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Motivated by quantum gravity, semiclassical theory, and quantum theory on curved spacetimes, we
study the system of an oscillator coupled to two spin-1=2 particles. This model provides a prototype for
comparing three types of dynamics: the full quantum theory, the classical oscillator with spin backreaction,
and spins propagating on a fixed oscillator background. From calculations of oscillator and entanglement
entropy evolution, we find the three systems give equivalent dynamics for sufficiently weak oscillator-spin
couplings but deviate significantly for intermediate couplings. These results suggest that semiclassical
dynamics with backreaction does not provide a suitable intermediate regime between quantum gravity and
quantum theory on curved spacetime.
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A quantum theory of gravity (QG) is expected to
provide a unification of gravity with the other forces of
nature (for a recent review, see, e.g., Ref. [1]). The literature
abounds with attempts to quantize gravity or simplified
models of it [2] with no clear consensus so far on the
approach to a final theory. If the QG turns out to be a
conventional quantum theory, it will be a system with a
Hilbert space H ¼ Hgravity ⊗ Hmatter. The matter compo-
nent is in general a “multipartite” system representing
several species of matter. Thus, quantum states can have
matter-gravity entanglement, and the corresponding entan-
glement entropy would be an evolving observable.
If a QG theory were available, there would be several

questions to pose. The Universe we observe is well
described by quantum fields on either a background of
an expanding cosmology on large scales or a flat spacetime
on smaller scales. One of the important questions is how
such an approximation emerges dynamically from quantum
gravity [3,4]. In between quantum gravity and quantum
fields on a classical background spacetime, there is the
intermediate regime of classical gravity coupled to quan-
tum matter with backreaction. A proposal for this inter-
mediate regime is the much studied semiclassical Einstein
equation [5–7]:

GabðgÞ ¼ 8πGhΨjT̂abðg; ϕ̂ÞjΨi: ð1Þ

If this equation can be properly defined and solved, it
would provide an association of a quantum state jψi of
matter with a classical metric g (viewed in the Heisenberg
picture). This is a nonperturbative hybrid classical-quantum
equation; it raises many questions, such as what is the
physical interpretation of the metric corresponding to a
linear or entangled combination of matter states, and how

exactly the right-hand side is to be defined if the metric is
not known explicitly [8]. There are other hybrid models of
this type: the so-called Newton-Schrödinger equation
[9,10], which is a Friedmann-Schrödinger generalization
to cosmology and related work [11,12]; and linear state
evolution models using generalizations of the Lindblad
equation [13].
In a gravity-matter system, it is of interest to study and

compare three types of dynamics. These are the full
quantum evolution, a suitably defined hybrid quantum-
classical evolution with backreaction, and quantum evolu-
tion with no backreaction on the classical system. In the
weak gravity regime, the gravitational field may be viewed
as “heavy” and slowly varying, and it is weakly coupled to
much lighter and faster moving matter. In this regime of
couplings, it is natural to expect that gravity behaves
classically. On the other hand, in the deep QG regime,
matter-gravity coupling would be strong and could produce
highly entangled states. Although a study of such com-
parative dynamics is technically challenging at the field
theoretic level, it is relatively accessible in simpler models
of gravity, such as cosmologies coupled to matter and
nongravitational systems.
In this Letter, we study this set of questions in a model

that has been a mainstay for work in atomic physics and
quantum optics: the system of an oscillator coupled to a
particle with spin, known as the Jaynes-Cummings model.
We consider a slightly more general model of an oscillator
coupled to two spin-1=2 particles together with a spin-spin
coupling. In addition to the full quantum case, we utilize
this model in a new way by defining a coupled classical-
quantum model with spin backreaction on the oscillator;
and we utilize another without backreaction, where the two
spins propagate on an “oscillator background.” The former
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case resembles a Hamiltonian version of the semiclassical
Einstein equation, whereas the latter may be viewed as a
simple case of quantum theory on curved spacetime. We
study the comparative dynamics numerically for a variety
of initial states in the quantum-quantum (QQ) case and
compare it with the dynamics in the semiclassical (SC) and
classical background (CB) cases. (A related hybrid model
with different dynamics was studied in [14].) Ourmain result
is that the dynamics in the threemodels agrees for sufficiently
small spin-oscillator coupling, but the SC case deviates
significantly as this coupling is increased. Furthermore,
initial product spin states can become maximally entangled
in the SC and CB cases, and the SC case has unusual static
solutions not present in the other cases. We discuss impli-
cations of these results for gravitational systems.
The system we consider is shown schematically in Fig. 1.

