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In this Letter, we study the exclusive decay of ϒ into J=ψ in association with ηc (χc0;1;2). The decay
widths for different helicity configurations are evaluated up to QCD next-to-leading order within the
nonrelativistic QCD framework. We find that the QCD corrections notably mitigate the renormalization
scale dependence of the decay widths for all the processes. The branching fraction of ϒ → J=ψ þ χc1 is
obtained as 3.73þ5.10þ0.10

−2.06−1.19 ×10−6, which agrees well with the Belle measurement, i.e., Brðϒ→J=ψþχc1Þ¼
ð3.90�1.21�0.23Þ×10−6. For the other processes, our results of the branching fractions are compatible
with the upper limits given by the Belle experiments, except for ϒð2SÞ → J=ψ þ χc1, where some tension
exists between theory and experiment. Having the polarized decay widths, we study the J=ψ polarization,
which turns out to be independent of any nonperturbative parameters. Further, according to our calculation,
it is promising to measure all the processes at Super B factory thanks to the high luminosity.
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The exclusive decay of a bottomonium into double
charmonia provides an excellent probe into the nonrela-
tivistic QCD (NRQCD) factorization [1], since all the
involved external particles are heavy quarkonia and thus
the uncertainties originating from any other nonperturba-
tive parameters are screened out, except for only those from
the long-distance matrix elements. To date, many of such
processes have been intensively studied, including ηb →
J=ψ þ J=ψ [2–5], χbJ → J=ψ þ J=ψ [6–10], ϒ → J=ψ þ
ηc [11,12], and ϒ → J=ψ þ χcJ [13]. On the experimental
side, the Belle Collaboration has collected enormousϒð1SÞ
and ϒð2SÞ events, and measured the branching fraction
Br½ϒð1SÞ→ J=ψ þ χc1� ¼ 3.90� 1.21ðstatÞ� 0.23ðsystÞ×
10−6 [14]. For some other processes, such as ϒ → J=ψ þ
χc0;2 and ϒ → J=ψ þ ηc, the upper limits of the branching
fractions are determined. The QCD leading order (LO)
results for these processes given in Refs. [11–13] suffer
from significant uncertainties. For instance, as the renorm-
alization scale μR runs from twice of the charm quark mass
2mc to twice of the bottom quark mass 2mb, the decay
width changes by a typical factor of 5, which destroys the
predicting power of the phenomenological results. In order
to confront the theory with data, it is urgent to tackle the
computation of higher-order QCD corrections.

In recent years, technological advances have made it
possible to calculate the higher-order QCD corrections to
the processes involving two external quarkonia. In
Ref. [15], the decay width of ϒ → ηcðχcJÞ þ γ was evalu-
ated up to QCD next-to-leading order (NLO), and the very
challenging two-loop perturbative corrections to eþe− →
J=ψ þ ηcðχcJÞ was given in Refs. [16,17]. For all these
processes, the renormalization scale dependences become
much milder at two-loop level than those at LO, which
indicates good convergence of the perturbative expansion.
With all the available perturbative corrections lumped
together, the theoretical results on the cross sections of
J=ψ þ ηcðχc0Þ production agree with the experimental
measurements, notwithstanding large uncertainties.
Inspired by the success in the processes aforementioned,

we calculate, in the current work, the NLO QCD corrections
to ϒ → J=ψ þ ηcðχcJÞ, which involves three external quar-
konia. At lowest order in αs, the Feynman diagrams of these
processes can be classified into three groups, as illustrated in
Figs. 1(a), 1(e), and 1(i), the amplitudes of which are
proportional to α2, αsα, and α3s , respectively. Here, αs and
α are the strong coupling and electromagnetic coupling,
respectively. In the following, we denote these three groups
by the symbols G02, G11, andG30, respectively, where the
two numbers represent the powers of their amplitudes in αs
and α, respectively. In the G02 group, the J=ψ meson is
produced via a photon fragmentation, which may enhance
the amplitudes by a factor of m2

b=m
2
c relative to the non-

fragmentation diagrams. As one can see in Fig. 1, there does
not exist tree-level diagrams in the G30 group, owing to the
charge parity and color conservation, accordingly, its NLO
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corrections are two-loop diagrams with six external quark
lines, the evaluation of which is extremely difficult.
The differential decay width of a ϒ with polarization

