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We consider the fundamental roles of frequency versus phase in parameter estimation, specifically in the
Sagnac effect. We describe a novel, ultrasensitive gyroscope based on the extremely steep frequency-
dependent gain of a liquid crystal light valve. We provide compelling experimental evidence that the
Doppler shift is fundamental in the Sagnac effect giving clarity to a long-debated question. We
experimentally show orders of magnitude improvement in sensitivity relative to the standard quantum
limit of a gyroscope based on phase estimation.
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The burgeoning field of quantum metrology seeks to find
“quantum advantages” over existing classical measurement
schemes [1–12]. Owing to its importance in gyroscopes [2]
and gravitational wave detection [1,13] as well as its
fundamental nature in all branches of interferometry, phase
estimation beyond the standard quantum limit has been the
prototypical example [1–3,5,7,12]. Pragmatically, due to
loss, quantum phase estimation techniques have, so far,
only offered a few percent improvement over the standard
quantum limit in the few-photon regime [10] or a few dB
improvement in thehighpower regime [9,11].However,what
if phase estimation for a class of experiments is suboptimal?
Depending on the measurement apparatus, phase estimation
may have different fundamental limits than frequency esti-
mation [14]. Here, we demonstrate that by using an ultra-
steep, frequency-dependent gain measurement rather than
performing phase estimation in a passive gyroscope, we can
achieve orders of magnitude improvement below the phase-
estimation standard quantum limit of a single-loop Sagnac
interferometer of the same size. Further, we provide impor-
tant insights into a long-debated question about the role of
Doppler shifts in the Sagnac effect.
Gyroscopes are powerful tools in tests of fundamental

physics, guidance systems, inertial navigation, accelerom-
etry, geodesy, seismology, and geophysics to name a few.
Significant advances in micromechanical [15], atomic
[16–18], chip-based systems [19], and ring laser gyros
[20–25] have been achieved. It may come as a surprise,
then, that there are still open questions about the funda-
mental underpinnings of gyroscopes. For the sake of clarity,
we consider an optical gyroscope to be a system in which a
light source and a detector, in the same reference frame,
rotating at a constant angular speed, can measure the
rotation rate of the system. However, instead of measuring
differential phase shifts, as is typically done, we measure
differential frequency shifts.

The estimation of the rotation speed is closely related to a
long-debated question of the role of Doppler shifts in the
Sagnac effect [26]. In a standard Sagnac interferometer, the
light is split using a beam splitter into two counterpropa-
gating beams that return to the same beam splitter. Special
relativity predicts an in-plane, closed-path relative phase
acquired by the two beams in an optical Sagnac, given by

Δϕ ¼ 8πΩA
λc

; ð1Þ

whereΩ is the angular frequency, A is the gyroscope area, λ
is the wavelength of light, and c is the speed of light.
Hence, once the phase is known, the angular rotation
frequency can be determined. The shot noise limited
rotation sensitivity can then be found by substituting the
standard quantum limit for phase, namely

Δϕ ¼ 1

2
ffiffiffiffi

N
p ; ð2Þ

where N is the number of photons.
An alternative theory is that the Doppler effect is the

fundamental mechanism of the Sagnac effect (see
Ref. [26]). However, Malykin elucidates two reasons
against the use of the Doppler effect [26]. First, in a
closed-loop system, the beam splitter plays both the role of
the emitter and the detector. He states, “...the radiation
source and detector must be in motion relative to each other
if the Doppler effect is to be manifest.” He implies that the
net Doppler shift outside the closed interferometer is zero.
However, we feel this is not a good argument against a
Doppler shift model, since proponents argue that it is the
Doppler shifts between the source and the emitter (leading
to a differential phase) that matter and not what happens
external to the interferometer. We go beyond this assertion
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by exploring symmetry-breaking designs where the detec-
tor is not the same element as the emitter, allowing us to
measure differential frequency shifts even at the detector.
Malykin’s second argument is that if there is a material

medium, a Doppler-shift theory differs from the standard
prediction by a factor of 2n2 where n is the index of
refraction of the material. Even in vacuum, the result still
differs by a factor of 2. The vacuum result is rectified by
proponents of the Doppler effect by using the length of
the interferometer in the interferometer’s frame. However,
Malykin points out that it is inconsistent to assume a
Doppler shift in the lab frame and the loop length in the
rotating frame.
Instead of resolving the theoretical inconsistencies, we

