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The microscopic origin of chirality, possible electric-field induced static rotational lattice deformation,
and rotation-field induced electric polarization are investigated. By building up a realistic tight-binding
model for the elemental Te crystal in terms of a symmetry-adapted basis, we identify the microscopic origin
of the chirality and essential couplings among polar and axial vectors with the same time-reversal
properties. Based on this microscopic model, we elucidate quantitatively that an interband process, driven
by nearest-neighbor spin-dependent imaginary hopping, is the key factor in the electric-field induced
rotation and its inverse response. From the symmetry point of view, these couplings and responses are
characteristic and common to any chiral material, leading to a possible experimental approach to achieve
absolute enantioselection by simultaneously applied electric and rotation fields, or a magnetic field and
electric current, and so on, as a conjugate field of the chirality.
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Introduction.—Chirality is three-dimensional geometric
property exhibiting ubiquitously in nature. Handedness
or enantiomer in chiral materials is characterized by a
quantity having a time-reversal T -even pseudoscalar
(spatial-inversion P odd) property [1,2], whose sign
corresponds to left or right handedness. This significant
quantity in chiral materials, however, has not fully been
understood at the microscopic level. Thus, clarifying the
microscopic origin of a T -even pseudoscalar inherent
in chiral materials is essential to unveiling the heart of
chirality and to achieving absolute enantioselection in
chiral materials.
In this Letter, we begin with an introductory discussion

of the features of T -even pseudoscalar and important
coupling to it based on the symmetry argument. Then,
to confirm the existence of the coupling, we quantitatively
investigate the expected responses by using the specific
microscopic model of the elemental Te crystal. Lastly, we
propose a possible experimental approach to realize abso-
lute enantioselection in chiral materials, by the external
fields that are accessible to the T -even pseudoscalar via the
elucidated coupling.
Chirality and related quantities.—The T -even pseudo-

scalar has the same symmetry properties of the inner
product of polar and axial vectors with the same T
property. This is clearly discussed by the concept of
electronic multipole basis [3–6]. Namely, a T -even pseu-
doscalar corresponds to an electric toroidal (ET) monopole
G0 with ðP; T Þ ¼ ð−;þÞ, which is an “order parameter”
of the chirality since it becomes the totally symmetric
irreducible representation (IR) when a system belongs to
a crystallographic point group with proper rotations only
(see Table XVI in Ref. [4]). Since an inner product of a
magnetic (M) dipole M, ðP; T Þ ¼ ðþ;−Þ, and magnetic

toroidal (MT) dipole T, (P; T Þ ¼ ð−;−Þ belongs to the
same IR of G0, there can exist an invariant coupling,

gG0ðT ·MÞ; ð1Þ

in the sense of Landau free energy, where g is a coupling
constant. As an electric current J induces its conjugate
quantity T, it also induces M through Eq. (1) in a chiral
system with active G0. Indeed, the current-induced optical
activity [7] and the kinetic magnetoelectric (Edelstein)
effect [8,9] were proposed and observed in the elemental
Te crystal [10–12]. Similarly, the k-space representation of
G0 [4], i.e., k · σ, brings about the hedgehog spin texture
observed around the H point of the Brillouin zone in
Te [13,14].
An ET monopole G0 can couple with in another way:

g0G0ðQ · GÞ; ð2Þ

where Q is an electric (E) dipole, ðP; T Þ ¼ ð−;þÞ, such as
a position vector R, while G represents an ET dipole with
ðP; T Þ ¼ ðþ;þÞ [4]. Equation (2) implies that a G-flux
structure exists in chiral crystals as shown in Fig. 1(a), and
the direction of the fluxes characterizes the handedness.
Note that the G vector solely acts as the order parameter
of the recently discovered ferro-axial (rotational) order in
RbFeðMoO4Þ2 [15] and BaTiO3 [16], and the antiferroaxial
ordering in BaðTiOÞCu4ðPO4Þ4 [17]. The rotational-
ordered systems are closely related to chiral systems
through Eq. (2).
Since a classical representation of G is given by a

