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One of the primary reasons behind the difficulty in observing the Unruh effect is that for achievable
acceleration scales the finite temperature effects are significant only for the low frequency modes of the
field. Since the density of field modes falls for small frequencies in free space, the field modes which are
relevant for the thermal effects would be less in number to make an observably significant effect. In this
Letter, we investigate the response of an Unruh-DeWitt detector coupled to a massless scalar field which is
confined in a long cylindrical cavity. The density of field modes inside such a cavity shows a resonance
structure, i.e., it rises abruptly for some specific cavity configurations. We show that an accelerating
detector inside the cavity exhibits a nontrivial excitation and de-excitation rates for small accelerations
around such resonance points. If the cavity parameters are adjusted to lie in a neighborhood of such
resonance points, the (small) acceleration-induced emission rate can be made much larger than the already
observable inertial emission rate. We comment on the possibilities of employing this detector-field-cavity
system in the experimental realization of the Unruh effect, and argue that the necessity of extremely high
acceleration can be traded off in favor of precision in cavity manufacturing for realizing noninertial field
theoretic effects in laboratory settings.
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Introduction.—It is well known that the particle content
of a quantum field is observer dependent [1], a fact
manifested in numerous theoretical arenas, e.g., the
Hawking radiation, cosmic fluctuations, and the Unruh
effect [2–5]. In order to estimate the particle content and
realize this theoretical idea, the Unruh-DeWitt detector
(UDD) [5,6] is considered to be an operational device. The
UDD is a two-level quantum system with the ground state
jE0i and the excited state jEi, that is moving along a
classical worldline x̃ðτÞ, where τ is the proper time in the
detector’s frame of reference. The detector is coupled to
a quantum field through the interaction Lagrangian
Lint½ϕðx̃Þ� ¼ αmðτÞϕ½x̃ðτÞ�, where α is a small coupling
constant, and mðτÞ is the detector’s monopole moment
[5,6] which also incorporates a switching function. In the
first-order perturbation theory, the transition probability
rate of the detector, assuming the scalar field ϕ̂ in its
vacuum state j0i, is given as _PðΔEÞ ¼ jhEjm̂ð0ÞjE0ij2×
_F ðΔEÞ, where _F ðΔEÞ ¼ R∞

−∞ du e−iΔEuWðu; 0Þ is called
as the response rate of the detector, ΔE≡ E − E0, and
Wðx; x0Þ≡ h0jϕ̂ðxÞϕ̂ðx0Þj0i is the Wightman function of
the field. The UDD probes the vacuum structure of the
quantum field throughWðx; x0Þ, and registers the excitation
of the detector when it absorbs a field quanta. This detector-
field system has been popularly employed in investigating
the effects of quantum fields in noninertial frames, since it
encompasses the essential aspects of an atom interacting
with the electromagnetic field [7]. The response rate of a
UDD moving in an inertial trajectory can be found to be

vanishing, since the vacuum structure of the quantum field
in inertial frames is invariant due to Poincaré symmetry [8].
However, since noninertial trajectories are not generated by
Poincaré transformations, a UDD moving noninertially
detects particles, a prime example being that for uniform
acceleration a the detector shows a nonvanishing thermal
response, known as the Unruh effect [5,6,8], i.e., _F ¼
ðΔE=2πÞ=ðe2πΔE=a − 1Þ.
Despite being a fundamental prediction, experimental

realization of the Unruh effect has not been made possible
due to the demand of extremely high accelerations; for
appreciable thermal effects one needs a ≥ 1021 m=s2 [8].
For accelerations that are small compared with the energy
gap ΔE of the detector, the response rate is exponentially
suppressed, i.e., _F ≈ ðΔE=2πÞe−2πΔE=a. This suppression
basically originates from the fact that the temperature
experienced by the accelerating detector is vanishingly
small for achievable acceleration scales, since T ∼ ℏa=kBc.
Hence, for such small temperatures, the significant thermal
contribution comes only from the low frequency modes,
for which the density of field modes (the Bose-Einstein
distribution) falls rapidly as ρðωÞ ∼ ω2 in free space,
suppressing the response in turn, making experimental
verification of the Unruh effect a nontrivial exercise of the
current era.
In response, efforts have been made to enhance the

