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We study the energy spectrum of moiré systems under a uniform magnetic field. The superlattice
potential generally broadens Landau levels into Chern bands with finite bandwidth. However, we find that
these Chern bands become flat at a discrete set of magnetic fields which we dub “magic zeros.” The flat
band subspace is generally different from the Landau level subspace in the absence of the moiré
superlattice. By developing a semiclassical quantization method and taking account of superlattice induced
Bragg reflection, we prove that magic zeros arise from the simultaneous quantization of two distinct
k-space orbits. For instance, we show the chiral model of TBG has flat bands at special fields for any twist
angle in the nth Landau level for jnj > 1. The flat bands at magic zeros provide a new setting for exploring
crystalline fractional quantum Hall physics.
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The advent ofmoirématerials has opened a new regime for
the study of Bloch electrons under a magnetic field [1–5].
Moiré materials feature a superlattice period that is much
larger than the atomic spacing and can be comparable to the
magnetic length at B ¼ 1 T (26 nm). Moreover, the super-
lattice potential that creates minibands is weak and slowly
varying. As a result of both features, the interplay between
Landau quantization and superlattice potential can give rise
to a complex energy spectrum and novel quantum phenom-
ena not found in ordinary solids [6–14].
In this work, we study the energy spectrum of two-

dimensional moiré materials under a magnetic field B. Our
work mainly focuses on the case of a superlattice potential
not too strong relative to bandwidth such that the corre-
sponding moiré bands can be treated by nearly free electron
approximation. The energy spectrum as a function of
magnetic field displays three distinct regimes. At very
small magnetic fields, a set of Landau levels (LLs) arise
from the standard semiclassical quantization [15] of cylo-
tron orbits that follow the constant energy contour of moiré
bands. In the opposite limit of very large fields, a different
set of LLs which come from “free” electrons without moiré
effects are recovered. In the wide range of intermediate
magnetic fields, the competition between magnetic break-
down and superlattice induced Bragg reflection at the mini
Brillouin zone boundary leads to a new type of energy
spectrum with remarkable universal features, which is the
main finding of this work.
We develop a general method to calculate the Landau

spectrum on the moiré superlattice. We show that at
intermediate magnetic fields, the LLs of free electrons
are generally broadened by Bragg scattering off the moiré
superlattice, or in a complementary way, the LLs of Bloch
electrons are broadened by magnetic breakdown near the
mini Brillouin zone boundary. Remarkably, flat bands are

found at a discrete set of magnetic fields, which we dub
“magic zeros.” Plotted in the ðB; μÞ plane, where μ is the
chemical potential, each zero occurs at the intersection of
two fictitious LL fans, corresponding to the simultaneous
quantization of two distinct k-space orbits. The correspond-
ing density of states divergence predicted by our theory
directly manifests as a peak in the compressibility dn=dμ.
Alternatively, LL widths can be measured directly by STM
[12] and inferred from inter-LL optical transitions [16]. One
application is chiral twisted bilayer graphene (TBG), which
we find has magic zeros in LLs for jnj > 1 at all twist angles
and not just the discrete set of magic angles [17].
Importantly, we show the existence of these flat bands is

robust and not limited to the particular known case of
Schrödinger or Dirac LLs perturbed by a weak potential
V0 ≪ ωc (with ωc the cyclotron frequency) [18]. In
contrast, our theory of magic zeros is nonperturbative in
V0=ωc and applicable to generic energy dispersions. We
show the flat band at a magic zero spans a Hilbert space that
is generally distinct from the LL subspace of free electrons.
The physics of flat bands at magic zeros contrasts and
complements the broadening and Hofstadter-type splitting
of LLs at generic B fields.
We consider a two-dimensional Bloch electron in a

uniform magnetic field

H ¼ H0ðp − eAÞ þ VðrÞ; ð1Þ
where H0ðpÞ denotes the energy dispersion in the absence
of the moiré superlattice and A is the vector potential.

