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Spontaneous symmetry breaking is a property of Hamiltonian equilibrium states which, in the
thermodynamic limit, retain a finite average value of an order parameter even after a field coupled to
it is adiabatically turned off. In the case of quantum spin models with continuous symmetry, we show that
this adiabatic process is also accompanied by the suppression of the fluctuations of the symmetry generator
—namely, the collective spin component along an axis of symmetry. In systems of S ¼ 1=2 spins or qubits,
the combination of the suppression of fluctuations along one direction and of the persistence of transverse
magnetization leads to spin squeezing—a much sought-after property of quantum states, both for the
purpose of entanglement detection as well as for metrological uses. Focusing on the case of XXZ models
spontaneously breaking a U(1) [or even SU(2)] symmetry, we show that the adiabatically prepared states
have nearly minimal spin uncertainty; that the minimum phase uncertainty that one can achieve with these
states scales as N−3=4 with the number of spins N; and that this scaling is attained after an adiabatic
preparation time scaling linearly with N. Our findings open the door to the adiabatic preparation of strongly
spin-squeezed states in a large variety of quantum many-body devices including, e.g., optical-lattice clocks.
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Introduction.—Many-body entanglement [1] is at the
heart of the fundamental complexity of quantum states
[2,3], and it is the basis mechanism by which a closed
quantum many-body system relaxes to a stationary regime
after having been driven away from equilibrium [4]. In this
respect, the generation of many-body entangled quantum
states is one of the main goals of a new generation of
quantum devices, going from quantum simulators [5,6] to
quantum computers [7], whose common trait is the ability
to perform coherent unitary evolutions of quantum many-
body systems. Yet, certifying (let alone putting to use)
many-body entanglement is a task which is restricted to a
small class of quantum many-body states, most promi-
nently those whose entanglement can be detected via the
measurement of the lowest moments of the quantum-noise
distribution [8]. In the context of ensembles of N qubits
(S ¼ 1=2 spins), characterized by the collective-spin oper-
ator J ¼ P

N
i¼1 Si (where the Si’s are S ¼ 1=2 quantum spin

operators), one of the best examples of such states is offered
by spin-squeezed ones, whose entanglement is detected via
the spin-squeezing parameter [9],

ξ2R ¼ Nmin⊥VarðJ⊥Þ
hJi2 ; ð1Þ

where min⊥ expresses the minimization of the variance on
the collective-spin components perpendicular to the aver-
age spin orientation hJi. A state with ξ2R < 1=k (k ≥ 1) is
entangled, with an entanglement depth (least number of

entangled spins) of kþ 1 [10,11]. The ξ2R parameter is also
a fundamental figure of merit of the sensitivity of the state
to rotations, expressing the reduction in phase-estimation
error for a Ramsey interferometric protocol with respect to
a factorized state [9], and it offers the possibility to improve
the efficiency of quantum devices such as atomic clocks
[12–15] or quantum sensors [16–18] by using entangle-
ment as a resource.
For the reasons listed above, devising many-body

mechanisms that lead to the controlled preparation of
spin-squeezed states [19] is a very significant endeavor
—and particularly so when the squeezing parameter can be
parametrically reduced by increasing the number of resour-
ces. This situation leads to scalable squeezing—generically
ξ2R ∼ N−α (α > 0)—which allows one to surpass the stan-
dard quantum limit for the scaling of the phase-estimation
error with the number of qubits [11]. The two main
mechanisms that have been identified and implemented
so far in this direction are the preparation of spin-squeezed
states via unitary evolutions with long-range interactions
[20–24] and via the nondemolition measurement of a spin
component [25,26]. Yet a third way to spin squeezing is
offered by adiabatic preparation, which relies upon the
identification of spin squeezing in the ground state of
quantum spin Hamiltonians implemented, e.g., by quantum
simulation platforms. A clear example in this direction is
offered by Ising quantum critical points [27], which exhibit
scalable squeezing at and above the upper critical dimen-
sion (d ≥ 3 for short-range interactions) [28].
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In this work we unveil another fundamental link between
many-body physics of spin models and the generation of
spin squeezing, namely, the appearance of squeezing in the
presence of spontaneous breaking of a continuous spin
symmetry in the ground state. Without loss of generality, in
the following we will be concerned with symmetry under
U(1) rotations UzðϕÞ ¼ e−iϕJ

