
Impossibility of Superluminal Signaling in Minkowski Spacetime
Does Not Rule Out Causal Loops

V. Vilasini 1,2 and Roger Colbeck 2

1Institute for Theoretical Physics, ETH Zurich, 8093 Zürich, Switzerland
2Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

(Received 6 January 2022; revised 20 May 2022; accepted 24 June 2022; published 6 September 2022)

Causality is fundamental to science, but it appears in several different forms. One is relativistic causality,
which is tied to a spacetime structure and forbids signaling outside the future. A second is an operational
notion of causation that considers the flow of information between physical systems and interventions on
them. In [V. Vilasini and R. Colbeck, General framework for cyclic and fine-tuned causal models and their
compatibility with space-time, Phys. Rev. A 106, 032204 (2022).], we propose a framework for
characterizing when a causal model can coexist with relativistic principles such as no superluminal
signaling, while allowing for cyclic and nonclassical causal influences and the possibility of causation
without signaling. In a theory without superluminal causation, both superluminal signaling and causal
loops are not possible in Minkowski spacetime. Here we demonstrate that if we only forbid superluminal
signaling, superluminal causation remains possible and show the mathematical possibility of causal loops
that can be embedded in a Minkowski spacetime without leading to superluminal signaling. The existence
of such loops in the given spacetime could in principle be operationally verified using interventions. This
establishes that the physical principle of no superluminal signaling is not by itself sufficient to rule out
causal loops between Minkowski spacetime events. Interestingly, the conditions required to rule out causal
loops in a spacetime depend on the dimension. Whether such loops are possible in three spatial dimensions
remains an important open question.
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Introduction.—Understanding cause-effect relations is
central to the scientific method, yet there are several
inequivalent notions of causality. Often, it is defined with
respect to a background spacetime structure, after which
causal structure and spacetime structure are treated synony-
mously. An alternative is to define causality operationally
and independently of spacetime. One way to do this is
through causal models, which are based on intervening on
physical systems and analyzing the resulting correlations
[1,2]. This is the approachwe take here. Causal models have
been extensively applied to situations involving classical
variables, being used, for instance, for medical testing [3,4],
economic predictions [1,5], and machine learning [6–8].
Bell’s theorem [9] demonstrates that classical causal

models cannot explain quantum correlations within the
causal structure that is naturally associated with a Bell
experiment [10]. This has fueled several approaches for
providing causal explanations to quantum and more general
nonclassical correlations. One approach is to develop causal
models [10–25] that go beyond classical random variables
and allow quantum or even post-quantum systems [26,27] to
be causes. Other approaches suggest modifying the causal
structure itself without necessarily considering nonclassical
causes, such as allowing for additional causal influences that
go outside the future light cone (e.g., nonlocal hidden
variable theories [28]) or against the direction of time

(retrocausality [29]). Such causal influences must remain
hidden in order to prevent superluminal signaling at the
observed level. More radical approaches lean towards giving
up the standard understanding of causation as being acyclic,
and replacing it with a suitable notion of logical consistency
[30–32]. While these alternatives correspond to different
descriptions of the underlying causal model, they are all
compatible with the impossibility of superluminal signaling
in Minkowski spacetime [33].
In our associated paper [34], we have developed a general

framework for causation that can describe nonclassical and
cyclic causal influences as well as causation without signal-
ing. We do so by keeping the direction of causation and the
order of events in spacetime distinct. The former is modeled
operationally and we characterize when the two are com-
patible with each other, i.e., when we can assign spacetime
locations to the random variables in the causal model
without leading to signaling outside the spacetime’s future
(we call this assignment an embedding). Here we ask: does
the ability to compatibly embed a causal model in an acyclic
spacetime (such as Minkowski spacetime) imply that the
operational predictions of the causal model can be repro-
duced within an acyclic causal structure? If so, it would not
be necessary to consider cyclic causation.
Within relativistic physics, causal influences are taken to