detector response for maximum achievable accelerations
(in the foreseeable future) using techniques such as optical
cavities [9], ultraintense lasers [10,11], and Penning traps
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[12]. Techniques involving capturing the finite temperature
effects of an accelerating system, such as monitoring
thermal quivering [13], decay of accelerated protons
[14], and radiation emission in Bose-Einstein condensate
[15,16] are also proposed. Other than these, there are
attempts using geometric phases [17], and properly selected
Fock states [18] to enhance the effects of noninertial
motion. Despite these nontrivial attempts, the efforts are
still far from the experimental realization of the Unruh
effect (however, see Ref. [19] for a recent claim).
In this Letter, we focus on the low acceleration properties

of the UDD inside an optimized cavity. To observe the
Unruh effect for small accelerations, it is important to
characterize scenarios where the density of field modes is
increased appreciably, and the correlators of the quantum
field are modified nontrivially, so that the detector responds
in a distinct manner.
The response rate of an UDD moving along a given

trajectory x̃ðτÞ can be written in a more general manner as

_F ðΔEÞ ∝
Z

∞

0

dωk ρðωkÞIðΔE;ωkÞJ ðωk; ηiÞ; ð1Þ

where ρðωkÞ is the density of field modes. The quantity I
depends on the trajectory of the detector through field
correlations, and determines the field modes which stimu-
late the detector. For example, in the case of an inertial
detector IðΔE;ωkÞ is proportional to δðΔEþ ωkÞ, i.e.,
only modes with energy ωk ¼ −ΔE can contribute to the
response rate of the detector, leading to a null response. The
function J depends on the frequency of the field modes ωk,
and the coordinates ηi that are held fixed on the trajectory of
the detector. Therefore, the response rate of the detector can
be enhanced in the following ways. (i) One can increase the
density of field modes ρðωkÞ at small ωk, say, by changing
the boundary conditions, leading to nontrivial changes in
the correlators, an aspect missed in the single mode analysis
that is usually employed [9,17,20–23]. Even for the near
resonant frequency modes, the response rate for a single
mode [23] is suppressed compared with the full-mode
analysis (see Supplemental Material [24]). The analysis in
this Letter justifiably makes use of the complete set of
modes, and not a few modes that are near the resonant
cavity frequency, which gives an additional enhancement
channel even at small accelerations. (ii) One can choose
the trajectory of the detector appropriately. Even for fixed
boundary conditions, different noninertial trajectories asso-
ciate different quantum fluctuations to a given inertial field
vacuum [25], leading to a change in IðΔE;ωkÞ which the
detector is sensitive to. (iii) One can choose mechanisms,
e.g., the stimulated emission, which are extremely sensitive
to both the boundary conditions and the change in field
correlations.
Making use of these, we demonstrate that for a uniformly

accelerated UDD in a long cylindrical cavity, the

acceleration-induced emission rate can be significantly
enhanced, even dominating the inertial spontaneous emis-
sion, for low accelerations.
Uniformly accelerating detector in cavity: Role of

resonance points.—We consider an UDD inside a cylin-
drical cavity of radius R. The length of the cylindrical
cavity is assumed to be much larger than any scale
associated with the detector. The scalar field ϕðxÞ is
assumed to satisfy the Dirichlet boundary condition, i.e.,
ϕ½ρ ¼ R; θ; z� ¼ 0 in the cylindrical polar coordinates. The
Wightman function corresponding to the scalar field inside
the cavity can be expressed as