z
generated by the collective

spin component Jz—this property is also present for SU(2)-
symmetric Hamiltonians. On a finite-size system and in
the absence of any symmetry-breaking field, the ground
state of a U(1)-symmetric Hamiltonian has VarðJzÞ ¼ 0,
namely, it exhibits so-called Dicke squeezing [11]
[Fig. 1(a)], lacking nonetheless a finite net magnetization
hJi ¼ 0. At the same time, the low-lying energy spectrum
of such an Hamiltonian exhibits a so-called Anderson tower
of states, whose energy collapses as 1=N onto that of the
ground state [29–32]. Hence, a field Ω ∼ 1=N coupling to
the order parameter in the x–y plane, e.g., −ΩJx (without
loss of generality), is sufficient to mix the tower of states
into a state exhibiting a net polarization m ¼ hJxi=N ≠ 0
[Fig. 1(b)]. The hallmark of spontaneous symmetry break-
ing (SSB) is then the persistence of a finite order parameter
m in the limit N → ∞, in which the field is also para-
metrically set to zero. Here we investigate paradigmatic
XXZmodels with nearest-neighbor (NN) interactions using
finite-temperature and variational quantum Monte Carlo
simulations, as well as of spin-wave theory. In the presence
of SSB in the ground state, we show that the state polarized
by the minimal field Ω ∼ 1=N away from Dicke squee-
zing retains a strong asymmetry in the fluctuations of the
collective spin components, exhibiting scalable (Wineland)
spin squeezing with ξ2R ∼ N−1=2. Such a state is shown to

have minimal spin uncertainty, namely, squeezing is its
optimal metrological resource, and it can be prepared
adiabatically, starting from a coherent spin state stabilized
at Ω → ∞ [Fig. 1(d)], and ramping down Ω to a value
∼1=N in a time scaling linearly with system size τ ∼ N.
This finding opens the possibility to squeeze the collective
spin of quantum simulators of U(1)-symmetric [or SU(2)-
symmetric] qubit Hamiltonians, with potential applications
to quantum sensors [16,33] and atomic clocks [34,35].
Model and methods.—We focus our attention on the S ¼

1=2 XXZ Hamiltonian:

H ¼ −
1

2

X

ij

J ijðSxi Sxj þ Syi S
y
j − ΔSziS

z
jÞ −Ω

X

i

ϵiSxi ; ð2Þ

where i, j are lattice sites on a d-dimensional hyper-
cubic lattice of size N ¼ Ld with periodic boundary
conditions. In the following we shall specialize our
attention to nearest-neighbor interactions—J ij ¼ J if i
NN j [see Supplemental Material (SM) for an extension to
longer-range interactions [36] ]. Moreover, we choose
J > 0 and −1 < Δ ≤ 1, defining an XXZ model with
ferromagnetic interactions in the plane and ferromagnetic
or antiferromagnetic ones along the symmetry axis. Such a
situation is realized, e.g., in bosonic Mott insulators [40–
42]. Under these assumptions, the above model is known to
break a continuous symmetry in the ground state in d ≥ 2,
and the field coupling to the order parameter is uniform,
namely, ϵi ¼ 1 ∀ i. But most of our results are completely
general and apply to any model featuring SSB of a
continuous symmetry—provided that the order parameter
does not commute with the Hamiltonian (otherwise the
ground state is simply a coherent spin state for all Ω, e.g.,
⊗N

i¼1 j→xii with j→xii the eigenstate of Sxi with eigenvalue
þ1=2). In the case J < 0 (antiferromagnetic interactions in
the xy plane)—as realized in fermionic Mott insulators
[40,43,44]—the order parameter is the staggered magneti-
zation, e.g., m ¼ hJxsti=N ¼ hPi ϵiS

x
i i=N; the field cou-

pling to the order parameter must therefore be staggered,
ϵi ¼ ð−1Þi, and the relevant rotations are generated by
Jyst ¼

