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A quantum version of the Monge-Kantorovich optimal transport problem is analyzed. The transport cost
is minimized over the set of all bipartite coupling states ρAB such that both of its reduced density matrices
ρA and ρB of dimension N are fixed. We show that, selecting the quantum cost matrix to be proportional to
the projector on the antisymmetric subspace, the minimal transport cost leads to a semidistance between ρA

and ρB, which is bounded from below by the rescaled Bures distance and from above by the root infidelity.
In the single-qubit case, we provide a semianalytic expression for the optimal transport cost between any
two states and prove that its square root satisfies the triangle inequality and yields an analog of the
Wasserstein distance of the order of 2 on the set of density matrices. We introduce an associated measure of
proximity of quantum states, called SWAP fidelity, and discuss its properties and applications in quantum
machine learning.
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Introduction.—Remarkable progress in quantum tech-
nologies stimulates further research on foundations of
quantum mechanics. In particular, one aims to improve
our understanding of the structure of the set of quantum
states [1,2]—the arena in which quantum information
processing takes place. It is, therefore, important to analyze
various distances in the space of quantum states and to
describe their properties and diverse physical applications.
In the classical case, one considers several distances in

the space of probability distributions. A prominent role is
played by the Monge distance, directly linked to the famous
mass transport problem [3], in which one minimizes the
work against friction required to move a pile of earth of
shape pA into the final shape pB. For continuous distribu-
tions, the problem is solved analytically in any 1D case [4]
and in several particular 2D cases [5], while effective
numerical algorithms can be applied for any discrete
probability distributions.
More general formulations of Kantorovich [6,7] and

Wasserstein [8], relying on joint probability distributions
with marginals pA and pB, are explicitly symmetric with
respect to given probability distributions. Because of
numerous applications of the mass transport problem in
operations research and economics and its relation to the
assignment problem, it remains a subject of intensive
mathematical research [9,10]. The transport problem was
inspected from the perspective of free probability [11] and
applied in the study of causality [12–14].
An attempt to generalize the notion of the Monge

distance for quantum theory was pursued for the setup

of infinite- [15] and finite-dimensional [1,16] Hilbert
spaces. Such a distance between any two quantum states,
defined by the Monge distance between the corresponding
Husimi distributions, enjoys the semiclassical property:
The distance between two coherent states, centered at
points x and y in the classical phase space, is equal to
the distance jx − yj between the points at which both
coherent states are concentrated. This property, crucial
for studies on quantum analogs of the Lyapunov exponent
[17], is also shared by the distance recently proposed
in Ref. [18].
Any definition based on the notion of the Husimi

function depends on the choice of the set of coherent
states. It is, therefore, natural to look for a universal method
to introduce the transport distance between quantum states
directly by applying the Kantorovich-Wasserstein approach
and performing optimization over the set of bipartite
quantum states with fixed marginals [19–21]. In spite of
recent vibrant activity in this field [22–28], this aim has not
been fully achieved until now [29–32].
In parallel, quantum optimal transport has found numer-

ous applications in quantum physics, in particular, in
connection with the measures of proximity of quantum
states [33–36]. The latter play a key role in quantum
metrology [37–39] as well as in quantum machine learning
[40–43].
In this Letter, we introduce a measure of proximity of

quantum states, dubbed the “SWAP fidelity,” as it is inspired
by quantum optimal transport with a specific quantum
cost matrix. It shares many properties with the standard
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Uhlmann-Jozsa fidelity [44,45] and agrees with the latter if
at least one of the states is pure. We prove that the square
root of the associated quantum optimal transport cost yields
a new distance on the space of qubits which is a quantum
analog of the 2-Wasserstein distance. For larger dimen-
sions, we show analytically that this quantity gives a
semidistance and provide numerical evidence that it also
satisfies the triangle inequality. Moreover, we prove that it
is bounded from above by the root infidelity and from
below by the rescaled Bures distance. We further discuss
the general form of a quantum cost matrix and study the
quantum-to-classical transition of the transport problem.
The latter shows that quantum optimal transport is cheaper
than the classical one, generalizing the results of Ref. [36].
Finally, we discuss an application of the new quantum
metric in the context of quantum generative adversarial
networks (QGANs).
Classical transport problem.—To formulate the mass