flow within the light cone, making both causal loops and
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superluminal signaling impossible in Minkowski space-
time. Here we relax this assumption, and require only that
observable signaling is limited by the light cone structure.
In scenarios in which there is causation without correlation
(i.e., a fine-tuned influence), answering the above question
is more challenging since fine-tuned influences can act
outside the lightcone without leading to signaling. Our
framework allows treatment of both correlations and
interventions on physical systems in general scenarios with
cyclic causal influences. It can model fine-tuned causal
influences as well as latent quantum and post-quantum
causes, and be used to characterize conditions under which
a causal model can be compatibly embedded in a space-
time. Here, we apply this framework to demonstrate the
mathematical possibility of causal loops between events in
(1þ 1)-Minkowski spacetime where these loops can be
operationally detected without superluminal signaling,
providing an explicit example. We also show that the
observable predictions of this loop cannot be reproduced in
any acyclic causal model, answering the aforementioned
question in the negative. Interestingly, the same example
fails to be embeddable in (3þ 1)-Minkowski spacetime. In
the associated paper [34], we have characterized a large
class of operationally detectable causal loops within our
framework. Whether any of these may be embeddable in
(3þ 1) dimensions remains an interesting open question.
Fine-tuned causal explanations are often undesirable as

fundamental explanations of physical phenomena [35], but
can be crucial in practical information processing tasks. For
instance, cryptographic protocols (such as the one time
pad) rely on fine-tuned correlations, and the security of
relativistic cryptographic protocols [36,37] combines both
relativistic notions of causality and information-theoretic
concepts. Hence, understanding the extent to which com-
patibility with Minkowski spacetime restricts the possible
operational causal models also has practical implications.
Causal models: Correlations, interventions and fine-

tuning.—We begin by reviewing the essentials of the causal
modeling framework (see Ref. [34] for details). A causal
structure is modeled as a directed graph G whose nodes
correspond to observed or unobserved systems and directed
edges ⟿ denote causation between these systems [38].
The set of observed nodes (denoted Sobs) comprises
classical random variables (RVs) such as measurement
settings or outcomes, while unobserved nodes may be
classical, quantum, or post-quantum systems (such as those
from a generalized probabilistic theory).
Implicitly the nodes are associated with causal mecha-

nisms that specify how information from their incoming
edges is processed. For instance, in the classical case this
processing corresponds to a function fNi

from the parents
of the node and possibly an additional, parentless [39] RV
ENi

(to allow for situations where Ni is not deterministi-
cally dependent on its parents) to the node variable Ni
itself. “A is a direct cause of B” then corresponds to the

function fB having A as a (nontrivial) argument. [In the
nonclassical case, these functions would be replaced by
valid maps between systems in the theory (e.g., CPTP maps
in quantum theory)].
Often these causal mechanisms are not explicitly known

and hence our treatment has to work at the level of observed
probability distributions rather than the causal mechanisms.
The causal structure imposes constraints on the possible
distributions that may arise over the observed nodes. One
set of such constraints can be expressed using the notion of
d-separation. For two disjoint subsets X and Y of observed
nodes Sobs of a causal structure G, X, and Y are said to be d
separated, denoted ðX⊥dYÞG, if there are no directed paths
between variables in X and Y and if no variables in X and Y
have common ancestors in G. More generally, d-separation
ðX⊥dYjZÞG is defined for three disjoint subsets X, Y, and Z
of the observed nodes (see Sec. I of the Supplemental
Material [40] for details).
We say that a distribution PGðSobsÞ satisfies the

d-separation property with respect to a causal structure G
if whenever we have d-separation between observed nodes
in G, then we have a corresponding conditional independ-
ence in the observed distribution PGðSobsÞ, i.e., ðX⊥dYjZÞG
implies PGðXYjZÞ ¼ PGðXjZÞPGðYjZÞ. If the converse
holds for all disjoint subsets of observed nodes, then
the distribution is said to be faithful or, equivalently, not
fine-tuned. In the present Letter, we adopt a minimal
definition of a causal model which corresponds to a
directed graph G and an observed distribution PGðSobsÞ
that satisfies the d-separation property with respect to G
[45]. In this Letter we allow fine-tuned causal models in
which conditional independences can occur in PGðSobsÞ
without the corresponding d-separation in G (i.e.,
we allow causation without correlation).
In cases where we know the causal mechanisms, a causal