P
i ϵiS

y
i . Yet, for NN interactions on a hypercubic

lattice, the physics is equivalent to that of the bosonic
insulators, as the two models are connected by a canonical
transformation (rotation of π around the z axis for one of
the two sublattices).
We have studied the ground-state physics of the XXZ

Hamiltonian in d ¼ 1, 2, and 3 making use of numerically
exact quantum Monte Carlo (QMC) simulations, based on
the stochastic series expansion method [45], as well as of
spin-wave theory, valid in the presence of spontaneous
symmetry breaking (d ¼ 2, 3). Moreover, we have inves-
tigated the (quasi)adiabatic dynamics of preparation of
the ground state starting from a large Ω by making use of
time-dependent variational Monte Carlo (tVMC) method,
based on pair-product (or spin-Jastrow) wave functions

coherent spin stateDicke squeezing
squeezing  
from SSB

adiabatic squeezing

(a) (b) (c) (d)

FIG. 1. Adiabatic squeezing from spontaneous symmetry
breaking (SSB) in the XXZ model. Starting from a coherent
spin state at Ω ¼ ∞, an adiabatic reduction of the field Ω
coupling to the order parameter leads to the appearance of
scalable spin squeezing when Ω ∼ 1=N, due to the scaling of
the uncertainty on the Jz component, δJz ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðJzÞp
∼ N1=4,

and to the absence of scaling of the order parameter m ¼ hJxi=N,
as a consequence of SSB. The red areas depict the uncertainty
regions of the collective spin on a sphere of radius

ffiffiffiffiffiffiffiffiffi
hJ2i

p
∼ N.

As a consequence, the angular aperture of the uncertainty region
along the z axis is δϕ ≈ δJz=

ffiffiffiffiffiffiffiffiffi
hJ2i

p
∼ N−3=4, defining the

sensitivity of the state to rotations around the y axis.
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[32,46], as well as of time-dependent spin-wave theory (see
SM for an extended discussion of the methods [36]).
Adiabatic squeezing from SSB.—In the following we

shall only show results for the case Δ ¼ 1 (Heisenberg
model)—analogous results for different Δ values are
presented in the SM [36]. Figure 2 shows our QMC results
for the 2d Heisenberg model calculated for different sizes
N ¼ L2 at a temperature T ¼ J =N, chosen so as to
effectively remove thermal effects at the energy scale of
an applied field Ω ∼ J =N. As we shall see, this choice is
rather conservative, because the field opens in fact a gap in
the spectrum scaling as ðJΩÞ1=2. The QMC results are
compared to linear spin-wave (LSW) theory—see SM for
the details of the theory [36]—in the thermodynamic limit,
which is expected to be very accurate at large Ω, and to
quantitatively capture some selected features in the limit
Ω → 0 [47]. The uniform magnetization hJxi=N, shown in
Fig. 2(a), is indeed correctly predicted by LSW theory: the
finite-size QMC data show that the LSW prediction is
reproduced down to a field scaling as ∼1=N, below which
the finite-size gap between the states of the Anderson tower
overcomes the field and the uniform magnetization is
strongly suppressed. Hence, the SSB scenario, namely,
the persistence of a finite magnetization down to Ω ¼ 0
when N → ∞, is clearly shown. Concomitantly, the sup-
pression of the symmetry-breaking field Ω leads to a strong
suppression of the fluctuations of the U(1) symmetry
generator Jz; LSW theory predicts that VarðJzÞ ∼ Ω1=2

