
Clusters in an Epidemic Model with Long-Range Dispersal

Xiangyu Cao ,1 Pierre Le Doussal,1 and Alberto Rosso2
1Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université,
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In the presence of long-range dispersal, epidemics spread in spatially disconnected regions known as
clusters. Here, we characterize exactly their statistical properties in a solvable model, in both the
supercritical (outbreak) and critical regimes. We identify two diverging length scales, corresponding to the
bulk and the outskirt of the epidemic. We reveal a nontrivial critical exponent that governs the cluster
number and the distribution of their sizes and of the distances between them. We also discuss applications
to depinning avalanches with long-range elasticity.
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Catastrophic events such as avalanches, material failure,
and initial-stage epidemic outbreaks often occur as a chain
reaction. Their simplest model was that of Bienaymé and
Galton-Watson (BGW) [1,2], originally conceived for
genealogy. In a continuous time version one starts with
a single infected individual. During a short time lapse dt
each infected individual recovers with probability γdt, and
causes a new infection with probability βdt. On average,
each infection generates R0 ¼ β=γ new ones: R0 deter-
mines the fate of the epidemic. When R0 < 1, it goes to
extinction rapidly. When R0 > 1, the size of the population
that has been infected up to time t grows exponentially,
S ∼ eðβ−γÞt, as in the initial outbreak stage of an epidemic.
At the critical point, R0 ¼ 1, the probability that the
epidemic has survived up to time t decreases as ∼1=t,
and in that case it will have infected ∼t2 individuals. As a
result, S has strong fluctuations and has a power law
distribution PðSÞ ∼ S−3=2 with a cutoff at Smax ∼ t2. The
critical case mimics the scale free behavior displayed by
avalanches in disordered materials, i.e., the propagation of
an instability which triggers further instabilities via elastic
interaction [3].
The BGW model ignores the spatial spreading of the

epidemic. Branching diffusion models consider that
infected individuals also perform some random walk in
a d dimensional space, independently of recovery and
infection. Often, one specifies the random walk to be a
short-range Brownian motion. Then the region affected by
the epidemic is a connected set, whose geometric properties
have been characterized [4–10]. For instance, at criticality,
the radius ξ of this set grows as ξ ∼ S1=4.
However, Brownian diffusion models cannot capture

the long-range dispersal that ubiquitously occurs in nature,
due to, e.g., wind, ocean currents, and air traffic [11–17],
spreading an epidemic far from its origin. A similar
situation is observed in disordered materials where

long-range interactions can trigger disconnected ava-
lanches, e.g., in the propagation of crack fronts [18–21],
wetting lines [22–24], or plasticity [25,26]. In this Letter,
we model the long-range dispersal of the infected individ-
uals as follows: during dt, an individual jumps from x to x0
with probability pαðx − x0Þddx0dt, where pαðxÞ decays as a
power law at large distances:

pαðxÞ ¼
θðjxj − ϵÞ
jxjαþd ; α > 0: ð1Þ

Here jxj is the Euclidean norm, θ is the Heaviside step
function, and ϵ ≪ 1 is a short-distance cutoff. Similar long-
range models have been studied on a lattice, where the
outbreak always displays a subexponential growth [27–33].
Here, we assume an infinite pool of susceptible individuals
everywhere, which ensures an exponential outbreak when
R0 > 1.
A typical epidemic obtained from a numerical simulation

of our model is shown in Fig. 1. One may distinguish two
regions characterized by distinct length scales. The bulk, of
radius ξ, contains most of the infections. Farther away, a
sparser outskirt of radius D contains all the remaining
infections. The existence of the outskirt is a consequence of
the long-range jumps. One aim of this Letter is to obtain
how ξ and D scale with the infected population S. Another
fundamental consequence of long-range dispersal is the
presence of clusters, i.e., spatially disconnected regions
affected by the epidemic. As is apparent from Fig. 1, the
clusters vary in sizes, and their spatial distribution is not
uniform. The second goal of this Letter is to introduce a
method to properly define the clusters. We then character-
ize their random geometry: how the number of clusters
grows with S, how their sizes are distributed, what
distances are separating them, etc. Our exact results are
obtained by the analysis of a nonlinear “instanton”
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equation. We stress that our methods are applicable to real-
world data. As a proof of principle, we tested our theory
against the Covid-19 outbreak data in the U.S. Remarkably,
a prediction of our model, Eq. (12) below, describes well
the spatial distribution of the clusters during the first week
of March 2020 (see the Supplemental Material [34]).
The epidemic model introduced above provides a dis-