VðrÞ ¼
X
q

VðqÞeiq·r þ c:c: ð2Þ

denotes a periodic moiré potential (ℏ ¼ 1). As the super-
lattice potential in moiré materials is slowly varying, VðrÞ
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is well approximated as a sum of a few lowest leading
harmonics.
Depending on the form of H0 and V, H describes a wide

variety of moiré materials. In the case of semiconductor
transition metal dichalcogenide (TMD) heterostructures
such as WSe2=WS2, H0ðpÞ ¼ p2=2m where m is the
effective mass near the band edge of TMD monolayer,
and the triangular symmetric potential VðrÞ is composed of
three Fourier components of equal magnitude at wave
vectors related by symmetry [19]. In the case of graphene
on a one-dimensional patterned dielectric superlattice,
H0ðpÞ ¼ vp · σ is the Dirac Hamiltonian of graphene,
and VðrÞ ¼ V0 cosðqxÞ involves a single wave vector only
[6]. In both cases, the periodic potential VðrÞ results in
minibands, as manifested in resistive peaks at commensu-
rate densities. Under a magnetic field, transport measure-
ments observed complex patterns in the LL spectra.
The first indication of magic zeros can be found in the

regime where the superlattice potential strength is smaller
than the cyclotron energy ωc of free electrons [18]. In this
perturbative regime, VðrÞ lifts the infinite degeneracy
within a LL. The projection of periodic potential into
the nth LL of Schrödinger electrons can then be written
[18,20] (choosing symmetric gauge A ¼ 1

2
B × r)

Veff
n ¼

X
q

VðqÞe−q2l2B=4Lnðq2l2B=2Þeiq·ð−π̃y;π̃xÞl2B ; ð3Þ

where lB ¼ 1=
ffiffiffiffiffiffi
eB

p
is the magnetic length, π̃ ¼ pþ eA,

and Ln is the nth Laguerre polynomial. Note
½π̃x; π̃y� ¼ −ieB. Notably, when all wave vectors are of
equal magnitude q, the LL projected potential in Eq. (3)
vanishes at n values of qlB due to the Laguerre polynomial
zeros, leading to a flat Chern band despite the presence of
periodic potential. In the case of Dirac electrons, the nth LL
wave function is a two-component spinor and the projected
potential is given by [21] Ṽeff

n ¼ ðVeff
jnj þ Veff

jnj−1Þ=2 for

n ≠ 0. Zeros occur in this case as well. Magic zeros for
the first few LLs are listed in Table I, and the perturbative
spectrum for a sixfold symmetric potential is shown in
Figs. 1(c) and 1(d).

Remarkably, we find that the magic zeros persist beyond
the perturbative regime, as indicated by the exact diagonal-
ization (ED) of the energy spectrum of Eq. (1) in Figs. 1(a)
and 1(b) for the case of a potentialV0 cosðqxÞ. At the density
of states (DOS) peaks shown, the bandwidth is zero within
numerical accuracy, even in the regime V0=ωc ∼ 3. This
result is truly all-orders in V0=ωc, as indicated by the
following: (i) magic zeros deviate from the Laguerre poly-
nomial zeros and (ii) the wave function at the zeros differs
from the LL wave function at VðrÞ ¼ 0 (see Supplemental
Material [22]).
In order to uncover the origin of these zeros, we develop

a semiclassical approach which places no restrictions on
V0=ωc. Moreover, this approach does not rely on a specific
form of energy dispersionH0ðpÞ, and thus is applicable to a
wider range of systems, such as bilayer graphene with
trigonal warping. The starting point for the semiclassics is
to consider a Bloch wave packet whose position and
momentum are governed by the equations

_p ¼ −e_r × B; _r ¼ ∇EðpÞ; ð4Þ

where EðpÞ is the energy dispersion including the effect of
the periodic potential.

5 10 15 20 25 30
B (T)

150

200

250

300

350

E
 (

m
eV

)

(a)

5 10 15 20 25 30
B (T)

5

10

15

20

25

30

35

40

45

50

E
 (

m
eV

)

(c) (d)

(b)

FIG. 1. DOS in a periodic potential and magnetic field for
Schrödinger (a),(c) and Dirac (b),(d) electrons. A few prominent
magic zeros are circled, robust features where the bandwidth
vanishes. (a),(b) Exact diagonalization for a 1D periodic potential.
(c),(d) Perturbative results for a 2D sixfold symmetric potential.
Parameters: (a) V0 ¼ 15 meV, m� ¼ 0.2me, (b) V0 ¼ 70 meV,
v ¼ 106 m=s, (c) V0 ¼ 4 meV, m� ¼ 0.2me, (d) V0 ¼ 25 meV,
v ¼ 106 m=s. Period a ¼ 13 nm.