model can be specified by a causal structure GC, causal
mechanisms ffNi

; PGCðENi
Þgi, and an associated observed

distribution PGCðSobsÞ for Sobs ⊆ fNigi. Here the observed
distribution must be consistent with relationships specified
by the causal mechanisms. Methods for modeling opera-
tional causal structures beyond the classical case are
proposed in our associated paper [34]. In the present
Letter, we restrict to the classical case, which suffices to
illustrate our main claims.
So far, we have only discussed the possible correlations

that fit with a causal structure. Inferring causation requires
more, and the concept of an intervention has been intro-
duced to deal with this [1]. If intervening on X changes the
distribution on Y, then we can deduce that X is a cause of Y.
In the case where X is parentless in a causal structure G,

correlation between X and another variable Y, i.e.,
PGðYjXÞ ≠ PGðYÞ suffices to conclude that X is a cause
of Y. More generally, an intervention on X corresponds to
forcing X to take a certain value, x, irrespective of its
parents. This results in a postintervention causal structure
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GdoðXÞ obtained from G by removing all the incoming edges
to X, while maintaining the causal mechanisms for GdoðXÞ
from G, except the mechanism for the intervened node X,
which is replaced by X ¼ x. We say that X affects Y if there
exist values x and y such that

PGdoðXÞ ðY ¼ yjX ¼ xÞ ≠ PGðY ¼ yÞ: ð1Þ

In general PGdoðXÞ ðYjXÞ is not the same as PGðYjXÞ (but they
are equal when X is parentless in G).
Acyclic and cyclic causal models embedded inMinkowski

spacetime.—The affects relation defined in (1) naturally
extends to joint interventions on sets of observed nodes.
In the presence of fine-tuning, a set of RVs can jointly
affect another set without any affects relations between
individual pairs of elements in the sets. We will illustrate
three such examples here and use these to establish our
main claim. All three causal models have observed nodes
Sobs ≔ fA; B;Cg which we will take to be classical and
binary. The same observed correlations will be used in all
three cases. The distinguishing feature at the observed level
will be the affects relations which model what happens
under intervention. The causal structures and compatible
spacetime embeddings for the three examples are given
in Fig. 1.
Example 1 (The one-time pad) Consider the causal

structure of Fig. 1(a), GOTP with the causal mechanisms
A ¼ EA, C ¼ EC, and B ¼ A ⊕ C, with EA and EC being
independent and uniformly distributed. Then, B is uni-
formly distributed and we have PGOTPðBjACÞ ≠ PGOTPðBÞ,
PGOTPðBjAÞ ¼ PGOTPðBÞ, and PGOTPðBjCÞ ¼ PGOTPðBÞ. Since
A and C are parentless, these statements are equivalent to
fA;Cg affects B, A does not affect B, and C does not affect
B [46]. A Minkowski spacetime embedding of the RVs that
does not enable any signaling outside the future is one in
which B is assigned a spacetime location in the joint future
of the spacetime locations of A and C, as illustrated in
Fig. 1(a).