Wðx; x0Þ ¼ 1

ð2πRÞ2
X∞

m¼−∞

X∞
n¼1

Jmðξmnρ=RÞJmðξmnρ
0=RÞ

J2jmjþ1
ðξmnÞ

×
Z

∞

−∞

dkz
ωk

e−iωkðt−t0−iϵÞeimðθ−θ0Þeikzðz−z0Þ; ð2Þ

where ξmn denotes the nth zero of the Bessel function
JmðzÞ, and ω2

k ¼ k2z þ ðξmn=RÞ2 (see Supplemental
Material [24]).
For an UDD on a uniformly accelerating trajectory, i.e.,

x̃ðτÞ¼ ½t;ρ;θ;z�¼ ða−1 sinhaτ;ρ0;θ0;a−1coshaτÞ, where ρ0
and θ0 are constants, and a denotes proper acceleration of
the detector,the response rate can be found to be

_F ðΔEÞ ¼ 1

2π

Z
∞

0

dωk
8

a2eπΔE=a
K2iΔE=að2ωk=aÞ

ð2ωk=aÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IðΔE;ωkÞ

×
X∞

m¼−∞

X∞
n¼1

ðωk=πR2Þ
J2jmjþ1

ðξmnÞ
Θðωk − ξmn=RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k − ðξmn=RÞ2

q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ρðωkÞ

× J2mðξmnρ0=RÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
J ðρ0=RÞ

; ð3Þ

where KνðzÞ is the modified Bessel function of second
kind, and ΘðxÞ is the Heaviside theta function. One can see
that the density of field modes ρðωkÞ has some special
features. Firstly, as expected it is independent of the
detector parameters—a or ΔE. Secondly, we can see that
ρðωkÞ rises abruptly whenever ω2

k → ðξmn=RÞ2, called
cavity resonance points, implying the existence of field
modes inside the cavity that have very large support in
terms of density of states. How such modes contribute to
the response rate of the detector is controlled by IðΔE;ωkÞ.
In order to study that, we further evaluate the previous
expression to

_F ðΔEÞ ¼ e−πΔE=a

π2R2a

X∞
m¼−∞

X∞
n¼1

J2mðξmnρ0=RÞ
J2jmjþ1

ðξmnÞ
×K2

iΔE=aðξmn=RaÞ: ð4Þ
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In the R → ∞ limit, the density of field modes reduces to
ρðωkÞ ∝ ω2

k, which is the standard density of field modes in
free space, provided one makes the following replacements:
2π

P∞
n¼1 → R

R∞
0 dq and ξmn=R → q and the response rate

[Eq. (4)] reproduces a thermal form. In the limit a → 0, the
function IðΔE;ωkÞ is proportional to δðΔEþ ωkÞ, as
expected (see Supplemental Material [24]). Thus, in the
inertial case there are not any modes which contribute to the
detector response, including those at the resonance points.
However, for the case of noninertial detector, the function
IðΔE;ωkÞ allows for the modes around ωk ∼ ξmn=R to
contribute, with some weightage, leading to a nonzero
response.
In order to quantify the effects of cavity in enhancing the

response rate of the accelerating detector inside the
cavity, when compared to the response rate of an accel-
erating detector in free space _FM, we define a quantity
E ≡ _F= _FM, called enhancement in the response rate of the
detector. In the small acceleration limit, i.e., a ≪ ΔE, we
make use of the asymptotic expansion of KiαðαzÞ for large
values of α [26], with α ∈ R and j arg zj < π, to approxi-
mate (see Supplemental Material [24])

EðΔEÞ ≈ 4π

ðRΔEÞ2
X∞

m¼−∞

X∞
n¼1

J2mðξmnρ0=RÞ
J2jmjþ1

ðξmnÞ

×

8>>>>><
>>>>>:

ðβ<mnΔE=aÞ1=3
½1−ðξmn

RΔEÞ2�1=2
Ai2½−ðβ<mnΔE=aÞ2=3�; ξmn

RΔE < 1

1
34=3Γ2ð2=3Þ ðΔE=2aÞ1=3; ξmn

RΔE ¼ 1

ðβ>mnΔE=aÞ1=3
½ðξmn
RΔEÞ2−1�1=2

Ai2½ðβ>mnΔE=aÞ2=3�; ξmn
RΔE > 1

;