TABLE I. Values of qlB for which the nth LL has zero
bandwidth for weak potential, where q is the potential wave
vector and lB the magnetic length, for Schrödinger and Dirac
electrons. The nth level exhibits jnj magic zeros.

jnj qlB (Schrödinger case) qlB (Dirac case)

1
ffiffiffi
2

p
2

2 1.08, 2.61 1.24, 3.24
3 0.91, 2.14, 3.55 0.99, 2.36, 4.18
4 0.80, 1.87, 3.01, 4.34 0.86, 2, 3.26, 4.96
5 0.73, 1.68, 2.68, 3.77, 5.03 0.76, 1.77, 2.84, 4.03, 5.65
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When the potential VðrÞ is absent, electrons at an energy
ε follow the original Fermi surface H0ðpÞ ¼ ε. When the
potential is strong, electrons follow the reconstructed Fermi
surface EðpÞ ¼ εwhere p lies in the mini Brillouin zone. In
both cases, semiclassical quantization predicts infinitely
degenerate LLs whenever the real-space orbits, which are
simply p-space orbits rotated by π=2 and scaled by 1=B,
enclose integer flux [15].
In between these two limits, magnetic breakdown

[23–25] broadens the LLs. Let us consider an intersection
of two original Fermi surfaces at the first Bragg plane in the
repeated-zone scheme. In a magnetic field, there are two
incoming and two outgoing electron wave packets. Thus
we may treat the intersection as a two-level Landau-Zener
system with a scattering matrix U. When B is sufficiently
small, electrons follow on the reconstructed Fermi surface
and occasionally breakthrough, and U is mainly diagonal.
When B is large, electrons follow the original Fermi surface
and occasionally Bragg scatter, soU is mainly off-diagonal.
In general, the scattering matrix takes the form

U ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1 − P
p

e−iφ̃S −
ffiffiffiffi
P

p
ffiffiffiffi
P

p ffiffiffiffiffiffiffiffiffiffiffi
1 − P

p
eiφ̃S

�
; ð5Þ

where the magnetic breakdown probability is

P ¼ e−2π=δ; δ ¼ 16eBv1v2 sin α=E2
gap; ð6Þ

v1 and v2 are incoming electron velocities which differ
by an angle α, Egap ¼ 2V0 is the band gap at the Bragg
plane, and φ̃S ¼ φS − π=2 with φS ¼ π=4 − ðln δþ 1Þ=δþ
argΓð1 − i=δÞ, the so-called Stokes phase [23,26] (see
Supplemental Material [22]). We note e−iφ̃S only depends
weakly on δ, interpolating between i and i1=2. Equations (5)
and (6) are derived using the nearly free electron approxi-
mation assuming that the effect of the potential on the band
structure is only significant near theBrillouin zone boundary.
Note thatP goes to zero quickly at low fields and approaches
1 at high fields.
In the case of parabolic bands, δ reduces to 8εωc sinα=V2

0.
For bilayer TMDs with ε ∼ 20 to 40 meV, q ∼ kF (kF is the
Fermi wave vector), andωc ∼ 2 meV at 10 T,P ∼ 0.1 to 0.3.
For graphene in a 1D potential [6], taking V0a=vF ∼ 1 to 10,
a ∼ 50 nm, q ∼ kF, and B ∼ 10 T gives P ∼ 0.01 to 0.95.
Evidently, realistic values ofP inmoiré materials require that
the effects of magnetic breakdown are properly taken into
account.
To properly account for magnetic breakdown, we con-

sider a network model comprised of the original Fermi
surfaces in the repeated zone scheme where wave packet
motion away from the intersections is free-electron-like
while scattering at the intersections is given by the Landau-
Zener unitaryU. Let us first consider networks in which the
neighboring Fermi surface intersects at two points as in
Fig. 2(a). This is similar in spirit to models considered by

Pippard [27,28]; we refer to [29–31] for other examples of
network model constructions. We refer to the original
Fermi surfaces defined by H0ðpÞ ¼ ε as the “original
orbit” and their intersection as the “lens orbit.”
To understand the magic zero condition in the semi-

classical approach, it is instructive to consider the scattering
matrix across a lens orbit, which is given by