The oscillator takes the place of gravity, and the spins
correspond to matter. The first case is quantum-quantum,
where the entire system is quantized; the second is the
coupled classical oscillator-spin system with backreaction;
and the third is (quantum) spin dynamics on a fixed
classical oscillator background. (Generalizations of such
models to gravity may be achieved by extending, e.g., the
scalar-cosmology case discussed recently [15].)
Quantum oscillator-spin (QQ).—The Hilbert space of

the model for this case is the tensor product of the
individual Hilbert spaces of the oscillator and the two

spins, H ¼ Ho ⊗ Hð1Þ
1
2

⊗ Hð2Þ
1
2

; and the Hamiltonian is

H¼
�
p2

2m
þ1

2
mω2x2

�
⊗ ðIð1Þ⊗ Ið2ÞÞþ I⊗

ωS

2
ðσð1Þz ⊗ Ið2Þ

þ Ið1Þ⊗ σð2Þz Þþg1
2
ða⊗ σð1Þþ þa† ⊗ σð1Þ− Þ⊗ Ið2Þ

þg2
2
ða⊗ Ið1Þ ⊗ σð2Þþ þa†⊗ Ið1Þ⊗ σð2Þ− Þ

þ λ

2
I⊗ ðσð1Þþ ⊗ σð2Þ− þσð1Þ− ⊗ σð2Þþ Þ

≡hoþhsþhosþhss; ð2Þ

where σz and σ� are the Pauli diagonal and ladder
operators, and a ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffi
mω=2

p þ ip=
ffiffiffiffiffiffiffiffiffiffi
2mω

p
. The first two

terms in Eq. (3) are the Hamiltonians of the noninteracting
oscillator and spins (ho and hs), the second two are the
interactions of the oscillator with each of the spins with
coupling constants g1=2 and g2=2 (hos), and the third is the
spin-spin interaction with coupling λ=2 (hss).
We restrict our attention to the 4 × 4 truncation of the

oscillator Hamiltonian and consider initial states that are
linear combinations of the ground and first excited states.
This ensures that the coupled quantum dynamics remains in

the 16-dimensional Hilbert space H¼Ho ⊗Hð1Þ
1=2⊗Hð2Þ

1=2.
Thus, the time dependent Schrödinger equation (TDSE) in
this truncation is a set of 16 coupled ordinary differential
equation (ODEs).
Semiclassical oscillator-spin (SC).—In this case, the

oscillator is classical with orbits in the R2 phase space with
coordinates ðx; pÞ, and the spin state is given by a vector in
the Hilbert space Hð1Þ

1=2 ⊗ Hð2Þ
1=2. The Hamiltonian is

H¼
�
p2

2m
þ1

2
mω2x2

�
ðIð1Þ⊗ Ið2ÞÞ

þωS

2
ðσð1Þz ⊗ Ið2Þ þIð1Þ⊗σð2Þz Þþg1

2
ðaσð1Þþ þa�σð1Þ− Þ⊗ Ið2Þ

þIð1Þ⊗
g2
2
ðaσð2Þþ þa�σð2Þ− Þ

þ λ

2
ðσð1Þþ ⊗σð2Þ− þσð1Þ− ⊗σð2Þþ Þ≡hSCo þhSCs þhSCos þhSCss ;