(along the z axis) Sz into a J=ψ and another charmoniumH
(here, H is either an ηc or a χcJ meson), the helicities of
which are λ1 and λ2, respectively, can be expressed as
[19,20]

dΓ
d cos θ

½ϒðSzÞ → J=ψðλ1Þ þHðλ2Þ�

¼ jPj
16πm2

ϒ
jd1Sz;λ1−λ2ðθÞj2jAH

λ1;λ2
j2; ð1Þ

wheremϒ is the mass of the ϒmeson, P denotes the spatial
components of the J=ψ momentum, AH

λ1;λ2
is the Feynman

amplitude corresponding to the helicity configuration
ðλ1; λ2Þ, and d1Sz;λ1−λ2ðθÞ is the Wigner function. Here, θ
is the angle between the direction of P and the z axis. Note
that the constraint, λ1 − λ2 ≤ 1, is guaranteed by the
angular momentum conservation.
Integrating over the polar angle θ and averaging over the

polarization of ϒ, we finally obtain the integrated decay
width of ϒ → J=ψ þH for the helicity configuration
ðλ1; λ2Þ as

Γ½ϒ → J=ψðλ1Þ þHðλ2Þ� ¼
jPj

24πM2
ϒ
jAH

λ1;λ2
j2: ð2Þ

Thanks to the parity invariance, we have the following
relations,

Aηc
λ1;λ2

¼ −Aηc
−λ1;−λ2 ; AχcJ

λ1;λ2
¼ ð−1ÞJAχcJ

−λ1;−λ2 ; ð3Þ

and the number of independent helicity amplitudes for ηc,
χc0, χc1, and χc2 production can be further reduced to one,

two, three, and five, respectively. In terms of the indepen-
dent helicity amplitudes, the unpolarized decay widths can
be explicitly written as

Γðϒ → J=ψ þ ηcÞ ¼
jPj

24πm2
ϒ
ð2jAηc

1;0j2Þ; ð4aÞ

Γðϒ → J=ψ þ χc0Þ ¼
jPj

24πm2
ϒ
ð2jAχc0

1;0j2 þ jAχc0
0;0j2Þ; ð4bÞ

Γðϒ→J=ψþχc1Þ¼
jPj

24πm2
ϒ
ð2jAχc1

1;1j2þ2jAχc1
1;0j2þ2jAχc1

0;1j2Þ;

ð4cÞ

Γðϒ→ J=ψ þ χc2Þ ¼
jPj

24πm2
ϒ
ð2jAχc2

1;2j2þ 2jAχc2
1;1j2þ 2jAχc2

1;0j2

þ 2jAχc2
0;1j2þjAχc2

0;0j2Þ: ð4dÞ

According to the NRQCD factorization formalism [1,15],
AH

λ1;λ2
can be factorized as

AH
λ1;λ2

¼
ffiffiffiffiffiffiffiffiffi
2mϒ

p ffiffiffiffiffiffiffiffiffiffi
2mH

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mJ=ψ

q
CHλ1;λ2

NcRϒð0ÞRJ=ψ ð0Þ
2πm3=2

c m3=2
b

×

8>><
>>:

ffiffiffiffi
Nc
2π

q
Rηc ð0Þ
m3=2

c
; for ηc;ffiffiffiffiffiffi

3Nc
2π

q
R0
χcJ

ð0Þ
m5=2

c
; for χcJ;

ð5Þ

whereNc ¼ 3 is the number of colors,mJ=ψ andmH are the
mass of J=ψ and H, respectively, and Rð0Þ and R0ð0Þ
denote the S-wave radial wave functions at the origin and
the first derivative of the P-wave radial wave function at the
origin, respectively. Exploiting the heavy quark spin
symmetry, we can make the following approximations,
RJ=ψð0Þ ≈ Rηcð0Þ and R0