endeavor to show that Doppler shifts do exist within the
system. It is our opinion that measuring the phase alone
leads to ambiguous interpretations. To parse out the role of
the Doppler effect, we need a system that measures only
differential frequency shifts, but cannot measure differ-
ential phase.
For our spectral estimation technique, we incorporate

an ultrasensitive, wave-mixing spectrometer based on an
extremely steep frequency-dependent gain to measure
frequency offsets. We use a liquid crystal light valve
(LCLV) to measure the relative Doppler shift of two
counterpropagating paths, but not the relative phase.
Two-beam interference in the crystal creates a self-induced
index grating from which the beams scatter. The various
scattering orders from the two-beam interference inside an
LCLV can lead to phase-insensitive steep spectral gain
dependence [14] or extremely slow or fast group velocities
[27]. It was shown [14] that the shot noise limited spectral
sensitivity is given by

Δf ¼ 1

jχj ffiffiffiffi

N
p ; ð3Þ

where jχj is the slope of the spectral gain and N is the
number of measured photons. Because the slope of the gain
curve can be large, we can achieve very high spectral
resolution. This is the type of “slow light” advantage that
was sought for almost two decades [28–31].
Now, we consider the Doppler shift from each reflecting

surface of a rotating interferometer, like the one shown in
Fig. 1. We recently showed [32] that the Ashworth-Davies
[33] nonrelativistic Doppler shift Δfm of a laser of wave-
length λ from a mirror moving with angular velocity Ω and
radius R is given by

Δfm ¼ 2ΩR
λ

cosðϕÞ cosðαÞ; ð4Þ

where, with respect to the mirror’s surface normal, α is the
direction of propagation of the mirror and ϕ is the angle of
incidence.

Consider a simple Doppler model in which the axis of
rotation is at the center of a square Mach-Zehnder inter-
ferometer like the one shown in Fig. 1. The distance from
the axis of rotation to each reflective element is then
R ¼ L=

ffiffiffi

2
p

, where L is the length of a side of the square.
In this scenario α ¼ 0 for the first 50=50 beam splitter and
α ¼ 90° for the two corner mirrors (we use polarizing beam
splitters (PBS) effectively as mirrors). The final beam
splitter has an angle α ¼ ϵ=2, where ϵ ≪ ϕ. The incidence
angle is the same for all surfaces, namely ϕ ¼ 45° for
all surfaces, except the last beam splitter, which is
ϕ ¼ 45°þ ϵ=2. In this scenario α ¼ 0° for the first beam
splitter α ¼ ϵ=2 for the final beam splitter. Keeping only
terms first order in ϵ, the relative Doppler shifts between
the two paths are given by

Δf ≈
ffiffiffi

2
p

L½cosðϕÞ − cosðϕþ ϵ=2Þ�
λ

; ð5Þ

yielding the differential frequency approximation

Δf ≈
LΩϵ
2λ

: ð6Þ

The final beam splitter, with its small relative angle,
breaks the symmetry in the system. It should also be noted
that the frequency differential is zero when the angle
between the output beams ϵ ¼ 0 as observed for closed
systems. This model predicts, using parameters from our
system (see Sec. IV in the Supplemental Material [34]
for further information), an estimated shot noise limited
rotation sensitivity down to Ω ≈ 100 pRad=s=Hz−1=2

(approximately 5 orders of magnitude below the standard
quantum limit for phase estimation of an interferometer
of the same size and same number of measured photons).