vortexlike alignment of E dipoles Q as shown in Fig. 1(b),
its conjugate field is a rotation of the electric field,
ωE ¼ ∇ × E, which is equivalent to the time-dependent
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magnetic field through Maxwell’s equation. Moreover,
from the symmetry property of G, a static rotational
lattice deformation ω ¼ ∇ × u (u is a displacement
vector of atoms) could be an alternative conjugate field
to G, provided a proper electron-lattice coupling. From
this relation, G is also significant in the transverse rota-
tional phonon modes in both achiral [18–20] and chiral
crystals [21–23].
As discussed above, there exists a third-order coupling in

the free energy as shown in Fig. 1(c):

Fð3Þ ¼ g⊥G
ð1Þ
0 ðGxQx þ GyQyÞ þ gzG

ð2Þ
0 GzQz; ð3Þ

where the coupling constants satisfy gz ¼ g⊥ in cubic
crystals; otherwise gz ≠ g⊥ (z is along the screw axis).

Here, Gð1Þ
0 and Gð2Þ

0 can be independent ET monopoles in
general, and a coupling only with the vector product of
electric degrees of freedom as Eq. (2) is written for
simplicity. This coupling gives rise to a conversion from
a polar field such as the electric field or temperature
gradient into an axial response such as a static rotational
lattice deformation, and vice versa. In other words, an
electric-field induced rotation (EIR) and its inverse
response, i.e., a rotation-field induced electric polarization
(RIP), could appear in chiral crystals. Note that one can
apply a rotational lattice deformation by using a transverse
ultrasonic wave as it generates both the strain and rotation
fields. The RIP (called rotoelectricity there) was already
predicted by Gopalan and Litvin based on the symmetry
argument [24]; however, its origin and the connection to the
chirality remain unclear at the microscopic level. It should
also be emphasized that the present EIR (static rotational
deformation) is qualitatively different from a heat-current
or electric-field induced phonon angular momentum, i.e.,
dynamical (time-reversal broken) lattice rotation, predicted
by Hamada et al. [25,26].

In what follows, we elucidate the microscopic origin of
G0 and related responses, EIR and RIP, by taking Te as a
specific example. First, we construct the realistic tight-
binding (TB) model of Te by using the results of the
density-functional (DF) calculation. Since the obtained TB
model is expressed in terms of the symmetry-adapted
electronic multipole basis, we can easily identify the
microscopic origin of G0 and evaluate the relevant cou-
plings to it quantitatively. We then propose a possible
experimental approach to achieve absolute enantioselec-
tion, keeping the coupling, Eq. (3), in mind.
Tight-binding model for Te.—Let us first consider the

specific TB model for Te. As shown in Fig. 2(a), the bulk
Te crystal consists of the threefold-symmetric helical
chains, which contain A, B, and C sublattices in a unit
cell as shown in Fig. 2(b). The space group of the right- and
left-handed Te are P3121 (#152,D4

3) and P3221 (#154,D
6
3),

respectively. Hereafter, we focus on the right-handed Te.
The lattice constants are a ¼ 4.458 Å and c ¼ 5.925 Å,
and the relaxed value is u ¼ r=a ¼ 0.274 for the dimen-
sionless helix parameter [27], where r denotes the radius of
the helix.
Since the electronic states near the band edges (Fermi

level) in Te mainly consist of three p orbitals, px, py,
and pz [28], we consider the spinful TB Hamiltonian in an
18 × 18 matrix. The TB Hamiltonian is constructed by
using the symmetry-adapted multipole basis Zα [4–6] as
H ¼ P

α zαZα, where Zα are the independent multipole
basis satisfying the orthonormalization, TrðZαZβÞ ¼ δαβ.
Note that each Zα belongs to the totally symmetric IR of
D4