χc0ð0Þ ≈ R0
χc1ð0Þ ≈ R0

χc2ð0Þ. In the
above equation, CHλ1;λ2 denotes the short-distance coefficient
(SDC) of the corresponding helicity amplitude, and satis-
fies the helicity selection rule [21,22],

CHλ1;λ2 ∝
�
mc

mb

�
1þjλ1þλ2j

; ð6Þ

in the asymptotic limit mc=mb ≪ 1. All these SDCs can be
determined following the standard perturbative matching
procedures.
It is convenient to decompose each SDC as

CHλ1;λ2 ¼ CH;G02
λ1;λ2

þ CH;G11
λ1;λ2

þ CH;G30
λ1;λ2

; ð7Þ

where the three SDCs on the right-hand side correspond
to the contributions from G02, G11, and G30 groups,
respectively. Up to NLO, these SDCs can be expanded in
powers of the coupling constants and formally written as

(a) (c) (d)(b)

(h)(g)(e) (f)

(l)(k)(j)(i)

FIG. 1. Some representative Feynman diagrams, drawn with
JaxoDraw [18], for ϒ → J=ψ þ ηcðχcJÞ.
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CH;G
λ1;λ2

¼ αms α
n

�
CH;G;ð0Þ
λ1;λ2

þ αs
π

×

�
m
4
β0 ln

μ2R
m2

b

CH;G;ð0Þ
λ1;λ2

þ CH;G;ð1Þ
λ1;λ2

�
þOðα2sÞ

�
; ð8Þ

where ðm; nÞ ¼ ð0; 2Þ, (1, 1), and (3, 0) for G02, G11, and
G30, respectively. Here, β0 ¼ ð11=3ÞCA − ð4=3ÞTFnf is
the one-loop coefficient of the QCD β function, where
TF ¼ 1

2
and nf is the number of active quark flavors. In this

Letter, we take nf ¼ nL þ nH, where nL ¼ 3 and nH ¼ 1

are the number of light quark and heavy quark flavors,
respectively.
The quark-level Feynman diagrams and Feynman ampli-

tudes are generated using FeynArts [23]. Employing the color
and spin projectors followed by enforcing spin-orbit
coupling, we obtain the hadron-level amplitudes order
by order in αs with the aid of the packages FeynCalc [24]
and FormLink [25]. Note that the helicity projectors con-
structed in Refs. [11,13] are adopted to evaluate the
polarized amplitudes. Utilizing the packages APART [26]
and FIRE [27], we can further reduce the loop integrals into
linear combinations of master integrals (MIs). Finally, we
end up with 36 one-loop MIs, which, in our calculation, are
evaluated using PACKAGE-X [28], and roughly 1800 two-
loop MIs, the evalutaion of which is a challenging work.
Fortunately, a powerful new algorithm, dubbed auxiliary
mass flow (AMF), has recently been pioneered by Liu and
Ma [29–31]. Its main idea is to set up differential equations
with respect to an auxiliary mass variable, with the vacuum
bubble diagrams as the boundary conditions. Remarkably,
these differential equations can be solved iteratively with
very high numerical precision. To tackle the complicated
MIs with high precision in the previous work investigating
the process, eþe− → J=ψ þ χcJ, we have applied the AMF
approach which turns out to be highly efficient in the
numerical evaluation of the multi-loop integrals. Therefore,
in this work, we utilize the newly released package AMFlow

[32] to compute all the two-loop MIs. After implementing
renormalization of the heavy quark mass and field strength,
and the QCD coupling, where the on-shell and MS
renormalization schemes are employed, respectively, we
numerically verify that all the UV poles indeed cancel with
high precision.
In our numerical computation, we take the S-wave radial

wave function at the origin and first derivative of the
P-wave radial wave function at the origin from Ref. [33] as