when Ω → 0, a prediction which appears to be consistent
with our finite-size QMC results for, e.g., the 2d XX model
(see Ref. [36]) for fields down to Ω ≈ J =N, while the 2d
Heisenberg model shows significant beyond-LSW correc-
tions, which interestingly appear to lead to a further
reduction of the variance, namely, to stronger squeezing
[36]. The combination of these two results implies naturally
that the ξ2R parameter is smaller than unity for all values of
Ω—in agreement with a recent theorem predicting ground-
state squeezing in this model as soon as Ω < ∞ [48].

Moreover ξ2R scales as Ω1=2 (actually faster for the 2d
Heisenberg model) down to fields∼J =N, namely, asN−1=2

(or faster) for the lowest significant fields for each finite-
size N. The evidence of scalable spin squeezing resulting
from SSB—namely, from the absence of scaling (or
persistence) of hJxi=N—is the main result of our work.
Another significant feature of the low-Ω state of XXZ

models exhibiting SSB is that of being a state of minimal
uncertainty for the collective spin; namely, the collective
spin components saturate the Heisenberg-Robertson
inequality, VarðJyÞVarðJzÞ ≥ hJxi2=4. To discuss this
aspect and its metrological implications, it is useful to
introduce the quantum Fisher information (QFI) density
[11] for the Jy component, defined as fðJyÞ ¼ ð2=NÞ×P

nmððpn − pmÞ2=ðpn þ pmÞÞjhmjJyjnij2, where jni and
pn are the eigenstates and corresponding eigenvalues of the
density matrix ρ. When the state in question is rotated
around the y axis by the transformationUyðϕÞ ¼ e−iϕJ

y
, the

QFI density expresses the minimal uncertainty on the angle
ϕ, δϕ ≥ ðfQNÞ−1=2; namely, fQ ≠ 1 implies a deviation of
this uncertainty with respect to the standard quantum limit.
The latter property, combined with the fact that
4VarðJyÞ=N is an upper bound to the QFI density, leads
to the inequality chain:

ξ−2R ¼ hJxi2
NVarðJzÞ ≤ fQðJyÞ ≤

4VarðJyÞ
N

: ð3Þ

If a state hasminimal uncertainty, namely, VarðJyÞVarðJzÞ≃
hJxi2=4, the above inequality chain collapses to an equality,
namely, ξ−2R ≈ fQðJyÞ ≈ 4VarðJyÞ=N. This collapse is
clearly exhibited by our numerical data for all values of
Ω > 0 and all systems sizes; see Fig. 2(d). In particular,
among all the macroscopic observables built as a sum of
local observables, Jy is arguably the onewith the largest QFI
density [36], so that the estimation of the rotation angle ϕ is
the optimal phase-estimation protocol for the low-Ω states.
The fact that ξ−2R ≈ fQ implies that the measurement of the
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FIG. 2. Adiabatic squeezing from SSB in the 2d Heisenberg model. (a) Field-induced magnetization hJxi=N for various lattice sizes
N ¼ L2. (b) Variance of the collective spin component Jz. (c) Resulting spin-squeezing parameter ξ2R. (d) Comparison between ξ−2R and
4VarðJyÞ=N. In all panels the solid black line indicates the prediction of linear spin-wave (LSW) theory, and the dotted line in (b) and
(c) shows the Ω1=2 scaling as a reference (multiplied by an arbitrary prefactor). Here and in Fig. 3, the error bars denote one standard
deviation of the statistical fluctuations in QMC.
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rotation of the average collective spin (correspond-
ing to Ramsey interferometry) is the optimal measurement
for this protocol, leading to a phase-estimation error
δϕ ¼ ξR=

ffiffiffiffi
N

p
∼ N−3=4.