FIG. 1. Experimental setup. A laser beam is coupled into a
square Mach-Zehnder interferometer on top of a rotating plat-
form. The size and distance of the interferometer relative to the
axis of rotation can be controlled by moving small tables with the
beam splitters. A liquid crystal light valve acts as the relativistic
“detector” by providing spectrally dependent gain, which is then
measured by balanced detectors. All elements are on the rotating
platform.
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For our experiment, light from a 532 nm fiber-coupled
laser was launched on a rotation mount. A half-wave plate
(HWP) and polarizer (P) were used to adjust the beam
intensity and make the light vertically polarized (necessary
for the LCLV). The 50=50 beam splitter and a polarizing
beam splitter were placed on a small movable platform on
top of a track. The other 50=50 beam splitter and the other
polarizing beam splitter were placed on another movable
platform on the same track. The two independently
movable platforms allowed us to measure the sensitivity
of the system versus the position of the axis of rotation and
the interferometer’s size. The two polarizing beam splitters
were used in place of mirrors, allowing for amplitude
control of the two paths. The beams were then directed
from the polarizing beam splitters and the final 50=50 beam
splitter such that they overlapped on the LCLV, but had a
relative angle of approximately 10 mRad. The beam waists
at the crystal were approximately 2.5 mm with combined
intensity of between 1.5 and 2.5 mW impinging on the
crystal. The beams then pass through a lens and are sent to a
balanced detector (BD) in the focal plane of the lens where
the beams have separated. The half-wave plate inside the
Mach-Zehnder was adjusted until the beams were intensity-
balanced in the detector. The differential balanced detector
signal was passed through a low-noise preamp. From the
fiber launch to the photodetectors, all equipment is on a
single rotating platform atop a turntable driven by a
piezoactuator. We note that we observe the effect with
the laser also in the rotating platform frame.
To test the properties of this system, we used a linear

piezoelectric actuator to exert a transverse force on the
sliding track that also acts as a lever arm. The horizontal
distance from the piezoactuator to the axis of rotation was
28 cm. The actuator has a linear response of approx-
imately 60 nm=V. We used a range of amplitudes and
frequencies for driving sinusoidal, triangular, and square
wave oscillations. To demonstrate that we are measuring a
frequency offset and not a phase offset, we show that
constant phase offsets (not phase gradients) do not
contribute to the LCLV response. It is important to note
that for demonstrating that the system is not sensitive to a
constant phase offset we are not using a setup in Fig. 1.
Rather, the experimental setup for this experiment is based
on [14] in which a mirror is linearly translated with respect
to the lab frame in which the detector and laser are
stationary. Figure 2(a) shows the response of the LCLV to
sudden changes in phase (square wave driven piezo). The
square wave peak-to-peak oscillation corresponds approx-
imately to 17° of phase shift. It can be seen that the after an
initial sudden change in phase (Doppler shift) the system
relaxes once again to the equilibrium position (zero) even
though the phase offset remains constant until the next
fluctuation. This shows that the LCLV does not respond
to constant phase offsets as would be the case in standard
Sagnac interferometers undergoing uniform rotation.

Hence, the signal must be from frequency shifts and
not from phase.
We now turn to the results for the rotating platform shown

in Fig. 1 undergoing small oscillatory motions. As can be
seen in Fig. 2(b), a 100 mHz triangle wave with peak-to-
peak angular displacement of approximately 1 μRad is
applied to the piezoactuator. At the turning points, there
is a sudden acceleration at which there is a rapid change in
response. After a finite crystal relaxation time, the system
settles to the new equilibrium. For a system of constant
rotational speed, the system approaches a constant voltage
offset proportional to the speed as expected.
Figure 3 shows the driving signal and the system

response of a 0.003 m2 interferometer, from a 200 mHz
sine wave (a 20 second interval is shown in the inset). The
driving signal resulted in a 1.3 μRad=s amplitude for the
angular velocity. The length of the total measurement was

FIG. 2. LCLV response vs input signals. In (a), an experiment
was performed similar to the one in [14] in which the laser and
detector are in the laboratory frame and a mirror undergoes linear
translations according to a piezoelectric input signal. However,
the LCLV response always reequilibrates to zero, meaning the
LCLV, after relaxing, has no response to constant phase. The
experimental setup (b) uses the turntable shown in Fig. 1 unlike
(a). A triangle wave is applied to the piezoactuator that rotates the
turntable, yielding the expected square wave signal.