transport problem in the setup of Kantorovich for any
probability distributions pA

i and pB
j , one introduces the

notion of a classical coupling—a joint probability distri-
bution PAB

ij with two specified marginals pA
i ¼ P

j P
AB
ij and

pB
j ¼ P

i P
AB
ij . In the case of two probability vectors of the

order of N, pA, pB ∈ ΔN , any joint distribution PAB ∈ ΔN2 ,
which determines a transport plan, is represented by a
single vector Pμ, with μ ¼ ði − 1ÞN þ j ¼ 1;…; N2. The
set ΓclðpA; pBÞ of all admissible couplings forms a convex
subset of the simplex ΔN2 , with extreme points charac-
terized in Ref. [46].
Consider a set of N points X ≔ fxigNi¼1 equipped with a

distance function d. With the latter, we associate a
symmetric N × N matrix Eij ≔ dðxi; xjÞ. Assuming that
the transport cost of a unit of mass from point xi to point xj
is equal to the distance Eij, one can formulate the classical
transport problem [5,26]. In order to study its quantum
analog, it will be convenient to reshape the square distance
matrix Eij of dimension N into a distance vector Dμ of
length N2.
To generate a Wasserstein distance between probability

distributionspA andpB, one can use aN2 × N2 classical cost
matrix C which is diagonal, Cμν ¼ Dμδμν for μ; ν ¼
1;…; N2, and a diagonal density matrix ρABμν ¼ Pμδμν. For
a given transport planPAB, the total transport cost is given by
the scalar product T̂CðPÞ ≔

P
N2

μ¼1DμPμ ¼ TrCρAB. The

minimal transport costTcl
C ≔ minPT̂CðPÞ leads to the family

of Wasserstein distances Wcl
C;p defined for p ≥ 1:

Wcl
C;pðpA; pBÞ ≔ ½ min

PAB∈Γcl
ðTrCpρABÞ�1=p ¼ ðTcl

CpÞ1=p: ð1Þ

The minimum is taken over the set ΓclðpA; pBÞ of classical
couplings [5]. If dðxi; xjÞ ¼ 1 − δij, the space X has the
geometry of an N-point simplex ΔN . In this case, Cp ¼ C

and Wcl
C;p ¼ ðTcl

CÞ1=p for any p ≥ 1, so we shall abbreviate
Tcl ≔ Tcl

C and denote the classical cost matrix by Ccl.
Proximity of quantum states.—We now switch to the

quantum setting and denote the set of N × N density
matrices byΩN ¼ fρ∶ρ ¼ ρ†; ρ ≥ 0;Trρ ¼ 1g. To quantify
the closeness of any two quantum states, one uses various
distances on ΩN—see Ref. [1]. The trace distance, singled
out by the Helstrom theorem on optimal distinguish-
ability [47], reads DTrðρA; ρBÞ ≔ 1

2
TrjρA − ρBj, where

jXj ≔
ffiffiffiffiffiffiffiffiffi
XX†

p
. Another way to characterize the proximity

between two density matrices relies on Uhlmann-Jozsa
fidelity [44,45] FðρA; ρBÞ ≔ ðTrj

ffiffiffiffiffi
ρA

p ffiffiffiffiffi
ρB

p
jÞ2. It leads to

the following distances: the root infidelity [48] I ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p
,

the Bures distance [44,49] B ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ffiffiffiffi

F
p Þ

q
, and the

Bures angle A ≔ ð2=πÞ arccos ffiffiffiffi
F

p
. Note that the Bures

distance and other distances based on fidelity are closely
related to statistical distinguishability and quantum Fisher
information [37,38], so they have a direct interpretation in
quantum metrology [39].
We shall now introduce a quantity analogous to fidelity,

which is directly related to the quantum optimal transport
problem and its applications in machine learning [42].