3, i.e., A1, and it is expressed by the direct product of the
cluster or bond basis [29,30] and atomic basis as shown
later [31,32]. They are generated automatically by the
symbolic computation with symmetry operations [33].
Then, the coefficients zα (ΔQ

i ; λ
Q
i ; t

Q
i ; α

Q
i ;…) are deter-

mined so as to reproduce the band dispersions obtained by
the DF calculation with the help of the machine-learning

FIG. 2. (a) Crystal structure of the right-handed Te. (b) A unit
cell contains A, B, and C sublattices along a helical chain.
(c) First Brillouin zone of Te. (d) The comparison of the band
dispersion between our TB model and DF calculation. The Fermi
energy is taken as the origin, and the blue shaded area represents
the insulating gap.

FIG. 1. (a) ET monopole G0 in terms of the flux structure of the
ET dipoles G, whose direction determines the handedness of the
chirality. (b) Classical view of the ET dipole, which is a vortexlike
alignment of the E dipoles Q. (c) The essential coupling existing
in chiral crystals. The conjugate fields of G and Q are given in the
parentheses.
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technique [33–37]. In this model construction, terms
containing G0 are particularly important.
The constructed TB Hamiltonian is expressed as

H0 ¼ HCEF þHSOC þP
8
i¼1H

ðiÞ
t , where HCEF and HSOC

are the crystalline electric field (CEF) and spin-orbit

coupling (SOC) within the unit cell, and HðiÞ
t is the ith

neighbor hopping term. By taking up to the 8th neighbors,
we achieved an accuracy less than 10−4 of the mean
squared error between the normalized energy eigenvalues
of our TB model and the DF result [33]. The comparison of
the energy dispersions is shown in Fig. 2(d). We have also
confirmed that the orbital and spin characters of the
obtained electronic states roughly reproduce those obtained
by DF calculation. Eventually, there are 255 independent
parameters zα in total, and 30 parameters are within the
nearest-neighbor (NN) hopping: 4 CEF parameters, 5 SOC
parameters, and 21 NN intrachain hopping parameters [33].
Among these multipole bases, the most dominant

contributions containing the ET monopole are GðcaÞ
0⊥ in

HSOC and GðbaÞ
0z , GðbaÞ

0⊥ in Hð1Þ
t , which are given by (see the

Supplemental Material for details [33])

GðcaÞ
0⊥ ¼ 1ffiffiffi

2
p ðQðcÞ

x ⊗ GðaÞ
x þQðcÞ

y ⊗ GðaÞ
y Þ; ð4Þ

GðbaÞ
0z ¼ TðbÞ

z ⊗ σðaÞz ; ð5Þ

GðbaÞ
0⊥ ¼ 1ffiffiffi

2
p ðTðbÞ

x ⊗ σðaÞx þ TðbÞ
y ⊗ σðaÞy Þ; ð6Þ

where the superscripts (c, b, and a) represent cluster, bond,

and atomic basis, respectively. The weight of GðcaÞ
0⊥ is λG1 ¼

1.718 eV which is the most dominant contribution among

HCEF þHSOC, and that of G
ðbaÞ
0z is αG2 ¼ 1.749 eV which is

the most dominant contribution among the ET monopoles

in HðtÞ
t , while that of GðbaÞ

0⊥ is αG3 ¼ 0.5854 eV. Note that

GðcaÞ
0z does not appear because the z component of the E

dipoleQðcÞ
z identically vanishes in the present Hilbert space

[33]. We have confirmed that the magnitude of the
parameters decreases for further neighbor hoppings [33].
Here, GðaÞ ¼ l × σ is the atomic ET dipole (l and σ are the
dimensionless orbital and half of spin angular momenta,

respectively).QðcÞ
μ (μ ¼ x, y) and TðbÞ

μ (μ ¼ x, y, z) are the μ
components of the cluster E dipole and bond MT dipole,
which are defined in the ABC sublattice space as