ð5Þ
where AiðzÞ is known as the Airy function [26], and

β<mn ≡ 3

2

�
sech−1

�
ξmn

RΔE

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ξmn

RΔE

�
2

s �
; ð6Þ

β>mn ≡ 3

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ξmn

RΔE

�
2

− 1

s
− sec−1

�
ξmn

RΔE

��
: ð7Þ

It is evident from Eq. (5) that in the small acceleration
limit the enhancement E receives a large amplification,
proportional to ðΔE=aÞ1=3, at the resonance points, i.e.,
RΔE ¼ ξmn. Thus at small accelerations, if one chooses
the radius of the cylindrical cavity such that it coincides
with one of the resonance points, e.g., RΔE ¼ ξ01 ¼ 2.405,
the enhancement in response rate E shows very large
amplifications (see Fig. 1).
Though the enhancement in detector response

diverges at the resonance points as ðΔE=aÞ1=3 in the
limit a=ΔE → 0, the actual response rate of
the detector inside the cavity is still small due to the
exponential suppression of the free space response rate

for small accelerations, i.e., lima=ΔE→0
_F ¼ lima=ΔE→0

_FM×
E≈ðΔE=2πÞe−2πΔE=a×lima=ΔE→0E. It has been argued in
Ref. [9] that the exponential suppression in the response
rate inside a cavity can be regulated considerably by
introducing nonadiabatic switching of the detector. Now,
if the size of the cylindrical cavity is optimized at one of the
resonance points in addition to the usage of an appropriate
switching function, or state selection, as proposed in
Ref. [9], the response rate of the detector can potentially
be enhanced exponentially. This line of study, however,
will be pursued elsewhere.
In this Letter we couple the enhancement in response rate

E at the resonance points, due to the change in density of
field modes ρðωkÞ, to another scheme which is extremely
sensitive to the change in field correlators, namely the
stimulated emission. Since stimulated emission is sensitive
to the number of particles present, and a uniformly
accelerating detector perceives the Minkowski vacuum
as a state with particles, one could expect that a uniformly
accelerating detector can undergo stimulated emission. The
higher the number of particles in the Minkowski vacuum
the detector perceives, the higher is its emission rate. The
emission profile for a rotating detector was utilized in
Ref. [27] to propose measurable detection of noninertial
quantum field theoretic effects. In Ref. [28] the emission
from a rotating muonic hydrogen atom in the so-called
Trojan states is shown to be extremely enhanced. Thus,
modifying the density of field modes ρðωkÞ would further
strengthen such effects which we analyze next.
Acceleration-assisted enhanced emission in cavity: Role

of Ið−ΔE;ωkÞ.—The response rate corresponding to
the emission from the UDD can simply be obtained as

FIG. 1. The emission rates for the accelerating detector _F em

(which is also proportional to the enhancement factor E at small

accelerations) and the inertial detector _̃F
em

with respect to RΔE,
with ρ0 ¼ 0, and a=ΔE ¼ 10−3. Inset: the discrete plot for the
difference in emission rates of the accelerating and the inertial
detectors Δ _F em around the first resonance point ξ01. The range of
RΔE and its step size are chosen such that the contribution
exactly at the resonance point ξ01 is avoided.
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_F emðΔEÞ ¼ _F ð−ΔEÞ. One can show that the principle of
detailed balance is satisfied for the detector-field system
inside the cavity, i.e., _F em= _F ¼ e2πΔE=a, leading to a
thermal distribution of population in equilibrium for a
collection of such detectors ng=ne ¼ e−2πΔE=a, where ng
and ne denote the number of detectors in the ground and the
excited states respectively.
Since only the function I in Eq. (3) is sensitive to