W ¼ 1

ð1 − PÞeiðξ1þξ2þ2φ̃SÞ − 1

�
Peiξ1 κ

κ Peiξ2

�
; ð7aÞ

κ ¼ e−iφ̃S
ffiffiffiffiffiffiffiffiffiffiffi
1 − P

p
ðeiðξ1þξ2þ2φ̃SÞ − 1Þ; ð7bÞ

where ξ1, ξ2 are thephases acquired along the links of the lens
orbit.W describes scattering between incoming andoutgoing
states across the lens orbit. When W is diagonal, incoming
states scatter into outgoing states in the same zone.
We note that when ξ1 þ ξ2 þ 2φ̃S is an integer multiple

of 2π, W is diagonal, indicating the decoupling of neigh-
boring orbits in the network. This is reminiscent of
constructive interference in a Fabry-Pérot optical cavity
[8,32], where the lens orbit plays the role of the cavity. The
decoupled orbits are valid eigenstates when the phase
around the original orbit is an integer multiple of 2π.
Under these conditions, the network model supports an
extensive set of states which are localized and dispersion-
less, i.e., a flat band.
In brief, the flat band conditions, in terms of the

phases shown in Fig. 2(a), are
P

ξi þ 2φ̃S ∈ 2πZ andPðξi þ χiÞ ∈ 2πZ. The phases satisfy

X
orig:

ξi þ χi ¼ l2BS0 þ 2πγ;
X
lens

ξi ¼ l2BS1 þ 2πγ; ð8Þ

where S0, S1 are the p-space areas of the original and lens
orbits, respectively. We have added the topological Maslov
contribution γ ¼ 1=2 − φBerry=2π which is customary in

(a) (b)

FIG. 2. (a) Fermi surface in the repeated zone scheme in the
presence of a 1D potential V0 cosðqxÞ. The network model
(dashed lines) involves scattering at intersections and phases
picked up on links. (b) Intersecting Landau fans due to the
original orbit (dashed lines) and lens orbit (blue), and semi-
classical DOS (density plot) with V0 ¼ 0.4, q ¼ 2, m ¼ 1.
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semiclassical treatments for closed orbits deformable to a
circle [33–36], with Schrödinger and Dirac electrons
having γ ¼ 1=2 and 0, respectively. φBerry is the Berry
phase along the orbit.
Combining the above conditions, we find that bandwidth

zeros occur at the intersection of the two Landau fans
given by

l2BS0 ¼ 2πðnþ γÞ; ð9aÞ

l2BS1 ¼ 2πðmþ γ − φ̃S=πÞ; ð9bÞ

for suitable integers m, n. These equations stipulate that
both the original and lens orbits enclose integer flux, up to
the Stokes phase and Maslov correction. The magic zero
conditions, i.e., Eq. (9), can be roughly thought of as Bohr-
Sommerfeld quantization conditions for both the original
and lens orbits. In general, a sufficient condition for magic
zeros is a Fermi contour with only two relevant independent
semiclassical electron orbits (with other orbit areas integer
linear combinations of these). For circular Fermi surfaces,
these two areas are

S0 ¼ πk2F; S1 ¼ 2k2Fðcos−1x − x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
Þ; ð10Þ

where x ¼ q=2kF. For this case the intersecting Landau
fans are shown in Fig. 2(b).
In the large n and weak potential limit, the semiclassi-

cal and perturbative approaches are expected to agree.
Equation (10) and Eq. (9a) give k2F ¼ 2ðnþ γÞ=l2B.
Applying this to Eqs. (9b) and (10) and noting φ̃S=π →
−1=4 at weak potential, the values of qlB at which the nth
LL has a magic zero are given by

qlB ¼ πðn −m − 1=4Þffiffiffiffiffiffi
2n

p þOðn−1Þ ð11Þ

for integersm, n. In the perturbative regime, Eq. (3) implies
that these are the zeros of Lnðq2l2B=2Þ. Indeed, by applying
the large n formula [37]

e−
q2l2

B
4 Lnðq2l2B=2Þ ¼

cosð ffiffiffiffiffiffi
2n

p
qlB − π

4
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πqlB
ffiffiffiffiffiffiffiffi
n=2

pq þOðn−3
4Þ; ð12Þ

we see that these magic zero conditions derived independ-
ently are identical. We remark that the phenomenon ofWeiss
oscillations [8,18,38–41]—superlattice induced magneto-
resistance oscillations—is naturally captured by the
semiclassical approach in this regime (see Supplemental
Material [22]).
So far we have only discussed magic zeros, but the

networkmodel also allowsus to calculate thebanddispersion
at generic fields using a transfer matrix approach. For the
network in Fig. 2 due to a 1D potential (we defer discussion

of the 2D case), the transfer matrix eigenvalues e�iθ satisfy
the relation

cos θ ¼ sinðξþ χÞ þ ð1 − PÞ sinðξ − χ þ 2φ̃SÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − P