ð3Þ

where each component is defined as for the fully quantum
case. However x,p,a, anda� are now classical variables.We
define the coupled dynamics with the TDSE for the spins
and the Hamilton equations for the oscillator:

i
d
dt

jΨi ¼ ðhSCs þ hSCos þ hSCss ÞjΨi ð4Þ

_q ¼ fq;Heffg; _p ¼ fp;Heffg; ð5Þ

where jΨi is a spin state, and

Heffðx; pÞ≡ hΨjHjΨi: ð6Þ

This is a set of six coupled ODEs to be solved with initial
dataset fx0; p0; jψi0g. The quantum dynamics is unitary by
definition, and it is readily verified using the evolution
equations in which the Hamiltonian Heff is a constant of
motion.
Spins on classical (oscillator) background (CB).—This

case is the simplest of the three. We define it by fixing an
classical oscillator “background” solution ½xcðtÞ; pcðtÞ� and
ac ¼ xc

ffiffiffiffiffiffiffiffiffiffiffiffi
mω=2

p þ ipc=
ffiffiffiffiffiffiffiffiffiffi
2mω

p
with parameters m and ω,

FIG. 1. Oscillator coupled to two spin-1=2 particles.
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as well as the time dependent spin Hamiltonian

H ¼ ωS

2
ðσð1Þz ⊗ Ið2Þ þ Ið1Þ ⊗ σð2Þz Þ þ g1

2
ðacðtÞσð1Þþ

þ a�cðtÞσð1Þ− Þ ⊗ Ið2Þ þ Ið1Þ ⊗
g2
2
ðacðtÞσð2Þþ þ a�cðtÞσð2Þ− Þ

þ λ

2
ðσð1Þþ ⊗ σð2Þ− þ σð1Þ− ⊗ σð2Þþ Þ: ð7Þ

Dynamics is defined solely by the TDSE of the spin
state. Thus, this is a system of four coupled ODEs for the
spin state.
Comparing dynamics.—All three oscillator-spin cases

defined above (QQ, SC, and SB) have dimensional param-
eters m, ω, ωS, g1, g2, and λ. The oscillator provides
“fundamental” time and length scales 1=ω and 1=

ffiffiffiffiffiffiffi
mω

p
,

respectively (with ℏ ¼ 1). We set these equal to unity and
measure the remaining four parameters in these units.
Comparing dynamics in the three systems is accom-

plished by first fixing initial data fxð0Þ; pð0Þ; jΨisð0Þg for
the SC system, and then (i) using the same initial spin state
jΨisð0Þ for the QQ and CB systems, and (ii) matching
initial data for the oscillator. The latter is accomplished for
the CB case by using the oscillator solution that goes
through the phase space point ½xð0Þ; pð0Þ�, and for the QQ
case by using the product oscillator-spin state

jΦið0Þ ¼
�
cos

�
θ

2

�
j0i þ sin

�
θ

2

�
eiϕj1i

�
⊗ jΨisð0Þ; ð8Þ

(where j0i and j1i are, respectively, the ground and first
excited states of the oscillator) and then fixing θ and ϕ such
that the expectation values of x̂ and p̂ match:

xð0Þ¼ sinðθÞcosðϕÞffiffiffiffiffiffiffiffiffiffi
2mω

p ; pð0Þ¼−
ffiffiffiffiffiffiffi
mω

2

r
sinðθÞsinðϕÞ: ð9Þ

This ensures the closest possible initial data for the three
cases and enables comparison of ðx; pÞ and ðhx̂i; hp̂iÞ
phase space trajectories as well as evolution of spin
entanglement entropy and energy in each subsystem.
For all cases, we integrated the coupled differential

equations numerically for a variety of initial data. The
method we used ensured that the probability and Heff are
conserved at least to order 10−8. We computed several
solutions of the three cases with comparable initial data (as
described above) with the aim of studying the parameter
ranges where the oscillator dynamics looks similar. A
representative sample is shown in Fig. 2 with parameter
values m ¼ ω ¼ 1 and ωS ¼ λ ¼ 2, as well as oscillator-
spin coupling parameters g≡ g1 ¼ g2 ¼ 0.0001, 0.1, and
1.5. The latter are chosen to highlight how the dynamics in
phase space, spin entanglement entropy Sent, and energies
in the spin subsystem Ess ¼ hhs þ hos þ hssi and oscillator
Eosc ¼ hHi − Ess change with oscillator-spin couplings.