ΔE → −ΔE, the emission rate in the cylindrical cavity can
be written as

_F emðΔEÞ ¼ 1

πR2

Z
∞

0

dωk Ið−ΔE;ωkÞ

×
X∞

m¼−∞

X∞
n¼1

J2mðξmnρ0=RÞ
J2jmjþ1

ðξmnÞ
Θðωk − ξmn=RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k − ðξmn=RÞ2

q :

ð8Þ

Note that in the a → 0 limit Ið−ΔE;ωkÞ → δð−ΔEþ ωkÞ,
so for an inertial detector only the modes with energy
ωk ¼ ΔE are responsible for the emission of the detector.
Since the density of field modes diverges for modes
with energy ωk ¼ ξmn=R, the emission rate becomes
divergent if RΔE ¼ ξmn, so an inertially moving excited
detector emits instantaneously inside such a cavity. On
the other hand, for uniformly accelerating detector
Ið−ΔE;ωkÞ ∝ a−1eπΔE=aK−2iΔE=að2ωk=aÞ, there is a dis-
tribution of modes which determines the emission rate.
Some resulting salient features are as follows.
Firstly, since δð−ΔEþ ωkÞ in the expression for inertial

emission rate in Eq. (8) is replaced by a smooth function
Ið−ΔE;ωkÞ, the emission rate of the accelerating detector

inside a cavity which is optimized at its resonant configu-
ration RΔE ¼ ξmn is large, but finite. Thus, if the cavity is
tuned to be at one of its resonance points, while the inertial
detector de-excites in no time, the de-excitation of the
accelerating detector takes a finite amount of time, the
delay marking the noninertial effect.
Secondly, due to the change in Ið−ΔE;ωkÞ, caused by

the accelerated motion, the emission rate of the detector in a
cavity, optimized slightly away from the resonance points,
is larger than that of an inertial detector (see Fig. 1). This is
due to the fact that the Delta function (inertial detector)
shows a sharper fall off away from the resonance points as
compared with the smoother function Ið−ΔE;ωkÞ of the
accelerated detector.
Therefore, in comparison to the inertial detector, accel-

eration of the detector causes a delay in its emission at the
resonance points of the cavity, but exhibits substantial
enhancement in the emission rate slightly away from the
resonance points. Further, in the low acceleration limit the
enhancement E can be related to the emission response
rate of the detector _F em as lima=ΔE→0

_F em ≈ ðΔE=2πÞ×
lima=ΔE→0E. As the enhancement in the response rate E of
the detector exhibits a sharp amplification at the resonance
points for small accelerations, one could estimate the
amount of noninertial contribution in the emission rate
of the detector at the resonance points of the cavity. In
order to further quantify, we subtract the emission rate of

an inertial detector _̃F
em

from the noninertial one, i.e.,

Δ _F em ≡ _F em − _̃F
em
, obtaining the purely noninertial con-

tribution in the emission rate slightly away from any
resonance point as

Δ _F em ≈
2ΔE

ðRΔEÞ2
X∞

m¼−∞

X∞
n¼1

J2mðξmnρ0=RÞ
J2jmjþ1

ðξmnÞ

8>>><
>>>:

1

½1−ðξmn
RΔEÞ2�1=2

fðβ<mnΔE=aÞ1=3Ai2½−ðβ<mnΔE=aÞ2=3�
− 1

2πg; ξmn
RΔE < 1

ðβ>mnΔE=aÞ1=3
½ðξmn
RΔEÞ2−1�1=2

Ai2½ðβ>mnΔE=aÞ2=3�; ξmn
RΔE > 1

: ð9Þ

Since Δ _F em > 0 amounts to a dominating noninertial
emission, we see (Fig. 1) that the emission rate of the
accelerating detector can be much higher than that of the
inertial detector, if the cavity is designed to be slightly away
from one of its resonance points, i.e., QR ≡ 1 −
ðξmn=RΔEÞ2 is a small (nonzero) number. Since the inertial
response diverges at the resonance points, very close to the
resonance points Δ _F em is a large negative number (see the
inset of Fig. 1). However, once one starts moving away
from the resonance, both inertial and noninertial emission
rates start decaying with the later decaying much more
slowly in comparison to the inertial delta function. As a
consequence, closer to the resonance point there is a region