Finally, we would like to stress that the above results are
not at all limited to the 2d Heisenberg model, but they are
valid for all the S ¼ 1=2 XXZ models spontaneously
breaking a U(1) [or SU(2)] symmetry in the thermody-
namic limit (see Ref. [36] for further examples). Figure 3(a)
shows the field dependence of the spin-squeezing para-
meters ξ2R for the Heisenberg model in d ¼ 1, 2, and 3. We
observe that the scaling of ξ2R as Ω1=2 is clearly exhibited in
d ¼ 3. On the other hand, for d ¼ 1 (Heisenberg chain)
SSB is not realized because of the critical strength of
quantum fluctuations [49]: as a consequence, hJxi vanishes
when Ω → 0, leading to the breakdown of the mechanism
that underpins scalable spin squeezing in higher dimen-
sions. Figure 3(a) shows that hJxi2, vanishing asΩ1=2, leads
to a squeezing parameter ξ2R that goes to a constant as
Ω → 0. Similar results for the XX model (Δ ¼ 0) are
shown in the SM [36].
Quasiadiabatic ramps.—The preparation of the ground

state at low fields requires the initialization of the system in
a coherent spin state aligned with the Ω field with Ω ≫ J ,
and the subsequent gradual reduction of the field along an
adiabatic down-ramp—a protocol analogous to that of
adiabatic quantum computing [50]. The adiabatic theorem
mandates that the duration τ of an adiabatic ramp that
prepares the system in the ground state at a final field
Ωf should be τJ ≳ ðΔEmin=J Þ−2, where ΔEmin ¼
minΩ∈½Ωf;∞�½E1ðΩÞ − E0ðΩÞ� is the minimal gap between
the Ω-dependent ground-state energy (E0) and the energy
of the first excited state (E1) over the field range of the
ramp. This gap can be calculated by LSW theory [36]—in

good agreement with exact diagonalization on small system
sizes [36]—and for the Heisenberg model (Δ ¼ 1) and
Ωf ≪ J it is shown to be ΔEmin=J ≈ ðzΩf=J Þ1=2, where
z ¼ 2d is the coordination number. This result implies
that the adiabatic preparation of the ground state for
the minimal field Ωf ∼ 1=N at size N takes a time
τ=J ≳ ðzΩf=JÞ−1 ∼ N.
We complement the above general prediction from LSW

theory with realistic calculations of quasiadiabatic ramps
based on tVMC—which show remarkable agreement with
independent calculations based on time-dependent LSW
[36], mutually corroborating their quantitative validity. We
start the state evolution from the ground state at a large
initial field value Ωi ¼ 10J—obtained by minimization of
the variational energy of the spin-Jastrow ansatz [36]—
and then we ramp the field down to Ωf with the sche-
dule ΩðtÞ ¼ Ωi þ Fðt=τÞðΩf −ΩiÞ, where FðxÞ ¼ 1