The initial data for the SC and CB cases in Fig. 2 are
fqð0Þ¼0.1;pð0Þ¼0;jΨð0Þi¼jþþig. The corresponding
initial state for the QQ system is obtained by using Eq. (9)
with ϕ ¼ 0 and sin θ ¼ 0.1

ffiffiffi
2

p
; these are very close to the

(truncated) oscillator coherent states.
We highlight the following features evident in Fig. 2:

(i) for g ¼ 0.0001, the oscillator phase space trajectories
and subsystem energies are indistinguishable in all three
cases, and the spin entanglement entropy remains nearly
zero; (ii) as g increases to 0.1, differences start to appear in
each of the variables plotted and (in particular) spin
entanglement entropy increases from zero, attains its
maximum value of log 2, and oscillates notably, even for
the SC and CB cases; (iii) spin entanglement entropy and
subsystem energy oscillations have higher frequencies for
larger g values; and (iv) the SC phase space trajectory is
more expansive, with the range of the oscillator extending
an order of magnitude more than that for the QQ and CB
cases. Similar features are evident for other parameter
values and initial data. Although it is gratifying to see that
all cases approximately agree for sufficiently small g
values, point (iv) above is especially noteworthy: it
provides evidence that the backreaction SC model, which
is very similar in form and spirit to the semiclassical
Einstein equation, may not provide a reasonable transition
between the QQ and CB systems. Further evidence for this
view is provided in Fig. 3, which presents a measure of
phase space spread in each of the three systems: Δx ¼
xmax − xmin and Δp ¼ pmax − pmin are plotted as a func-
tion of coupling g (for time runs to 100 units), where xmax,
xmin, etc. are the largest and smallest values in the phase
space plots in Fig. 2. The drastic deviation of the SC from
the QQ and CB cases at g ∼ 0.1 is evident. The plateau for
large g is due to conservation of Heff , which limits phase
space extent.
The SC equations provide an additional curious feature

not present in the QQ and CB systems: static solutions for
the oscillator. These are obtained by considering eigen-
states of the spin subsystem hs þ hos þ hss and setting
_x ¼ _p ¼ 0. The SC equations then reduce to

_x ¼ p
m
þ fx; Eða; a�; g; λÞg ¼ 0 ð10Þ

_p ¼ −mω2xþ fp;Eða; a�; g; λÞg ¼ 0; ð11Þ

where Eða; a�; g; λÞ are the corresponding eigenvalues.
For λ ¼ 0, there are particularly simple static solutions:
any point on the circle x2 þ p2 ¼ g2=2 − 2ω2

s=g2 with
mω ¼ 1. Thus, we must have g2 > 2ωs. The physical
interpretation of the solution with p ¼ 0 and x ≠ 0 is
that the stationary spin state “holds” the stretched spring
of the oscillator. But, the physical interpretation of
solutions with x ≠ 0 and p ≠ 0 are unusual: the spring is
held stretched from equilibrium (because x ≠ 0) and the
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mass is in uniform motion because p ≠ 0. Other static
solutions are readily computed numerically. These
solutions may be compared with static solutions

of the Newton-Schrödinger equation mentioned in
[16]; although the system is different, the underlying
reason for their appearance is similar—the equations are

FIG. 2. Phase space, spin entanglement entropy Sent, and subsystem energies Eosc and Ess for m ¼ ω ¼ 1 and ωS ¼ λ ¼ 2 for the g
values indicated. Initial data for semiclassical cases are x ¼ 0.1, p ¼ 0 (indicated with a black dot), and spin state j þ þi; corresponding
data for the fully quantum case from Eq. (8) are ð0.99748420879j0i þ 0.07088902028j1iÞj þ þi. (Phase space plot axes represent hxi
and hpi for QQ, as well as x and p for SC and CB cases.)
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nonlinear in the quantum state, and so they permit a richer
class of static solutions.
Discussion.—We described in detail three versions of the