p
sinðξþ φ̃SÞ

; ð13Þ

where a gauge choice such that ξ1 ¼ ξ2 ¼ ξ and χ1 ¼ χ2 ¼ χ
has been made. The resulting semiclassical spectrum is
shown in Fig. 2(b). We show the quantitative agreement
with ED in the Supplemental Material [22]. The LLs
alternately broaden and pinch off at magic zeros, and the
corresponding DOS divergences directly manifest as peaks
in compressibility dn=dμ [see, e.g., Fig. 3(b) and the
Supplemental Material [22] ]. Importantly, we have placed
no restrictions on V0=ωc, so our results are all orders in
conventional perturbation theory. Moreover, our treatment
did not depend on the precise energy dispersion, and a
different dispersion would only alter geometric details such
as Fermi surface areas and link phases. The existence of
magic zeros, which is our main focus, is robust to all these
details.
So far we have assumed the Fermi surface intersects only

a single pair of Bragg planes at �qx̂=2. In moiré materials
made of highly doped semiconductors or metals, however,
VðrÞ may have a small wave vector compared to the size of
the Fermi surface, resulting in a network many overlaps. An
important simplification is that the gaps at the intersections
form a distinct hierarchy with Enth

gap ∼ Vn
0=ðvFkFÞn−1 at

an nth order Bragg plane. Therefore P has a double-
exponential dependence on n and only a few crossings
are active, with the rest completely avoided (P ¼ 0) or
trivial (P ¼ 1). The simplest scenario is when only
the intersections at the first-order Bragg plane are active.
From Eq. (6), for the parabolic case this requires
V4
0=ðvFkFÞ3 ≪ ωc sin α2, V2

0=vFkF ≪ωc sin α1 where αj
is the intersection angle at the jth Bragg plane (and α1 ≈ α2
when intersections are close together). In this “first-order
regime" [42], the network model maps exactly back onto

2 4 6 8
n (10   cm  )12 -2

(a) (b) dn/dµ

FIG. 3. (a) DOS for chiral limit TBG with V0 ¼ 30 meV, v ¼
106 m=s at θ ¼ 1.1°. Zeros exist at any twist angle. (b) Non-
interacting compressibility as a function of density and B at
T ¼ 0.2 meV. Magic zeros are dark features of high compress-
ibility occurring over a finite range of n.
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the simplest case of a single intersection, Fig. 2(a).
Therefore the DOS plot is the same as before, albeit with
a slightly restricted regime of validity.
Let us discuss the extension to 2D potentials, such as a

triangular lattice potential. Strictly speaking, the network
model approach is only valid when φ, the number of flux
quanta per real-space unit cell, is a rational number p=q;
then the network unit cell is enlarged by a factor of p and
each LL contains p subbands (for coprime p, q) [28].
However, if the enlarged unit cell consists of only original
and lens orbits, they decouple when W becomes diagonal,
and the flux at a magic zero can be approximated arbitrarily
well by a rational φ. Thus magic zeros arise in this case
with identical conditions. When the network topology has
overlapping lens orbits, we conjecture that magic zeros still
arise (see Supplemental Material [22]). For magic zeros to
arise, the lens orbits of the network model must have equal
areas, which requires wave vectors of equal magnitude.
This is consistent with the perturbative result of Eq. (3).
We underscore a few necessary conditions for magic

zeros which are frequently satisfied in moiré materials: (i) a
superlattice potential consisting of equal-magnitude wave
vectors must be present, (ii) the Fermi surface must be
invariant under the rotational symmetry of the potential,
and (iii) the potential is not so strong as to significantly
restructure the band structure. Perturbations which would
broaden magic zeros include higher order harmonics,
strain, or anisotropic dispersions.
A natural question is whether TBG [43,44] exhibits magic

zeros. While our theory based on a scalar moiré potential
does not apply directly, we findmagic zeros exist in the chiral
limit [17] at any twist angle; we plot the noninteracting
perturbative DOS and compressibility in Fig. 3 and include
details in the Supplemental Material [22].
The flatChernband atmagic zeros provides an ideal setting

for realizing fractional quantum Hall (FQH) states and other
novel states at fractional fillings. For instance, the increased
bandwidth away from magic zeros weakens the Laughlin
state and may induce a transition into metallic states or
electron crystals. We leave these directions to future work.
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