Shot noise limit
standard Sagnac

FIG. 3. Amplitude spectral density of the signal response
(shown in blue in the inset) of a 0.003 m2 interferometer
undergoing 200 mHz sinusoidal oscillations from the driven
piezoelectric.
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1000 seconds. The associated amplitude spectral density of
the signal is shown. It can be seen that over a large range
of the spectrum, the noise floor is more than 2 orders of
magnitude below the shot noise limited (the standard
quantum limit) response of a standard passive gyroscope
of the same area and approaches 3 orders of magnitude
close to 1 Hz. Figure 4 shows the Allan deviation. The bias
drift of the system is calculated to be approximately
17 nRad=s. For emphasis, we note that we are still
several orders of magnitude above the shot noise limit
of the frequency differential measurement of the LCLV,
implying that many orders of magnitude improvement are
still possible.
We tested the dependence of the system on several

parameters: the position of the axis of rotation, the size of
the interferometer, and the amplitude and frequency of
the piezoactuated movement. For the experiments shown
in Fig. 5, triangle waves of various amplitudes and
frequencies were used. In Fig. 5(a), the two movable
platforms were translated together, while preserving the
interferometer area, by a distance ΔL to find the system
sensitivity to position of the interferometer relative to the
axis of rotation. It can seen that there is a linear dependence
on distance from the axis of rotation, thus differing from
other passive optical gyroscopes. Figure. 5(b) shows the
dependence of the interferometer’s sensitivity on the size of
the interferometer. We kept one platform fixed and moved
the other platform a linear distance ΔL. We plot two
theoretical behavior lines to show the system sensitivity is
linear in the length and not the area, which also differs from
other passive optical gyroscopes. Figures 5(c) and 5(d)
show that the response of the system is linearly dependent
in the amplitude and frequency of the driving oscillation, as
expected. It can be seen in Fig. 5(c) that if the amplitude is
too large, when the crystal gain curve is nonlinear, the
linear behavior stops. Nonlinear behavior also occurred for
oscillation frequencies above 1 Hz (not shown), which is
approximately the bandwidth of the gain curve.

A brief discussion of some practical aspects is in order.
First, the LCLV, in its current form, is very sensitive to
vibrations. Second, the sensitivity and bias of the LCLV is
a strong nonlinear function of the laser power. However,
with intensities of even just a few tens of mW=cm2, the
transparent electrodes on the LCLV can overheat, causing a
liquid phase transition. This is a technical not a funda-
mental limitation, which can be improved. Third, air
current fluctuations create temporal phase fluctuations,
which appear as frequency shifts in the system. Fourth,
it is likely that bias drift can be greatly improved. We
believe the primary forms of bias drift were from intensity
fluctuations and crystal temperature variations, both of
which can be actively stabilized. Fifth, we expect the
sensitivity of our device can be greatly improved if it is
used in a high finesse resonator or loop design. Sixth, there
are passive fiber optic gyros with similar sensitivities to
ours, but with enclosed areas tens to hundreds of thousands
of times larger (see Ref. [35] and references therein).
The last and perhaps most important item is that we have

not yet measured any signal related to the Earth’s rotation.
This should be manifest by a large frequency offset bias
(expected to be several hundred thousand Hertz, assuming
a linear increase in sensitivity with distance) and a
sensitivity to interferometer tilt, neither of which we have
observed. We are puzzled by this and are looking for
answers to large distance rotations. We note that such a
large bias would be so far outside the spectral gain window
that the system could not work. This dilemma could point
to (1) a flaw in the theory, (2) new physics, or (3) the system
behaving like translational rather than rotational motion in
the large distance limit. We hope this spurs additional
theoretical activity in the community.

FIG. 4. Allan deviation for 0.003 m2 interferometer. The bias
drift is observed to be approximately 17 nRad=s.

FIG. 5. (a) System response as a function of a 0.003 m2

interferometer being moved relative to the axis of rotation.
(b) Dependence of the interferometer sensitivity vs a linear
change in length. It can be seen that the behavior shows that
the system sensitivity is a function of the length and not the area
of the interferometer. (c),(d) show that the system is linear in the
piezo driving amplitude and frequency, respectively.
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We believe we have provided compelling evidence of the
possibility for enhancing sensitivity relative to some phase
estimation problems by considering frequency estimation
instead. We have also provided strong evidence of the role of
Doppler shifts as being fundamental within the Sagnac
effect. An obvious question is in what other systems such
techniques could be applied. For example, it may be possible
that ring laser gyros could be improved if the differential
spectral estimation of the LCLV can be shown to be better
than the typical heterodyne beatnote analysis.
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