dynamics of the oscillator coupled to two spin-1=2 particles
(QQ, SC, and CB) with a truncation of the oscillator to a
four-level system. Our aim was to compare the dynamics of
the oscillator, spin entanglement entropy, and subsystem
energies for the same initial conditions. We highlight
several results and comment on some implications:
(1) For sufficiently small oscillator-spin couplings, the
dynamics of the three systems is identical; this lends
support to the idea that similar results would hold for
other systems, including gravity coupled to matter. (2) Of
particular note is that the SC system gives oscillator
trajectories that are substantially different from the QQ
system for larger oscillator-spin couplings. This may be
attributed to the fact that the SC equations are nonlinear in
the state, unlike the QQ and CB systems. Because the same
(but more consequential) nonlinearity holds for the semi-
classical Einstein equation, our results suggest that the
latter does not provide the appropriate transition between
quantum gravity and quantum fields on curved spacetime.
(3) Spin entanglement is induced in the SC and CB systems
for nonzero spin-spin coupling λ; e.g., g ¼ 0.1 and λ ¼ 2 in
Fig. 2. (The CB case is similar to entanglement generation

in Floquet dynamics [17].) The implication for gravity is
similar: initial product states of matter can get entangled
thorough the semiclassical Einstein equation, or even by
propagating on a fixed but time dependent background
spacetime, provided matter is self-interacting through any
local field. (4) In the proposed experiments [18–20] for
detecting quantization of linearized gravity through entan-
glement generation in mass states, it is posited that
interaction between masses is not action at a distance (as
it is here for spin-spin), but it is instead generated via a
mediating quantum gravitational field. However, if the
masses are sufficiently close in a laboratory setting, a
point interaction may be a good approximation; and any
entanglement generated through nongravitational quantum
interactions, whether local or not, could be significant, as
demonstrated in the model discussed here. (See Ref. [21]
for related discussion.) In the final analysis, a quantum
interaction is of course necessary to generate entanglement
between masses, whatever its origin, and the spin-spin
interaction in the present model is a stand-in for that.
(5) There is a curious case for the SC model where, for the
j þ þi or j − −i initial states, there is no entanglement
induced for g ¼ 0 and λ ≠ 0. Then, increasing g from zero
(i.e., turning on the classical coupling) induces entangle-
ment; this special case is an exception to the proof in [22],
which covers the λ ¼ 0 case.
What are the lessons for gravity that can be inferred from

the models we present? The “coupling constant” between
gravity and matter in the Hamiltonian formulation is

ffiffiffi
q

p
,

which is the square root of the determinant of the spatial
metric; e.g., for a scalar field, the Hamiltonian density is
H ¼ p2

ϕ=ð2
ffiffiffi
q

p Þ þ ffiffiffi
q

p
VðϕÞ. Thus, in the semiclassical

approximation of the type we consider here, the coupling
constant evolves with the classical gravitational dynamics.
In an expanding universe, the kinetic term decreases and
the potential term increases; hence, the metric-matter
coupling increases. This is precisely the regime where
our model indicates significant deviation from the QQ and
CB cases. And, similarly, the gravitational SC equations
would be nonlinear in the state, unlike the QQ and SC
cases, and would give rise to static solutions, as in the
present model.
Our results suggest several areas for further investiga-

tion. These include considering in the same spirit cosmo-
logical and other gravitational models with scalar and/or
spinorial fields by extending the work in [15]; a field
theoretic version of the SC model for studying backreaction
in gravity coupled to a scalar field in spherically symmetric
gravity (where matter-gravity entanglement is a potentially
important feature [23]); and linear alternatives to the
semiclassical Einstein equation, as discussed in [13],
applied to similar model systems: the latter may address
the issue of the significant difference between the QQ and
SC systems for the results presented here.

FIG. 3. A comparison of phase space spread of QQ, SC, and CB
systems as a function of coupling g; deviation of SC case from
others is evident. Δx and Δp are differences of maximum and
minimum values in phase space plots in Fig. 2.
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