jRϒð1SÞð0Þj2 ¼ 6.477 GeV3; ð9aÞ

jRϒð2SÞð0Þj2 ¼ 3.234 GeV3; ð9bÞ

jRϒð3SÞð0Þj2 ¼ 2.474 GeV3; ð9cÞ

jRJ=Ψ=ηcð0Þj2 ¼ 0.81 GeV3; ð9dÞ

jRηcð2SÞð0Þj2 ¼ 0.529 GeV3; ð9eÞ

jR0
χcJð0Þj2 ¼ 0.075 GeV5; ð9fÞ

which were obtained based on the Buchmüller-Tye potential
model. Since the relativistic corrections are not considered,
we are allowed to make the following approximations,
mϒ ≈ 2mb, mJ=ψ ≈ 2mc, and mH ≈ 2mc. The value of the
QED running coupling at themass of theϒmeson is set to be
αðmϒÞ ¼ ð1=131Þ, while the values of the QCD running
coupling at various renormalization scales are computedwith
the aid of the package RunDec [34]. In order to calculate the
branching fractions, we take the values of the total decay
widths of ϒðnSÞ from the latest particle data group [35],
explicitly, Γϒð1SÞ ¼ 54.02� 1.25 keV, Γϒð2SÞ ¼ 31.98 �
2.63 keV, and Γϒð3SÞ ¼ 20.32� 1.85 keV.
Since the theoretical results of the decay width depend

on the values of the heavy quark mass and renormalization
scale μR, we vary mc from 1.3 to 1.7 GeV, mb from 4.4 to

TABLE I. Theoretical results of the decay widths (10−3 eV) for ϒ → J=ψ þ ηcðχcJÞ at LO and NLO.

H Order (0,0) (1,0) (0,1) (1,1) (1,2) ΓUnpol

ηc LO � � � 86.90þ85.63
−42.71 � � � � � � � � � 173.81þ171.26

−85.43
NLO � � � 35.97þ51.89

−21.18 � � � � � � � � � 71.93þ103.78
−42.37

ηcð2SÞ LO � � � 56.72þ55.91
−27.82 � � � � � � � � � 113.44þ111.82

−55.64
NLO � � � 23.49þ33.76

−13.78 � � � � � � � � � 47.00þ67.53
−27.55

χc0 LO 13.97þ8.09
−5.27 31.27þ32.66

−15.26 � � � � � � � � � 76.50þ73.40
−35.79

NLO 12.84þ10.57
−5.91 30.37þ43.55

−17.20 � � � � � � � � � 73.59þ97.67
−40.31

χc1 LO � � � 62.44þ84.56
−34.18 28.33þ28.30

−13.54 19.38þ15.59
−8.40 � � � 220.31þ256.89

−112.24
NLO � � � 49.60þ79.93

−29.33 31.71þ38.45
−16.83 19.34þ19.49

−9.51 � � � 201.30þ275.73
−111.33

χc2 LO 2.04þ3.69
−1.15 6.56þ10.80

−3.95 1.84þ1.61
−0.83 2.61þ2.53

−1.25 1.49þ0.77
−0.58 27.03þ35.11

−14.37
NLO 0.66þ1.57

−0.33 6.73þ15.22
−4.59 1.42þ1.69

−0.72 2.97þ4.20
−1.72 1.59þ1.39

−0.74 26.09þ46.56
−15.87
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4.8 GeV, and μR from 2mc to 2mb, in order to estimate
the theoretical uncertainties. Note here that the range of μR is
fixed for each specific choice of the mc and mb values.
In addition, we will present results at mc ¼ 1.5 GeV,
mb ¼ 4.6 GeV, and μR ¼ mb as the so-called central values.
Having completed our calculation, we compare the

results with those in the existing literature as a partial
check. By taking the same parameters, our results on the
LO SDCs of ϒ → J=ψ þ ηc and ϒ → J=ψ þ χcJ are
consistent with those in Refs. [11] and [13], respectively.
In addition to the LO diagrams, these two references also
presented results for the diagrams corresponding to type
(f) in Fig. 1. Our results for this group of diagrams are
consistent with those in Ref. [11], while they do not agree
with those in Ref. [13]. As an interesting observation, in our
results the imaginary part of the amplitude for ϒ → J=ψ þ
χc1 vanishes, while that in Ref. [13] does not. As a matter of
fact, this phenomenon can be accessed through a qualitative
analysis. Invoking the Cutkosky rule, one can find this
imaginary part is proportional to the amplitude of the
process, χc1 → 2 gluons, which is strictly forbidden accord-
ing to the Landau-Yang theorem.
Having obtained the numerical results for all the ampli-