SWAP fidelity.—Consider two arbitrary states ρA,
ρB ∈ ΩN . A composed (bipartite) density matrix ρAB of
the order of N2 is called a coupling matrix [50] between ρA

and ρB if both partial traces agree, TrAρAB ¼ ρB and
TrBρAB ¼ ρA. The set of all possible quantum couplings
matrices will be denoted by ΓQðρA; ρBÞ ⊂ ΩN2—see
Fig. 1(c). The bipartite quantum states can be conveniently
represented in the Fano form—see Supplemental Material
[51], which includes the additional Refs. [52–70].
Let S denote the SWAP operator, Sðjxi ⊗ jyiÞ ≔ jyi ⊗

jxi for any vectors jxi and jyi. For any ρA; ρB ∈ ΩN we
introduce the SWAP fidelity:

FSðρA; ρBÞ ≔ max
ρAB∈ΓQ

ðTrSρABÞ; ð2Þ

FIG. 1. Couplings between probability distributions used for
Kantorovich distance: (a) continuous 1D probabilities pAðxÞ and
pBðyÞ coupled by a joint distribution Pðx; yÞ; (b) two N-point
classical states pA; pB ∈ ΔN coupled by a joint state PAB ∈ Γcl ⊂
ΔN2 with adjusted marginals; (c) two quantum states ρA; ρB ∈ ΩN

coupled by a bipartite state ρAB ∈ ΓQ ⊂ ΩN2 such that TrAρAB ¼
ρB and TrBρAB ¼ ρA.
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where the maximum is taken over the set ΓQ of all
admissible coupling matrices ρAB.
Proposition 1.—For any dimension N, the SWAP fidelity

FS is a symmetric jointly concave function from ΩN ×ΩN

to the unit interval. Furthermore, FSðρA; ρBÞ ¼ 1 iff
ρA ¼ ρB, FSðρA; ρBÞ ¼ 0 iff TrρAρB ¼ 0, and

FSðρA; ρBÞ ¼ FSðUρAU†; UρBU†Þ; for U ∈ UðNÞ; ð3Þ

FðρA; ρBÞ ≤ FSðρA; ρBÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðρA; ρBÞ

q
; ð4Þ

FSðρA ⊗ σA; ρB ⊗ σBÞ ≥ FSðρA; ρBÞFSðσA; σBÞ: ð5Þ

The above result, proven in Supplemental Material [51],
shows that, in analogy to the fidelity F, the SWAP fidelity FS
equals unity iff both states coincide and vanishes iff they
are orthogonal. Furthermore, it interpolates between fidel-
ity and root fidelity—see inequality (4)—with the first
inequality saturated if at least one of the states is pure.
Notably, the SWAP fidelity is supermultiplicative with
respect to the tensor product, as it satisfies inequality (5)
characteristic to superfidelity [71]. Note also that FS is
jointly concave, as is the root fidelity

ffiffiffiffi
F

p
, while it has a

probabilistic interpretation for pure states, FSðϕ;ψÞ ¼
Fðϕ;ψÞ ¼ jhϕ;ψij2—see Ref. [1]. The SWAP fidelity is
shown below to be closely related to the quantum optimal
transport and yields a novel metric on the Bloch ball.
Quantum cost matrix.—To study the transport problem

between two quantum states of the order of N, we need to
specify a quantum cost matrix CQ of size N2. Let fjiigNi¼1

be the computational basis of an N-level quantum system
and denote the maximally entangled singlet states in the
subspace spanned by jii and jji by jψ−

iji ¼ ð1= ffiffiffi
2

p Þðji; ji−
jj; iiÞ. In the case of the simplex geometry Eij ¼ 1 − δij,
the quantum optimal transport enjoys several desirable
features if one chooses the cost matrix CQ to be the
projector onto the antisymmetric subspace:

CQ ¼
XN
j>i¼1

jψ−
ijihψ−

ijj ¼
1

2
ð1N2 − SÞ ¼ ðCQÞ2; ð6Þ

as advocated also in Refs. [28–30,42]. In particular, for the
simplest, one-qubit problem, N ¼ 2, the cost matrix reads

CQ ¼ 1

2

2
6664
0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

3
7775 ¼ jψ−ihψ−j: ð7Þ

The above quantum cost matrix CQ of size N2 forms
a coherification [72] of a classical cost matrix Ccl ¼
diagðCQÞ corresponding to the simplex geometry.

We are now going to look for the minimal quantum
transport cost, which can be expressed using the SWAP

fidelity:

TQðρA; ρBÞ ≔ min
ρAB∈ΓQ

ðTrCQρABÞ ¼ 1 − FSðρA; ρBÞ
2

: ð8Þ

Proposition 1 directly implies that for any two states
ρA; ρB ∈ ΩN the optimal quantum transport cost TQ is
jointly convex, symmetric, non-negative and vanishes iff
ρA ¼ ρB. Furthermore, for CQ given by Eq. (6), one has

TQðρA; ρBÞ ¼ TQðUρAU†; UρBU†Þ; ð9Þ

for any unitary operator U on CN . Hence, TQ forms
a semidistance on ΩN , as shown independently in
Ref. [42]. In analogy with the classical definition (1),
for any p ≥ 0 we introduce a quantum analog of the
p-Wasserstein distance, Wp ≔ ðTQÞ1=p. As shown below,
W2 plays a distinguished role, so we will denote it simply
by W ≔ W2 ¼

ffiffiffiffiffiffi
TQ

p
.

As an immediate corollary of inequality (4), proven in
Supplemental Material [51] with the help of recent results
by Yu et al. [29], we arrive at explicit bounds for the
quantum transport cost and its square root W.
Corollary 2.—For any two states ρA; ρB ∈ ΩN we have

1ffiffiffi
2

p BðρA; ρBÞ ≥ 1ffiffiffi
2

p IðρA; ρBÞ ≥ WðρA; ρBÞ ≥ 1

2
BðρA; ρBÞ:

ð10Þ

Furthermore, the second inequality is saturated if either ρA

or ρB is pure.
Note that this corollary implies that W is a distance on

the space of pure quantum states of any dimension N.
Single-qubit transport.—In the simplest case of N ¼ 2,

the quantum cost matrix is given by Eq. (7). As shown in
Supplemental Material [51], the full solution of the
quantum transport problem for the one-qubit case is
equivalent to solving a polynomial equation of the order
of six. The latter yields analytic expressions in several
special cases.
For two diagonal matrices ρclr ¼ diagðr; 1 − rÞ and

ρcls ¼ diagðs; 1 − sÞ, we have

Wðρclr ; ρcls Þ ¼
1ffiffiffi
2

p maxfj ffiffiffi
r

p
−

ffiffiffi
s

p j; j
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
−

ffiffiffiffiffiffiffiffiffiffi
1 − s

p
jg:

ð11Þ

Furthermore, if one of the states is totally mixed, we obtain

W

�
1

2
1; ρ

�
¼ 1

2
maxfj1 −

ffiffiffiffiffi
2λ

p
j; j1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − λÞ

p
jg; ð12Þ
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where λ and 1 − λ denote the eigenvalues of ρ. A surpris-
ingly simple formula is available for two isospectral states:

Wðρ; UρU†Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1 − λÞ

pr
j sinðθ=2Þj; ð13Þ

where fλ; 1 − λg is the common spectrum and θ is the
U-dependent angle between Bloch vectors associated with
the states—see Supplemental Material [51]. In the case of a
single qubit, we obtain one of the key results of this Letter,
proved in Supplemental Material [51].
Theorem 3.—For N ¼ 2, the function Wp satisfies the

triangle inequality iff p ≥ 2: For any states ρA; ρB; ρC ∈ Ω2,
one has WpðρA; ρBÞ þWpðρB; ρCÞ ≥ WpðρA; ρCÞ. Thus,
Wp generates a distance on the Bloch ball Ω2, analogous
to the classical p-Wasserstein distance (1), provided
that p ≥ 2.
Whereas the quantum transport cost itself, TQ ¼ W1, is

not a distance on Ω2, its square root W2 is—see
Supplemental Material [51]. Note that, similarly, while
the infidelity 1 − F does not satisfy the triangle inequality,
its square root I ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1 − F
p

does [48]. An analogous
property was recently proved for the quantum Jensen-
Shannon divergence, the square root of which satisfies the
triangle inequality and leads to the transmission metric
[73,74].
Recall also that the Monge distance between quantum

states defined by the Husimi distribution with respect to
spin coherent states for N ¼ 2 leads to the Hilbert-Schmidt
distance and the Euclidean geometry on the Bloch ball,
while the discrete Monge distance, describing movements

of the Majorana stars corresponding to pure states, gives
geodesic distance on the Bloch sphere [16]. Whereas
formula (10) implies that W is strongly equivalent to the
Bures metric B and induces the same topology on the Bloch
ball, the corresponding (curved) geometries are different.
This is illustrated in Fig. 2 for a fixed mixed state ρA and ρB

varying continuously from ρA to the pure state jþi. We
witness the validity of the bound (10), with WðρA; jþiÞ ¼
IðρA; jþiÞ. Observe also that initially the transport distance
curve closely follows that of the Bures distance. Using the
Pauli matrices σi and the Bloch representation ρ�ðτ⃗Þ ≔
1
2
ð1� τ⃗ · σ⃗Þ for kτ⃗k ∈ ½0; 1�, we have

W½ρþðτ⃗Þ; ρ−ðτ⃗Þ� ¼
1ffiffiffi
2

p B½ρþðτ⃗Þ; ρ−ðτ⃗Þ�: ð14Þ

Quantization of an arbitrary classical cost matrix.—In a
more general setup, consider an arbitrary distance function
on the N-point set X, determined by the matrix Eij. With
any such classical geometry of X, we associate the
following quantum cost matrix:

C ≔ CQ
E ¼

XN
j>i¼1

Eijjψ−
ijihψ−

ijj: ð15Þ

Accordingly, for any p ≥ 1, we define

TQ
CðρA;ρBÞ≔ min

ρAB∈ΓQ
ðTrCρABÞ; WC;p ≔ ðTQ

CpÞ1=p ð16Þ

and prove the following result in Supplemental
Material [51].
Proposition 4.—For anyN, any p ≥ 1, and any choice of

classical geometry E, the pth root of the corresponding
optimal quantum transport cost WC;p is a semidistance
on ΩN .
The quantum-to-classical transition.—It is instructive to

compare the quantum transport problem with its classical
counterpart. To this end, one embeds classical probability
vectors in diagonal density matrices. The following result
shows that the quantum transport cost between two
classical states is always cheaper than the corresponding
classical cost (see also Ref. [36]).
Proposition 5.—Let r⃗, s⃗ be two N-dimensional proba-

bility vectors and let ρclr⃗ ; ρ
cl
s⃗ ∈ ΩN be the corresponding

quantum states defined as ðρclr⃗ Þij ≔ riδij. Then, for any
quantum cost matrix C of the form (15), we have

TQ
Cðρclr⃗ ; ρcls⃗ Þ ≤ Tcl

diagðCÞðr⃗; s⃗Þ: ð17Þ

This follows from the fact that the quantum optimization is
performed over a strictly larger set of admissible cou-
plings, Γclðr⃗; s⃗Þ ⊂ ΓQðρclr⃗ ; ρcls⃗ Þ.
The quantum-to-classical transition of the transport

problem can be interpreted in terms of decoherence caused
by the interaction of the information processing device with