where the noninertial response dominates significantly
(see Fig. 2). Hence, the highly enhanced emission rate
of the UDD in a slightly off-resonant cavity will clearly be a
distinguishable direct realization of the Unruh effect. Thus,
the requirement of high acceleration for observing the
Unruh effect can be compensated for a precise cavity
design, i.e., one with small QR.
Precision in cavity design.—Since the nonzero accel-

eration of the detector allows a width of RΔE about
any resonance point (see the inset of Fig. 1) where
the noninertial component dominates, we explore the
noninertial component of the emission rate when we
go off resonant by an infinitesimal amount ϵ, i.e.,
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RΔE ¼ ξmn þ ϵ. As can be seen in Fig. 2, even for a
smaller value of acceleration (a=ΔE ∼ 10−3), with
increased precision [ϵ ∼ ð1.5 − 3Þ × 10−2] in cavity design,
the emission rate of the detector is substantially enhanced.
Moreover, in a realistic experimental setup the cylindri-

cal cavity would not be ideal, and the associated ρðωkÞmay
not really be diverging at the resonance points, as discussed
above. Nevertheless, using a reasonably regularized cavity

expressed by ρðωkÞ ∝ 1=½β=Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k − ðξmn=RÞ2

q
�, with

the regularization parameter β ≪ 1, it can be demonstrated
that the dominance of noninertial contribution near the
resonance points is qualitatively independent of the occur-
rence of divergence in ρðωkÞ (see Fig. 2). Further, such
near-resonance features remain present for a realistic cavity
with leakage of modes as well, which typically provides a
Lorentzian broadening for the inertial detectors. In the
cylindrical cavity this leakage only modifies the function
IðΔE;ωkÞ, leaving the structure of density of modes
ρðωkÞ, which harbors the resonance, intact. For achievable
quality factors [29,30] (∼104−6), the modification in the
emission for the case of Rindler motion is only marginal,
i.e.,< 1% (see the Supplemental Material [24]), suggesting
the robustness of the scheme.
Conclusions.—To summarize, for small accelerations

a=ΔE → 0, the enhancement EðΔEÞ in the response rate
of the accelerating detector inside a long cylindrical cavity
diverges as ðΔE=aÞ1=3 at the resonance points of the cavity,
i.e., ξmn=RΔE ¼ 1. Such resonant configurations of cavity
can be utilized very fruitfully for observing the Unruh
effect at small accelerations if one couples it with stimu-
lated emission. Since the emission rate of the inertial
detector has a sharp fall off away from the resonant
frequencies, unlike the accelerating case, to study the

noninertial emission rate of the accelerating detector it is
advisable to design a cylindrical cavity to be in a close
neighborhood of a resonance point, i.e., RΔE ¼ ξmn þ ϵ.
In such a cavity, even with small enough acceleration, the
noninertial emission rate can be made much larger than the
inertial emission rate and observable. Similar suppression
(dominance) of resonant (nonresonant) effects due to
the accelerated motion is also observed in recent works
[27,31].
The calculations presented in this Letter can easily

be generalized for other fields, e.g., for a UDD with
ΔE ∼MHz (e.g., hydrogen atom making a 2p → 2s
transition [27]) inside an optical cavity. The required
dimensions of the cavity for such atoms could
be (l ∼ aT2 ≫ a=ΔE2 ∼ cm and R ∼ ξmn=ΔE ∼ cm).
For such dimensions even a marginal acceleration
a ∼ 109 ms−2, which can easily be obtained for instance
by setting up a thermal gradient [32] of ΔT ¼
ðma=kBÞΔx ∼ 1 K across the cavity of Δx ∼ cm, leads
to a significant emission enhancement. Further, multiple
noninteracting accelerated particles, e.g., a beam of UDDs,
can be sent inside the cavity, and an integrated enhanced
effect can be observed to further strengthen the signal [33].
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