tudes, We find that the G30, G11, and G02 groups makes
the most, second, and last important contributions, which
confirms the necessity of doing the challenging two-loop
computations.
In Table I, we present our results for not only the

unpolarized decay widths, but also the polarized decay
widths for each independent helicity configuration, where
the uncertainties are obtained by varying the values of mc
andmb. In the current work, we do not take into account the
relativistic corrections, which may potentially bring about
an extra uncertainty. We can naively estimate it as about
40% of the leading order results according to the scaling,
v2 ∼ 0.3 for charmonium and v2 ∼ 0.1 for bottomonium,
where v is the typical velocity of the heavy quarks in a
quarkonium. For almost all the processes, the NLO
corrections are negative and moderate, which usually
indicates good convergence of the perturbative expansion.
As exceptions, the NLO corrections to the (0,1) channel of
J=ψ þ χc1 is positive, and those to J=ψ þ ηc and the (0,0)
channel of J=ψ þ χc2 have a pronounced impact.
Having the results with helicity configurations, the J=ψ

polarization turns out to be an interesting physical observ-
able. As a well-known puzzle, the J=ψ polarization at
hadron colliders still cannot be well described by the
NRQCD computation at NLO. Our current work provides
an ideal laboratory for the study of the J=ψ polarization,
since all the nonperturbative parameters cancel in the
polarization parameters. Among these parameters, λθ,
defined as

λθ ¼
ΓT − ΓL

ΓT þ ΓL
; ð10Þ

FIG. 2. NRQCD results for Br½ϒ → J=ψ þ ηcðχcJÞ� as func-
tions of μR. The uncertainty bands for the theoretical results
correspond to the choices of the charm and bottom quark mass. In
addition, the uncertainty from the Belle measurement for J=ψ þ
χc1 is also illustrated.
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is the one that attracts the widest attention. Here, ΓT and ΓL
are the decay widths in Eq. (2) for λ1 ¼ 1 and 0,
respectively. In the case H ¼ ηc, the J=ψ is transversely
polarized, thus we have λθðϒ → J=ψ þ ηcÞ ¼ 1. For
H ¼ χc, the values of λθ at QCD NLO are

λθðϒ → J=ψ þ χc0Þ ¼ 0.41þ0.12þ0.04
−0.10−0.00 ; ð11aÞ

λθðϒ → J=ψ þ χc1Þ ¼ 0.04þ0.05þ0.08
−0.04−0.15 ; ð11bÞ

λθðϒ → J=ψ þ χc2Þ ¼ 0.52þ0.06þ0.01
−0.11−0.30 ; ð11cÞ

λθðϒ → J=ψ þ χcÞ ¼ 0.16þ0.07þ0.05
−0.06−0.13 ; ð11dÞ

where the two uncertainties are from the choices of the
heavy quark mass and the renomalization scale. In the
evaluation of the last quantity in Eq. (11d), ΓT (ΓL) sums
over all the contributions from χc0, χc1, and χc2. It is
interesting to note that the uncertainties from the ambi-
guities of the heavy quark mass are considerably reduced.
The results of the unpolarized decay widths at LO and

NLO as functions of μR are presented in Fig. 2. For the sake
of comparison, the Belle measurements are also juxta-
posed. It is impressive that the renormalization scale
dependence is significantly reduced for J=ψ þ χcJ produc-
tion, while slightly improved for J=ψ þ ηc. From Fig. 2, we
also observe that, after incorporating theOðαsÞ corrections,
the results for the decay width of the J=ψ þ χc1 production
agrees perfectly with the Belle measurement, albeit with
large uncertainties. For all the other processes, our NLO
results are compatible with the upper limits given by
experiment.
Finally, we list the results of the branching fractions for

various processes in Table II and confront them with the

Belle data, which may provide useful information for
experimentalists. It can be found that most of the theoretical
results are compatible with the measurements except for the
process ϒð2SÞ → J=ψ þ χc1, where some tension exists
between theory and experiment. Since all the predicted
branching fractions are of order 10−6, given the high
luminosity, it seems to be prospective to measure these
processes at the super B factory.
In summary, the NLO perturbative corrections to ϒ →