2
×

e−1=xþ2θð1=2 − xÞ þ ½1 − 1
2
e−1=ð1−xÞþ2�θðx − 1=2Þ for t ∈

½0; τ�, while ΩðtÞ ¼ Ωf for t > τ. The function FðtÞ
(chosen heuristically) has the property of having vanishing
derivatives at all orders at the two extremes of the ½0; τ�
interval, so that it is continuous along with all of its
derivatives when it is extended to t < 0 and t > τ by
constant functions. Figures 3(b) and 3(c) show the tVMC
results for the evolution of the ξ2R parameter in the 2d
Heisenberg model (L ¼ 12) with two different final fields
(Ωf=J ¼ 10−1 and 10−2), and various ramp durations. Our
main observation is that, even when the ramp fails to keep
the system in its ground state down to Ωf, the squeezing
parameter exceeds the adiabatic value only for t≲ τ, while
it systematically evolves to lower values at immediately
later times, and then oscillates around the adiabatic value.
Therefore, failure to follow a perfectly adiabatic ramp
(which in Fig. 3 is observed for all considered ramp
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FIG. 3. Quasiadiabatic preparation of the low-field state. (a) Comparison between the field dependence of the squeezing parameter
ξ2R for the ground state of the Heisenberg model in d ¼ 1, 2, and 3. For each value of Ω, we use a system size N such that
Ω ≥ J =N, at a temperature T=J ¼ 1=N removing thermal effects. The dashed and solid lines show the prediction of LSW theory.
(b),(c) tVMC results for the evolution of the spin-squeezing parameter in the 2d Heisenberg model (L ¼ 12) along two field ramps
starting from Ωi=J ¼ 10 and ending at (b) Ωf=J ¼ 10−1 and (c) 10−2; see text for the ramp protocol. Each panel shows three
different ramps for different ramp durations τ. The dashed lines show the ground-state spin-squeezing parameters—obtained by
variational minimization of the energy with the spin-Jastrow ansatz. (d) Spin-squeezing parameter versus applied field and entropy
per spin in the 2d Heisenberg model, L ¼ 24.
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durations when Ωf ¼ 10−2J ) does not per se imply a
degradation of the amount of squeezing that can be
produced in the system.
A final comment concerns the possibly of imperfect

preparation of the initial state of the quasiadiabatic ramp:
this would generically entail the presence of finite entropy
in the initial state, persisting then in the evolved one.
Figure 3(d) tests the robustness of squeezing to the
presence of finite entropy in the case of the equilibrium
state of the 2d Heisenberg model. Not surprisingly, a finite
entropy imposes a limit to the achievable squeezing; yet
adiabatic spin squeezing can be obtained up to spin
entropies S=N ≲ 0.3kB.
Conclusions.—In this work we have demonstrated a

fundamental mechanism for the equilibrium preparation of
many-qubit entangled states featuring scalable spin squee-
zing, based on the adiabatic preparation of low-field
magnetized ground states for Hamiltonians breaking a
continuous [U(1) or SU(2)] symmetry in the thermo-
dynamic limit. At variance with the existing schemes for
spin squeezing using collective-spin interactions [20–
23,25,26], here we offer a specific protocol for the pro-
duction of scalable spin squeezing using short-range qubit
Hamiltonians with continuous symmetry, whose imple-
mentation is common to nearly all quantum simulation
platforms. Our results are immediately relevant for Mott
insulators of bosonic ultracold atoms in optical lattices,
realizing the XXZ model with SU(2) symmetry or U(1)
symmetry (easy-plane anisotropy)—see, e.g., the two
relevant cases of 7Li [41] and 87Rb [42])—and to Mott
insulators of fermionic atoms, realizing the Heisenberg
antiferromagnet [43,44]. In the bosonic case the Ω field
coupled to the order parameter is a uniform, coherent Rabi
coupling between two internal states; while in the fermionic
case the field coupling to the order parameter must be
staggered, and it can be potentially created by Stark
shifting a sublattice of a square or cubic lattice by a
superlattice, therefore creating a Rabi-frequency difference
between the two sublattices. This scheme opens the
possibility to squeeze the spin state of optical-lattice clocks
in the Mott insulating regime (e.g., based on 87Sr [34,35] in
the fermionic case and on 174Yb in the bosonic case [51,52];
see SM for further discussion [36]). Our protocol (with a
uniform Rabi field Ω) is also relevant for superconducting
circuits realizing, e.g., the 2d XX Hamiltonian [53]; for
Rydberg atoms with resonant interactions [54], realizing
the dipolar XX model Δ ¼ 0, J ij ∼ jri − rjjα with α ¼ 3;
as well as for trapped ions, realizing the XX model with
long-range interactions (0 < α < 3) [55]. Our findings
pave the way for the controlled adiabatic preparation of
scalable spin-squeezed states, with the double bonus of a
solid entanglement certification via the measurement of the
collective spin and of the possibility to accelerate the size
scaling of phase-estimation error compared to separable
states.
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