QðcÞ
x ¼ 1ffiffiffi

6
p

0
B@
−1 0 0

0 2 0

0 0 −1

1
CA; QðcÞ

y ¼ 1ffiffiffi
2

p

0
B@
−1 0 0

0 0 0

0 0 1

1
CA;

ð7Þ

QðcÞ
0 ¼ 1ffiffiffi

3
p

0
B@
1 0 0

0 1 0

0 0 1

1
CA; TðbÞ

z ¼ 1ffiffiffi
6

p

0
B@

0 −i i

i 0 −i
−i i 0

1
CA; ð8Þ

TðbÞ
x ¼ 1

2

0
B@
0 −i 0

i 0 i

0 −i 0

1
CA; TðbÞ

y ¼ 1

2
ffiffiffi
3

p

0
B@

0 −i −2i
i 0 −i
2i i 0

1
CA:

ð9Þ

QðcÞ
μ with diagonal elements correspond to the on site

potentials, while TðbÞ
μ with off-diagonal elements represent

an imaginary hopping among A, B, and C sublattices [33].

Although there are also the spinless version of GðbaÞ
0z and

GðbaÞ
0⊥ which are given by replacing σ with l in Eqs. (5) and

(6), the weight of these multipole bases is much smaller
than that for the spinful ones. As shown in Fig. 3(a) and

Eq. (2), GðcaÞ
0⊥ is the local ET monopole having the GðaÞ-flux

structure in the unit cell. On the other hand, GðbaÞ
0z in

Fig. 3(b) is the itinerant ET monopole which is a kind of
SOC with the spin-dependent imaginary hopping. From
Figs. 3(a) and 3(b), the relation between the sign of G0 and

the handedness is apparent. For example, in Fig. 3(b), TðbÞ
z

corresponds to the imaginary hopping directed to the þz
direction for the right-handed system. If we consider the

left-handed system, TðbÞ
z directs to the −z direction, and the

sign of G0 is inverted.
These ET monopoles, GðbaÞ

0z and GðcaÞ
0⊥ , play the roles of

Gð1Þ
0 and Gð2Þ

0 in Eq. (3), respectively. As discussed below,
both of them give dominant contributions to the EIR and

RIP. In addition, the itinerant ET monopoleGðbaÞ
0z is also the

main origin of the Edelstein effect observed in Te [11,12].

Moreover, the Fourier transform of GðbaÞ
0z together with

FIG. 3. Schematic picture of multipole basis for Te. (a) Local

ET monopole, GðcaÞ
0⊥ , (b) itinerant ET monopole, GðbaÞ

0z , and

(c) local E dipole, QðcaÞ
z . (d) The interparity coupling between

the ET dipole GðcaÞ
z and E dipole QðcaÞ

z via GðcaÞ
0⊥ .
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GðbaÞ
0⊥ gives rise to the hedgehog spin texture around the H

point in momentum space [13,14,33].
Electric-field induced rotation.—As already discussed

phenomenologically, a conversion between polar and axial
degrees of freedom is expected to occur in chiral materials
via Eq. (3). To demonstrate it microscopically, we inves-
tigate the electric-field induced ET dipole response based
on the present TB model. Before showing the results, we
define explicitly the local E- and ET-dipole operators that
describe the input and output of the response. The E dipole

QðcaÞ
z is given by the similar expression of Eq. (4) with a

minus sign for the second term, which is schematically

shown in Fig. 3(c), i.e., the vortexlike alignment ofGðaÞ
x and

GðaÞ
y [cf. the roles of G and Q are exchanged in Fig. 1(b)].

The static rotational response is also described by

GðcaÞ
z ¼ QðcÞ

0 ⊗ GðaÞ
z .

