum matrix
elements. The exact functional dependence of η and ζ on L
and lz is discussed in detail in Sec. S1.1 of Ref. [72].
Because η depends only weakly on the relative length
scales lz=aB and L=aB in long QDs, to good approximation
we find that D ∝ l−4z . We also emphasize that this ZFS is
strongly dependent on the cubic SOI and it requires a
sizable value of v3, achievable only in hole QDs. The
relative anisotropy of the exchange interactions is

D
J

¼ m�2v23ℏ
2

a2B

η

ζ
; ð5Þ

where η=ζ ∼ 1–5 depends weakly on aB and, therefore, the
anisotropy scales as D=J ∝ ðm�Þ4.
The magnetic field dependence of the triplet states can

also be deduced straightforwardly from Eq. (3) and it is
sketched in Fig 1(b). If the magnetic field is applied parallel
to the SOI (i.e., the anisotropy axis) the nondegenerate
triplet T0 is unaffected by the field and εT0

¼ J þD,
whereas the degenerate triplets T� split linearly with the
Zeeman field as εT� ¼ J � Δy. In contrast, if the field is
applied perpendicular to the SOI, one of the degenerate
triplets, e.g., T 0

0, stays at the same energy εT 0
0
¼ J , while

the remaining triplets T 0
� split quadratically as εT 0

�
¼ J þ

D=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2=4þ jΔ⊥j2
p

at small Zeeman fields. This
signature of the exchange anisotropy is consistent with
recent experimental observations in Ref. [48], supporting
our theory of ZFS in Ge hut wires.
Numerics.—We confirm our analytical results by com-

paring them with a numerical simulation of long QDs in
square Ge and Si NWs with side length L based on the six-
band Kane model [74]. By imposing hard-wall boundary
conditions at the edge of the NW cross section, we obtain
an effective 1D model including several transversal sub-
bands. With a third-order Schrieffer-Wolff transformation,
we then fold the higher-energy subbands down to the
lowest four subbands, also accounting for terms that are
cubic in momentum. We emphasize that in contrast to our
analytical treatment, where we only account for a single
pair of subbands, see Eq. (1), our numerical treatment
also includes a pair of higher-energy subbands [72].
Furthermore, we include Coulomb interaction matrix ele-
ments that couple different subbands, as well as short-range
interband corrections to the Coulomb interaction [36], that
we identify as an alternative source of ZFS. In our
simulation, we also consider a compressive strain along
the wire, with ϵzz ¼ −0.5%, ensuring that the lowest band
has a positive effective mass [8,30]. More details on the
numerical simulation are provided in Sec. S2 of Ref. [72],
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where we also confirm the validity of our four subband
model by comparing it to a full three-dimensional
simulation.
In Fig. 2(a), we compare the numerical simulation of a

Ge NWwith L ¼ 10 nm with the analytical formulas of the
exchange splitting J and the ZFS in Eq. (4) as a function of
QD length Lz. In this calculation, the fx; y; zg axes
coincide with the h100i crystallographic directions.
Strikingly, the numerical exchange splitting J is in
excellent agreement with the analytical formula, and also
D is reasonably well captured by the simple Eq. (4) in a
wide range of QD sizes. We emphasize that due to the weak
dependence of the coefficient η on the side length L in long
QDs (L; aB < lz), Eq. (4) can accurately estimate the ZFS
in general architectures.
The numerical solution in Fig. 2(a) also reveals an

additional ZFS of the remaining two triplet states, that
emerges because of the short-range corrections to the
Coulomb interaction [36]. These corrections stem from
the atomistic interactions of the p-type Bloch functions and
induce mixing between the different bulk hole bands. The
contribution of the short-range corrections to the effective
Hamiltonian of Eq. (3) can be written as

Heff;sr ¼
1

2
Eσz1σ

z
2; ð6Þ

where E is the exchange anisotropy along the NW
(z direction). This ZFS induces an energy gap E between
the triplets jT0i, jTai ¼ ðjTþi þ jT−iÞ=

ffiffiffi

2
p

and the remain-
ing states [the singlet jSi and the third triplet jTbi ¼
ðjTþi − jT−iÞ=

ffiffiffi

2
p

], thereby lifting the remaining triplet
degeneracy at zero magnetic field.
The exchange anisotropy E induced by the short-range