crete realization, equivalent, near criticality [40], to the
mean-field theory [41,42] describing the spatial structure of
the avalanches of slowly driven elastic interfaces in a
disordered medium. In crack experiments, clusters have
been directly observed [43], and their number and size
distribution have been characterized [44,45]. These works
proposed that these properties are fully encoded in the
global properties of the crack front, e.g., in its roughness
exponent [46–48]. Here, we make a first step at examining
this issue analytically; our results indicate that the cluster
statistics probably involve a new independent exponent. In
what follows, we report our main results, and sketch the
main points of their derivation; see the Supplemental
Material [34] for details.
Bulk and outskirt.—We first determine the length scales

of the bulk ξ and outskirt D, by simple arguments. We
consider our model with a single infected individual at the
origin initially (t ¼ 0). At criticality (R0 ¼ 1), the bulk
length ξ can be estimated as the typical displacement of a
random walk with jump distribution [Eq. (1)]. When α < 2,
we have a Lévy flight, and thus

ξ ∼ t
1
α ∼ S

1
2α; α < 2; ð2Þ

where the last estimate comes from the scaling S ∼ t2.
When α > 2, we recover the short-range behavior

ξ ∼
ffiffi
t

p
∼ S

1
4 [42,49]. On the other hand, the outskirt’s

diameter D is estimated as the farthest jump among ∼S
independent attempts:

D ∼ S
1
α: ð3Þ

Hence, the outskirt is much larger than the bulk if α < 4:
only for α > 4 do we completely recover a short-range
behavior, with D ∼ ξ ∼ S1=4. This is already a surprise, as
naively one would expect a short-range takeover at α ¼ 2.
In the supercritical regime, the argument for the outskirt

diameterD and the result [Eq. (3)] still hold. The scaling of
the bulk size ξ is different. Indeed, the infected population
grows exponentially, S ∼ eðβ−γÞt. As a consequence, the
density of infected individuals is exponentially large at the
epicenter, x ¼ 0, and decays as ∼Sjxj−α−d [Eq. (1)]. The
bulk extent is then determined by the distance, jxj ¼ ξ, at
which the density reaches unity:

ξ ∼ S
1

αþd ∼ e
β−γ
αþdt ð4Þ

Note that, when R0 > 1, the separation of scales D ≫ ξ
remains for any α, and the short-range behavior with a
linear growth ξ ∝ t is never recovered. This is in contrast
with lattice models [27,28], where a reduction to short
range does happen at α ¼ dþ 1.
Defining clusters.—In our model, the ensemble of

positions ever occupied by an infected individual up to
time t is a finite set, as only a finite number of jumps have
occurred. How do we define its clusters? For simplicity we
focus on one and two dimensions. We introduce a coarse-
graining scale b ≫ ϵ, and thicken each point by a patch of
size b—an interval of length b in 1D, and a square of size b
in 2D—centered at that point; see Fig. 2. The patches
attached to different points can then overlap and form
clusters. To characterize their spatial distribution, we
introduce the following observables: (i) the number of
clusters Nc; (ii) the length and area of individual clusters,
lc in 1D and Ac in 2D, whereby the sum of all lc (Ac) is
the epidemic’s extension l (area, A, respectively); and
(iii) the distances between clusters. In 1D, a natural choice
is the distribution of gaps (Fig. 2). It is not hard to see that
the number of gaps larger than g is related to the cluster
number with b ¼ g:

Ncðb ¼ gÞ ¼ ðnumber of gaps > gÞ þ 1: ð5Þ

In 2D, the notion of gaps is not obvious, and we take
Ncðb ¼ gÞ as a probe of the distances between clusters. We
obtained the b dependence of all the quantities; for
conciseness, we report results with b ¼ 1 unless otherwise
stated.
Clusters at criticality.—When R0 ¼ 1, statistical fluctu-

ations are strong, and there are various ways of averaging.
Here, we focus on averages conditioned on a large infected

FIG. 1. Spatial distribution of a critical epidemic started at the
origin, totaling 1000 infections. Because of the long-range
dispersal [(1), α ¼ 1.5] of infected individuals, the points visited
form disconnected clusters. The bulk of radius ξ, concentrating a
majority of infections, is surrounded by a sparse outskirt,
containing all infections.