Using the Kubo formula, the response function in

GðcaÞ
z ¼ dz;zEz is expressed as (c is the lattice

constant) [33]

dz;z ¼ dPz;z½Q� þ dVVz;z ½Q� þ dVVz;z ½v�; ð10Þ

dPz;z½Q� ¼ ec
N

Xϵnk¼ϵmk

knm

∂fnk
∂ϵnk

Gnm
zk Q

mn
zk ; ð11Þ

dVVz;z ½Q� ¼ ec
N

Xϵnk≠ϵmk

knm

fnk − fmk

ϵnk − ϵmk
Gnm

zk Q
mn
zk ; ð12Þ

dVVz;z ½v� ¼ −
eℏ
iN

Xϵnk≠ϵmk

knm

fnk − fmk

ðϵnk − ϵmkÞ2
Gnm

zk v
mn
zk : ð13Þ

Here, the matrix element of an operator is
Onm

ik ¼ hψnkjÔijψmki, fnk ¼ fðϵnkÞ is the Fermi distribu-
tion function, e ð> 0Þ is the elementary charge, andN is the
number of lattice sites. The responses dPz;z and dVVz;z
represent the intraband Pauli contribution proportional to
the density of states (DOS), and interband van Vleck
contributions, respectively. [Q] and [v] indicate the con-
tributions arising from the local E dipole and itinerant
hopping process via the velocity operator vk ¼ ∂H0=∂ℏk,
respectively. Note that dPz;z½v� vanishes identically due to the
time-reversal symmetry. We have used N ¼ 643 and the
temperature T ¼ 0.01 eV in the following results.
Figure 4(a) shows the chemical potential μ dependence

of the responses. The interband contribution from the
itinerant hopping process dVVz;z ½v� is always dominant
irrespective of μ, and the EIR occurs even in the insulator.
Note that the EIR and RIP could occur in any chiral
insulators, which are qualitatively different from the kinetic
magnetoelectric (Edelstein) effect expected only in metals
due to its intraband origin. Analyzing the essential param-
eters to exhibit the finite response dz;z [32], it turns out that

the lowest order of the response is proportional to the

highest-weight term GðbaÞ
0z of H0 with the coefficient αG2

[33]. This is consistent with the fact that dVVz;z ½v� is dominant
in the numerical result. Thus, the itinerant ET monopole

GðbaÞ
0z is the key component of the EIR response in Te. Note

that the inverse RIP process is also expected to occur in
both metals and insulators, as their response functions are
common with Eqs. (11) and (12).
Although we have concentrated on the electronic

responses above, the actual rotational lattice deformation
should occur via the electron-lattice coupling. When
we restrict our discussion to a rotational lattice deforma-
tion with the angle ωz with respect to the z screw axis,
the electron-lattice coupling can be evaluated by
rotating inversely the electronic system by the angle

−ωz [38–40]. Namely, HðzÞ
el-rot ¼ e−ij

ðcaÞ
z ωzH0eij

ðcaÞ
z ωz −H0 ¼

i½H0;j
ðcaÞ
z �ωzþ�� �, where jðcaÞz ¼ QðcÞ

0 ⊗ ðlz þ σz=2Þ is the
total angular momentum. We find the most important

contribution from the λG1G
ðcaÞ
0⊥ term in H0 as

HðzÞ
el-rot ∼ λG1Q

ðcaÞ
z ωz; ð14Þ

with λG1 ¼ 1.718 eV. Similarly, the perpendicular compo-
nents are obtained, and they are a factor 1=

ffiffiffi
2

p
smaller

than HðzÞ
el-rot. This term directly causes the electric polari-

zation by applying a lattice rotation field with the use of
transverse ultrasound wave for instance.
The induced electronic ET dipole can also be observed

by the spin-current measurement. When the induced ET
dipole by the electric field Ez is present, two types of

nonlinear spin currents are expected: JzðsÞz ¼ σzðsÞz;zzE2
z and

JzðsÞy ¼ σzðsÞy;yzEyEz, where JνðsÞμ ≡ ðJμσν þ σνJμÞ=2 is the
spin current operator where Jμ is the electric current

FIG. 4. (a) Chemical potential μ dependence of dPz;z and dVVz;z
with Eqs. (11), (12), and (13) at T ¼ 0.01 eV, and N ¼ 643. The
inset shows the enlarged plot near the Fermi level. (b) The
electric-field angle dependence of the spin current in the yz plane