Example 2 (A simplified jamming scenario; cf. [47])
Consider the causal structure of Fig. 1(b), Gjam with
the observed nodes fA; B;Cg and a classical unobserved
node Λ. Suppose we have the causal mechanisms Λ ¼ EΛ,
A ¼ Λ,B ¼ EB, andC ¼ B ⊕ ΛwithEΛ andEB uniformly
distributed. This gives the same observed correlations as
the previous example, with B ¼ A ⊕ C and with all
observed variables uniformly distributed. Additionally,
PGjamðACjBÞ ≠ PGjamðACÞ, PGjamðAjBÞ ¼ PGjamðAÞ and
PGjamðCjBÞ ¼ PGjamðCÞ. Since B is parentless, this is equiv-
alent to B affects fA;Cg, B does not affect A, and B does
not affect C. A compatible Minkowski spacetime embed-
ding in this case requires that the joint future of the
spacetime locations of A and C is contained entirely
within the spacetime future of B, as shown in
Fig. 1(b). This is because B affects fA;Cg can only be
verified when A and C are brought together, which is
possible only in their joint future. Since we have no
pairwise affects relations, there is no pairwise signaling
between the RVs and no RV is required to be in the future of
any other. Note that the causal influence B ⟿ C is super-
luminal, even though there is no superluminal signaling.
Example 3 (A fine-tuned causal loop) Consider the

causal structure of Fig. 1(c), Gloop, with the same observed
and unobserved nodes as the previous example, but with
the causal mechanisms Λ ¼ EΛ, A ¼ Λ, C ¼ B ⊕ Λ, and
B ¼ A ⊕ C, with EΛ uniformly distributed. Note that
these causal mechanisms do not admit a unique solution.
Nevertheless, in Sec. II of the Supplemental Material [40]
we apply a method proposed in [34] to uniquely determine
the observed distribution based on these mechanisms, and
show that the same distribution as the previous two
examples is obtained. The effect of interventions in this
case cannot be directly inferred from the observed corre-
lations since none of the observed nodes are parentless. The
postintervention causal structure Gloop

doðACÞ is identical to G
OTP

and the postintervention causal structure Gloop
doðBÞ is identical

to Gjam. Applying (1), we find fA;Cg affects B and B

(a) (b) (c)

FIG. 1. Three examples of causal models and their compatible embeddings in (1þ 1)-Minkowski spacetime. In each case, the
operational causal structure associated with the model is given in black, circled variables are observed nodes, while uncircled ones are
not and the black arrows denote causation. Space-time information is given in blue with time along the vertical and space along the
horizontal axis. The solid lines represent lightlike surfaces and the shaded region corresponds to the joint future of A and C in all cases.
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affects fA;Cg and no pairwise affects relations between A,
B, and C. The spacetime embedding must satisfy the
compatibility conditions of both the previous examples,
and Fig. 1(c) illustrates an embedding with these properties,
i.e., this causal loop can be compatibly embedded in
(1þ 1)-Minkowski spacetime.
All three examples above lead to the same correlations

B ¼ A ⊕ C, where B is correlated jointly with A and C but
not individually, hence there is fine-tuning. Correlation
between B and fA;Cg implies (by the d-separation
property) that B and fA;Cg must be d connected, i.e., B
is d connected with A and/orC. However, the RVs A, B, and
C are pairwise uncorrelated so there must be a pair of
variables that are d connected and yet independent, which
constitutes fine-tuning (these independences disappear for
small changes in the distribution of one of the variables,
e.g., if Λ is nonuniform in examples 2 and 3).
The causal loop of example 3 exhibits many curious

features. It is an operationally detectable causal loop, i.e.,
any causal model that gives rise to the affects relations of this
example must necessarily be associated with a cyclic causal
structure. This is proven in Sec. III of the Supplemental
Material [40], but the intuition is relatively simple: Consider
three parties in possession of the 3 observed RVs A, B, andC
and two types of experiment: (E1) Alice and Charlie perform
all possible interventions on A and C and Bob observes B
without intervening; (E2) Bob performs all possible inter-
ventions on B while Alice and Charlie observe A and C
without intervening. After both experiments the parties can
get together to verify whether B ¼ A ⊕ C holds. Here, “all
possible interventions” on a variable corresponds to running
through all possible values of that variable, setting these
independently of their parents [see (1)], and collecting
statistics for each choice. These statistics differ between
the three causal models, as they have different sets of affects
relations. These interventions do not enable the parties to
signal outside the spacetime future as the affects relations of
all these causal models are compatible with the given
spacetime embedding. They nevertheless allow the parties
to operationally verify the existence of a causal loop as we
show in the Supplemental Material [40].
In example 3, experiment E1 shows that A and C are