PHYSICAL REVIEW LETTERS 129, 108301 (2022)

108301-2



population S (assuming nonextinction), denoted as hOiS
for an observable O. From the S-conditioned averages, we
can obtain the asymptotics of the average over all realiza-
tions up to time t, using

hOðtÞi ∼
Z

Smax

PðSÞhOiSdS; Smax ∼ t2: ð6Þ

Thus, if hOiS ∼ Sa, hOðtÞi ∼ tmaxð2a−1;0Þ (See Table I of the
Supplemental Material [34] for results).
We have seen that when α < 4, the outskirt is much

larger than the bulk, and we expect many clusters.
Interestingly, the interval α ∈ ð0; 4Þ is divided into several
regimes, with qualitatively different behaviors of hliS,
hAiS, and hNciS. Let us start with the most nontrivial one,
α ∈ ðd=2; dÞ. There, we find that the average extension and
area are related to the bulk extent in a rather expected way:

hliS ∼ ξ; hAiS ∼ ξ2: ð7Þ
It is worth noting that the above quantities are independent
of b for a large range of b; see Eq. (15) below. Now, the
average number of clusters scales with ξ via a new and
nontrivial exponent

hNciS ∼ ξχ ; α < χ < d: ð8Þ
The exponent χ is a function of α and d, and determined by
a transcendental equation given in the Supplemental

Material [34] together with a plot. It satisfies α < χ < d,
which means that the number of clusters grows with S but
remains much lower than the area or extension. Thus, the
cluster areas Ac and extensions lc must have broad
distributions (with divergent mean as S → ∞). Computing
them is beyond the reach of the present techniques.
However, assuming that they follow a single power law
in the interval ½1; ξd�, we can surmise their exponent [45]:

PðlcÞ ∼ l−χ−1
c ; PðAcÞ ∼A−χ=2−1

c : ð9Þ
Concerning the gaps between clusters, we found that

hNcðb ¼ gÞiS has two regimes with distinct power laws:

hNcðb ¼ gÞiSffiffiffi
S

p ∼

(
ðg=gcÞ−

dðχ−αÞ
d−α 1 ≪ g ≪ gc

ðg=gcÞ− αd
dþα gc ≪ g ≪ D

; ð10Þ

where gc ¼ ξ1−α=d is the crossover gap length. The two gap
regimes g ≪ gc and g ≫ gc correspond to gaps in the bulk
and in the outskirt, respectively. To better understand this
result, let us consider one dimension [50]. Observe that the
total length of the gaps no greater than gc is exactly the bulk
size: X

ðgaps ≤ gcÞ ∼ gchNcðb ¼ gcÞiS ∼ ξ: ð11Þ

Now, if we consider all the bulk gaps up to a size g ≪ gc,
their number is almost Ncðb ¼ 1Þ, but their total size is a
negligible fraction of the bulk. On the other hand, the
outskirt gaps are a minority in number, but their total size is
much greater than the bulk size. Of course, there is no sharp
transition between bulk and outskirt, but rather a smooth
crossover. Indeed, in Fig. 3, we show that to demarcate
the two power laws requires several orders of g=gc.
Otherwise, one may observe a “compromise” of the
theoretical predictions.
So far we focused on the regime α ∈ ðd=2; dÞ. The other

ones are simpler. In a nutshell, for strong long-range
dispersal (α < d=2), the clusters become atomic and have
a finite size on average. Therefore we have hNciS ∼ S,
and hliS; hAiS ∼ S as well. For weak long-range dispersal
(α > d), the bulk becomes more compact, and gaps of size
≳1 exist only in the outskirt. See the Supplemental Material
[34] for a detailed discussion.
Clusters of an outbreak.—In the supercritical (R0 > 1)

regime, the statistical fluctuations are weak. We can thus
consider the averages up to t, which are dominated by
realizations with an infected population S ∼ eðβ−γÞt. Recall
that the bulk and outskirt diameter grow exponentially as
Eqs. (3) and (4), for any α > 0. Now, the cluster structure of
an outbreak is also simpler, and we found the same
qualitative picture for any α. The bulk is compact and
has no large gaps. Its extension is hli ∼ ξ, hAi ∼ ξ2, where
ξ ∼ S1=ðdþαÞ ∼ eðβ−γÞt=ðdþαÞ [Eq. (4)]. The outskirt is sparse,
and has an exponential number of clusters, hNci ∼ ξd.

(a)

(b)

FIG. 2. (a) Illustration of an epidemic in 1D. An infection
(recovery, jump) is indicated by a red star (green square, dashed
line, respectively). The points visited are coarse grained by an
interval of length b. They form Nc ¼ 3 clusters, with total
extension l ¼ P

lc. The gaps g are defined independently of
b. (b) In 2D, a point is coarse grained by a square of side b, to
define the cluster number Ncð¼ 3Þ, the area A, and the perimeter
P. Note that in 2D, a cluster can be nonconvex and have holes.
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Notably, their spatial structure is time independent: the gap
distribution is stationary up to a normalization and a cutoff,

hNcðb ¼ gÞi ∼ ξdg−
dα
αþd; g ≪ D: ð12Þ

In the Supplemental Material [34], we tested this prediction
against Covid-19 data, finding an encouraging agreement.
Method.—We highlight some key points of our analyti-

cal approach. The main object is a function Fðx; tjbÞ, which
is the probability that x belongs to the patch of some point
visited before t. A standard backward recursion argument
shows that F satisfies a semilinear “instanton” equation
[42,51–54]:

∂tF ¼ DαF þ ðβ − γÞF − βF2; Fjt¼0 ¼ 0; ð13Þ

for any x outside the patch of the origin; inside that, F ¼ 1.
Here ðDαfÞðxÞ ≔ R

pαðx − yÞ½fðyÞ − fðxÞ�ddy is the
“fractional diffusion” term. From the solution F, we can
obtain the area (extension) by integrating it over the plane
(line). The cluster number is obtained by differentiating
with respect to b. In 1D, we have

NcðbÞ ¼ ∂blðbÞ: ð14Þ

A similar trick exists in 2D [34].
Therefore, the problem boils down to the asymptotic

analysis of Eq. (13). In the supercritical regime, the
exponential spreading of its traveling wave solution follows
from existing rigorous results [55]; for a self-contained
derivation and our results on clusters, see the Supplemental
Material [34]. In Fig. 4, we plot the front profile. Note that
it decays as a power law, and does not have a characteristic
width. In contrast, in traveling wave equations with
short-range diffusion, the wavefront position has linear
growth in time, and its width is of order unity.

The results at criticality follow from the stationary
solution of Eq. (13). The solution in the regime α ∈
ðd=2; dÞ involves a noteworthy feature. To discuss that
without going into technical details, consider the following
puzzle, say in 1D. Recall that the cluster number and the
extension are related by a b derivative Eq. (14). Then, how
can they scale differently: l ∼ ξ, Nc ∼ ξχ ≪ ξ? The crux is
that the leading asymptotics of l is b independent, whileNc
derives from a subleading term:

hlðbÞiS ¼ c0ξþ c1ðbÞξχ ; ðb ≪ gcÞ ð15Þ

where c0 is b independent. To extract the cluster statistics
from the solution of Eq. (13), it is necessary to identify its
subleading asymptotics, in addition to the previously
known leading one [56]. This mathematical detail has a
physical interpretation: cluster statistics are associated with
irrelevant perturbations in the sense of the renormalization
group. During the coarse-graining process, the clusters
merge, and information about them is gradually erased.
Conclusion.—We have characterized the clusters of an

epidemic model with long-range dispersal, which is equiv-
alent near criticality to the mean-field theory of depinning
avalanches with long-range elasticity. We found that two
diverging length scales—the bulk and the outskirt—emerge
in both supercritical and critical regimes. In the latter, the
bulk can have a rich structure with broadly distributed
cluster sizes as well as gap sizes. Our analytical approach
based on the instanton equation can be extended to study
the effect of inhomogeneous networks [14], realistic mixing
patterns [14,57], superspreading events [58], or the regions
where the epidemic is still active at time t [59,60]. It will be
also interesting to see how much the qualitative features
revealed here appear in other epidemic models, e.g., contact
point processes [61,62]. Finally, concerning depinning

FIG. 3. Gap distribution in 1D with α ¼ 0.6, obtained by
numerical solution of Eq. (13) [34]. Data points with various
sizes S ¼ 1020;…; 1028 are collapsed using Eq. (10). The dashed
lines indicate the predicted exponents in two regimes. Inset:
dependence of the two exponents on α.

FIG. 4. Traveling wave solution to Eq. (13) in the supercritical
regime (α ¼ 2, β ¼ 1, γ ¼ 0, b ¼ 7). The solution at t ¼ 20, 40,
80 (upper inset) collapsed onto the front profile
Fðx; tÞ ¼ f½x=ξðbÞ�, fðyÞ ¼ 1=ð1þ y1þαÞ (black dashed curve).
The front position ξðbÞ is defined by F½ξðbÞ� ¼ 1=2. Its time
dependence is plotted in the lower inset for three values of b. The
collapse confirms the b dependence of the front position [34].
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avalanches, our model provides a mean-field description
which should be quantitatively correct for realistic long-
range systems when d ≥ 2α. To describe these systems for
d < 2α, loop corrections to mean-field theory should be
taken into account. In particular, our results imply a cluster
number distribution PðNcÞ ∼ N−μ

c where μ ¼ α=χ þ 1 for
α ∈ ðd=2; dÞ. At the critical dimension d ¼ 2α, we recover
the BGW value μ ¼ 3=2, but in our model μ > 3=2 is a new
exponent when d < 2α. Meanwhile, numerical studies [45]
of realistic models suggest that μ ≈ 3=2 for all d < 2α. It
will be interesting to see how to retain the “dangerously
irrelevant” cluster statistics in the field theory and whether
the loop corrections can account for this numerical
observation.
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