FIG. 2. Bounds (10) illustrated in the Bloch ball Ω2. The
distances between the state ρA ¼ ð9=20Þ1þ ð1=10Þj0ih0j and
ρB ¼ ð1 − tÞρA þ tðjþihþjÞ are shown as a function of t ∈ ½0; 1�
varying along the Euclidean line (red line in the inset).
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its environment. As a simple model (cf. [75]), one can
assume that the quantum cost matrix is acted upon
by a dephasing channel EαðCÞ ¼ αCþ ð1 − αÞdiagðCÞ,
with the parameter α ∈ ½0; 1� proportional to the l1 coher-
ence [76]. One can then study the function TQ

C;α ≔
minρAB∈ΓQ ½TrEαðCÞρAB�. In the single-qubit case, it is easy

to show (see Supplemental Material [51]) that
ffiffiffiffiffiffiffiffiffiffiffi
TQ
CQ;α

q
is a

distance on the set of commuting density matrices of the
order of 2. Moreover, it is a strictly decreasing function of
α, provided that the two input states are different and none
of them is pure.
Applications.—The introduced SWAP fidelity offers an

original measure of proximity between quantum states and,
thus, provides a new tool to quantify protocols of quantum
information processing. Its most promising and straightfor-
ward application pertains to the QGANs [41,77]. This
protocol of quantum machine learning [40] consists of a
generator, which produces “fake” data, and a discriminator,
which aims at distinguishing between the real and fake
input data. The adversarial training reaches a fixed point
when the generator produces data with true statistics and
the discriminator’s efficiency is 50%. Similar to with
classical GANs, the choice of the distance between real
and fake data is critical for the stability and performance of
the training [39,42,78]. In Ref. [39], it was argued that
problems with efficiency of quantum learning algorithms
[79–82] arise because the employed measure of proximity
diminishes exponentially with the number of qubits.
Although the introduced SWAP fidelity suffers from the
same drawback for pure states (as it equals to fidelity in this
case), it might prove superior for mixed states because of its
supermultiplicativity (5).
In fact, in Ref. [42], a QGAN based on the semidistance

TQ was shown to exhibit improved performance over other
QGANs. Furthermore, it is noise tolerant and can be
successfully used to approximate complicated quantum
circuits with a limited number of quantum gates. Our
results suggest that the choiceW ¼

ffiffiffiffiffiffi
TQ

p
is superior to TQ,

as it forms a genuine distance.
Conclusions and outlook.—We studied the quantum

transport problem for density matrices of dimension N
with a quantum cost matrix [83]. Inspired by the
Wasserstein distance of the order of 2, we proved that
the square root of the optimal transport cost, W ¼

ffiffiffiffiffiffi
TQ

p
,

yields a distance on the Bloch ball, bounded by the rescaled
Bures distance and the root infidelity. In the general
problem of N-level systems and an arbitrary classical
geometry, we showed that the analog of the p-
Wasserstein distance, WC;p, yields a semidistance on the
full space of quantum states for any p ≥ 1. Furthermore,
extensive numerical studies (see Supplemental Material
[51]) allow us to put forward the following conjectures.
Conjecture I.—The quantum analog of the 2-

Wasserstein distance, W ¼
ffiffiffiffiffiffi
TQ

p
, enjoys the triangle

inequality in any dimension N.

Conjecture II.—The quantity WC;p is a distance for any
p ≥ 2 and any C in some neighborhood of CQ.
Moreover, recent analytical and numerical results

established in Ref. [84] motivate the following.
Conjecture III.—The quantum analog of the 2-

Wasserstein distance, W, is monotone under quantum
channels.
Given the multifarious applications of the classical

Wasserstein distances, we expect its quantum analog to
play a pivotal role in diverse branches of quantum infor-
mation processing and quantum machine learning [32–
36,43]. Furthermore, the SWAP fidelity—a novel quantity
introduced in this work—is likely to offer new advances in
characterizing proximity between quantum states.
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