causes of B while E2 shows that B is a cause of at least one
of A and C. Given the spacetime embedding from Fig. 1(c),
these interventions would enable the agents to operation-
ally detect retrocausation. By contrast, for the first model,
E2 would correspond to a post-intervention scenario with
no edges and therefore lead to no correlations between the
RVs, while in the second model, E1 would also lead to no
correlations. In other words, these two experiments en-
able the parties to operationally distinguish between the
causal models of Examples 1–3 in spite of them having the
same observed correlations.
The mathematical possibility of an operationally detect-

able causal loop being embedded in Minkowski spacetime

without signaling necessarily involves fine-tuning (see
Ref. [34]) since in the absence of fine-tuning, signaling
and causation are equivalent. Note that in example 3 the
locations of the random variables in Minkowski spacetime
have to be carefully chosen to allow compatibility: B and C
must be lightlike separated, and arbitrarily small adjust-
ments to the location of either B or C will remove
compatibility. This requires B to be embedded exactly at
the earliest location in the joint future of A and C. In a sense
this is another kind of fine-tuning, but at the level of the
spacetime embedding. Furthermore, such an embedding is
not possible in (3þ 1)-Minkowski spacetime because the
intersection of two light cones is not itself a cone and,
consequently, there does not exist a frame-independent
earliest location in the joint future of two given points,
unlike in (1þ 1)-D [48].
Beyond these examples, a causal model may give rise to a

complicated set of affects relations between various subsets
of the observed nodes, making characterizing compatibility
with a spacetime a more complicated task. For instance, if A
affects B and fA;Cg affects B but C does not affect B, does
B have to be embedded in the joint future of A and C, or
only in the future of A? The novel causal modeling concept
required to answer such questions in fine-tuned models is
the notion of a higher-order affects relation, which we
introduce in our framework [34]. Here we have illustrated
one example, but there is a general class of physical theories
involving cyclic causal structures that are compatible with
no superluminal signaling in Minkowski spacetime as
discussed in our associated paper [34].
Discussion and outlook.—In relativistic physics, a causal

influence from one spacetime location to another implies
that the latter is in the future light cone of the former. This
means that within relativistic physics, it is not possible to
have causal loops or closed timelike curves in spacetimes
whose light-cone structures form a partial order. On the
other hand, the approach adopted here, where causal
structure and spacetime structure are distinct notions, only
requires observable signaling (and not causal influences)
to stay within the spacetime future for compatibility.
Maintaining a clear separation between causation and
spacetime structure and characterizing their interdepend-
ence is useful for considering formulations of physics
without a fixed background spacetime structure (e.g., in
quantum gravity [49,50]), as well as practical information
processing tasks in spacetime.
We note that a previous work [51] proposes a set of

necessary and sufficient conditions for ruling out causal
loops in Bell-type scenarios. Our framework [34] identifies
implicit assumptions in this claim. In particular, one of the
claims in [51] assumes that no superluminal signaling in
Minkowski spacetime rules out causal loops, which we
have shown does not hold in general.
We have established that the principle of no superluminal

signaling in Minkowski spacetime alone is insufficient to
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rule out causal loops, through an explicit construction in
(1þ 1) dimensions. We also found that the conditions for
ruling out causal loops can depend on the spacetime
dimension. Previous works have established that logical
consistency [52,53] or familiar quantum properties such as
linearity, no-cloning [54], etc. are not sufficient. Finding
underlying principles that can do so remains an interesting
open problem, a pertinent question being whether the
principle of no superluminal signaling rules out causal
loops in the case of (3þ 1)-Minkowski spacetime.
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Mathematics, University of York and the ETH Postdoctoral
Fellowship from ETH Zürich.
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