Coulomb interaction is also present without external
electric fields, where the SOI vanishes [see Fig. 2(b)]. In

this special case, because of the fourfold symmetry of
the system, the anisotropy axis is aligned to the wire
[72,75,76]. If an electric field is applied perpendicular to
the wire, the symmetry is reduced and the remaining
degeneracy is also lifted. (For a detailed symmetry analysis
of different wire geometries, see Sec. S3 of Ref. [72].) At
small Ex, the ZFS D increases quadratically with the
electric field, because v3 ∼ Ex, and eventually overcomes
E [see the inset in Fig. 2(b)], aligning the main anisotropy
axis to the SOI. For higher electric fields, v3 (and thus D)
reaches a maximum value and starts to decrease, in analogy
to the linear SOI v in various NW geometries [30,35].
The electric field dependence of the ZFS in Eq. (4) is

dominated by v23 and therefore D is highly tunable by the
external gate potentials and by the QD design. In particular,
in Fig. 3 we showD as a function of electric field in Ge and
Si NWs for different growth directions. For both growth
directions, the ZFS—relative to the orbital splitting—is
significantly smaller in Si than in Ge. This reduction is a
result of the hybridization of HHs and LHs with the
spin-orbit split-off band that is much closer in Si
(ΔSO ¼ 44 meV) than in Ge (ΔSO ¼ 296 meV) [74],
effectively decreasing the HH-LH mixing and the SOI [35].
The ZFS also varies substantially between different

growth directions for both materials, as shown in Fig. 3.
The strong dependence of the SOI on the growth direction
is well known in Si nanowires [30,35], and it is also
significant in Ge. Strikingly, the linear SOI v changes only
slightly in Ge between the two growth directions [30,39],
but the cubic SOI v3 is strongly altered between the two
cases, yielding an order of magnitude larger ZFS when
xk½110�. This enhancement can be explained by consider-
ing that the cubic SOI is a higher-order correction that
involves more subbands, making v3 more sensitive to the
growth direction and to the design of the QD. This finding
stresses once again that the ZFS in hole QDs is induced by

(a) (b)

FIG. 2. Anisotropic exchange interactions in Ge. (a) Exchange splitting J and ZFSs D and E in a Ge square NW with side length
L ¼ 10 nm and compressive strain ϵzz ¼ −0.5%, as a function of QD length Lz for Ex ¼ 5 V=μm; the analytical results of the
corresponding quantities are shown in dashed lines. Here the QD length is defined as Lz ¼ ðm�γ1=meÞ1=4lz ≈ lz, where me=γ1 is the
averaged hole mass with me being the electron mass and γ1 is a Luttinger parameter [72,74]. (b) ZFSs as a function of electric field Ex
for Lz ¼ 12 nm. Inset: enlargement at small electric fields, where the main anisotropy axis changes from the wire axis (z) to the
SOI axis (y).
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the cubic SOI v3 and that there is no direct relation between
the ZFS and the linear SOI v.
Conclusions.—We presented a simple analytical model

explaining the large anomalous triplet splitting at zero
magnetic field, emerging in QDs occupied by two holes
and shedding some light on recent experimental findings
[48]. We related the ZFS to a cubic SOI that is externally
tunable by electric fields and can be engineered by the
design of the QD. In striking contrast to linear SOI effects,
the ZFS is found to depend significantly on the growth
direction not only in Si but also in Ge QDs, where such
anisotropic effects are typically small [8,30]. The SOI-
induced ZFS is also found to be orders of magnitude larger
than short-range corrections to the Coulomb interaction, an
alternative mechanism for the ZFS of triplet states. While
our analytical model focuses on doubly occupied long
QDs, our findings are also valid in two tunnel-coupled
QDs, the main building blocks of current spin-based
quantum processors, and thus our work has deep implica-
tions for the design of future scalable quantum computing
architectures with hole spin qubits.
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