J=ψ þ ηcðχcJÞ is studied in the NRQCD framework. It is
the first time a process involving two-loop diagrams with
six external legs is completely evaluated. The decay widths
for each specific helicity configuration are given, and
the polarization of the J=ψ meson is also investigated.
At NLO, the renormalization scale dependence is signifi-
cantly reduced for the J=ψ þ χcJ production, while slightly
improved for J=ψ þ ηc. Our result of branching fraction
for ϒ → J=ψ þ χc1 is 3.73þ5.10þ0.10

−2.06−1.19 × 10−6, which agrees
perfectly with the Belle measurement, ð3.90� 1.21�
0.23Þ × 10−6. The theoretical predictions for other proc-
esses are compatible with the Belle experimental limits,
except for ϒð2SÞ → J=ψ þ χc1 where there exists slight
tension between theory and experiment. Given the high
luminosity at the super B factory, it is prospective to
measure the decay widths ϒ to double charmonia as well as
the J=ψ polarization parameter, which may provide crucial
information for the QCD effective theories.
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TABLE II. Results of the branching fractions (×10−6) for ϒ → J=ψ þ ηcðχcJÞ. The two uncertainties in the
theoretical predictions are from the choices of the heavy quark mass and renormalization scale. For comparison, the
Belle data [14] is juxtaposed in the last row.

Channels LO NLO Belle [14]

ϒ → J=ψ þ ηc 3.22þ3.17þ3.59
−1.58−1.96 1.33þ1.92þ0.46

−0.78−0.95 <2.2
ϒ → J=ψ þ χc0 1.42þ1.36þ2.34

−0.66−1.08 1.36þ1.81þ0.003
−0.75−0.43 <3.4

ϒ → J=ψ þ χc1 4.08þ4.76þ4.62
−2.08−2.55 3.73þ5.10þ0.10

−2.06−1.19 3.90þ1.21þ0.23
−1.21−0.23

ϒ → J=ψ þ χc2 0.50þ0.65þ0.58
−0.27−0.31 0.48þ0.86þ0.04

−0.29−0.12 <1.4
ϒ → J=ψ þ ηcð2SÞ 2.10þ2.07þ2.34

−1.03−1.28 0.87þ1.25þ0.30
−0.51−0.62 <2.2

ϒð2SÞ → J=ψ þ ηc 2.71þ2.67þ3.02
−1.33−1.65 1.12þ1.62þ0.39

−0.66−0.80 <5.4
ϒð2SÞ → J=ψ þ χc0 1.19þ1.15þ1.97

−0.56−0.91 1.15þ1.52þ0.003
−0.63−0.36 <3.4

ϒð2SÞ → J=ψ þ χc1 3.44þ4.01þ3.89
−1.75−2.15 3.14þ4.31þ0.08

−1.74−1.00 <1.2
ϒð2SÞ → J=ψ þ χc2 0.42þ0.55þ0.49

−0.22−0.26 0.41þ0.73þ0.04
−0.25−0.11 <2.0

ϒð2SÞ → J=ψ þ ηcð2SÞ 1.77þ1.75þ1.98
−0.87−1.08 0.73þ1.06þ0.25

−0.43−0.53 <2.5
ϒð3SÞ → J=ψ þ ηc 3.27þ3.22þ3.64

−1.61−1.99 1.35þ1.95þ0.46
−0.80−0.97 � � �

ϒð3SÞ → J=ψ þ χc0 1.44þ1.38þ2.38
−0.67−1.09 1.38þ1.84þ0.003

−0.76−0.43 � � �
ϒð3SÞ → J=ψ þ χc1 4.14þ4.83þ4.69

−2.11−2.59 3.79þ5.19þ0.10
−2.09−1.21 � � �

ϒð3SÞ → J=ψ þ χc2 0.51þ0.66þ0.59
−0.27−0.32 0.49þ0.88þ0.05

−0.30−0.13 � � �
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