J̄zðsÞz ðϕÞ ∝ cos2ðϕÞ and J̄zðsÞy ðϕÞ ∝ sinð2ϕÞ, and the magnetization
due to the Edelstein effect, m̄zðϕÞ ∝ cosðϕÞ. ŌðϕÞ denotes the
normalized value of OðϕÞ by its absolute maximum value.
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operator. As shown in Fig. 4(b), the electric-field angle ϕ

dependences of JνðsÞμ in the yz plane are given by JzðsÞz ðϕÞ ∝
cos2ðϕÞ and JzðsÞy ðϕÞ ∝ sinð2ϕÞ, respectively. Note that
they are in marked contrast to that of the magnetization

due to the Edelstein effect, mzðϕÞ ¼ αðJÞz;zEz ∝ cosðϕÞ.
Thus, the electric-field induced ET dipole is verifiable

by examining the ϕ dependence of JzðsÞz ðϕÞ and JzðsÞy ðϕÞ.
Absolute enantioselection by rotation and electric

fields.—Finally, we propose a possible experimental
approach to achieve absolute enantioselection in chiral
materials, without the use of seed crystals [41]. As was
shown phenomenologically and microscopically, there is a
proper coupling among G0, G, and Q in chiral materials.
The conjugate field of Q is an electric field E and that of G
is a rotation field ω such as a rotation of electric field or
equivalently time-dependent magnetic field. Thus, the
conjugate field of chirality, that is G0, is a product of
polar and axial vector fields, Eμ and ωμ. In the electro-
magnetism, it is known as a quantity called zilch, which
describes optical chirality [42]. Therefore, as shown in
Fig. 5 in the case of μ ¼ z, absolute enantioselection can be
achieved by simultaneous application of electric (Eμ) and
rotation (ωμ) fields for instance. The sign of ωμEμ controls
the preferred handedness during the crystallization process,
as shown in the left-most and right-most panels in Fig. 5. It
should be emphasized that a time-dependent magnetic field
is favorable with the constant time derivative or net
accumulation with a definite sign. In addition to this, both
electric and magnetic fields must be parallel with each
other. Moreover, as was discussed in Eq. (1), G0 could also
couple with MμTμ. Thus, the combined static magnetic
field and time-dependent electric field (i.e., ∇ × B, which is
a conjugate field of Tμ), or the combined static magnetic
field and electric current can be used to achieve absolute
enantioselection as well. This generic approach is appli-
cable to any chiral material.
Summary.—We have unveiled the microscopic origin of

chirality and possible electric-field induced static rotational
lattice deformation and its inverse response, rotation-field
induced electric polarization. First, based on the symmetry,
we have argued that the chirality corresponds to the electric
toroidal monopole, which couples with the G0-type quan-
tities as in Eqs. (1)–(3). Note that their conjugate fields are

the electric and magnetic parts of the optical zilch [42] for
instance. Thus, the essential couplings as in Eqs. (1)–(3),
which arise from the higher-order coupling of our TB
Hamiltonian, are the key elements for both the electric-field
induced rotation and its inverse response. Using the
realistic tight-binding model for the elemental Te crystal,
we have elucidated that an interband process, driven by the
itinerant electric toroidal monopole shown in Fig. 3(b), is
the crucial factor in these response functions. These
responses occur even in the insulators, which is in marked
contrast to the kinetic magnetoelectric (Edelstein) effect
observed in Te. Lastly, we have proposed a generic
experimental approach to realize the absolute enantiose-
lection in chiral materials by the conjugate field of the
chirality, such as simultaneously applied electric and
rotation fields, or the magnetic field and electric current,
and so on. Since the larger magnitude of a coupling
between G0 and its conjugate field is favorable for efficient
achievement of an absolute enantioselection, the quantita-
tive experimental observation of the responses related to the
coupling is crucially important in future development.
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