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Drug persistence is a phenomenon by which a small percentage of cancer cells survive the presentation
of targeted therapy by transitioning to a quiescent state. Eventually some of these persister cells can
transition back to an active growing state and give rise to resistant tumors. Here we introduce a quantitative
genetics approach to drug-exposed populations of cancer cells in order to interpret recent experimental data
regarding inheritance of persister probability. Our results indicate that alternating periods of drug treatment
and drug removal may not be an effective strategy for eliminating persisters.
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Introduction.—One of the most significant problems
facing the cancer community is that of the emergence of
drug resistance to targeted therapies [1]. A typical scenario
is that a drug will yield an immediate benefit, namely,
reduction of tumor burden, for a significant percentage of
those patients whose tumors have been classified as relying
on driver mutations in a specific pathway targeted by the
drug. Yet, after some relatively short time, tumor growth
will rebound and the patient’s condition will deteriorate.
Understanding mechanisms enabling this resistance and
thereby finding approaches to prevent its occurrence is
clearly of the utmost importance.
Resistance mechanisms can involve genetic changes,

phenotypic remodeling, or both [2]. One of the interesting
discoveries during recent years has been the role of the
phenomenon of persistence in enabling eventual resistance,
wherein some tumor cells manage to survive for long
periods of time even in the presence of drug concentrations
that kill most cells [3]. Persistencewas originally discovered
in the context of small bacterial subpopulations able to
withstand antibiotics [4,5]. In the cancer context, persisters
have been seen, for example, in the response of PC9 lung
cancer cells to Epidermal Growth Factor Receptor (EGFR)
inhibitors [6]. Here, some cells will transition to a quiescent
state with a diminished death rate. Eventually, some of these
cells will regain the ability to grow [7] and may eventually
fix mutations that confer complete resistance [8]. This basic
phenomenology has been seen in a wide variety of different
cancer contexts; see, e.g., Ref. [9]. Persistence in bacterial
systems seems to rely on discrete subpopulations resulting
from multistability in those genetic networks coupled to
growth [10–12]. In cancer cells, conversely, persistence
seems to be a quantitative trait that can vary continuously
between specific clonal subpopulations.

In this Letter, we formulate a population-based model of
cancer cell persistence. We are motivated by recent exper-
imental work [13] indicating that individual cancer cells are
characterized by a “chance to persist” (CTP) and survive a
week of drug exposure. Clones produced from a single cell
retain this trait, so that those cells that survive have, on
average, a larger chance to persist, and thus there is long-
term populational memory of previous drug treatment.
Interestingly, clones with differing values of CTP, when
exposed to the drug, exhibit different rates of decay of their
population levels beyond the one week mark (see below),
suggesting a nontrivial coupling between the process that
determines this percentage and cell death dynamics. Our
model focuses on a mutation-selection approach [14,15] to
the distribution of CTP and introduces an auxiliary survival
variable whose dynamics governs how the decay rate of the
population size in the presence of a specific drug depends
on this CTP. We show that the timescale of return to this
homeostatic persister distribution may be long enough to
allow for drug-induced changes to the CTP distribution in
the population to last for significant periods of time. All
told, our framework quantifies persister behavior in terms
of a small number of phenomenological parameters and
hence provides a guidepost for interpreting data and
investigating underlying molecular mechanisms.
Modeling approach.—Our model consists of two

dynamical pieces, the first of which deals with the chance
to persist. As shown in Berger et al. [13], one can
operationally define a continuous variable called the chance
to persist (CTP≡ x) as the fraction of cells that have
survived nominally lethal drug treatment over some fixed
time τ, day 7 in the PC9 experiments. We assume that
the homeostatic distribution of this trait is given bymutation-
selection equilibrium with a penalty for higher CTP.
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In support of this, we note that measurement of clonal
size after expansion for three weeks, shown in Fig. 1,
depends inversely on CTP. Note that the term “mutation”
here does not necessarily refer to an actual genomic
change but could refer to an altered epigenetic state that
is heritable [16]. The simplest such model takes the form,
assuming an overall constant population size,

∂PXðx; tÞ
∂t

¼ −aðx − x̄ÞÞPX þ μ
∂
2PX

∂x2
; ð1Þ

where μ is the rate of mutation and a is the birth rate
penalty for having a CTP of unity. x̄ is the instantaneous
mean of the distribution, x̄≡ R

dx xPXðx; tÞ, and the
presence of this term guarantees the overall population
size remains constant in time. We can rescale time to arrive
at a one-parameter model depending on ã ¼ a=μ. The
steady-state solution of this system is given approximately
(ignoring the range limitation on x) in terms of an Airy
function

Pss
X ∼ Ai½ã1=3ðx − x̄Þ�; ð2Þ

which is a strongly peaked function for large ã, demon-
strating the likelihood that most cells have a CTP within a
small range of the average (low) CTP and hence only a
small percentage of cells have a significant chance of
persisting. In the SupplementalMaterial [17], we show that
one can alternatively formulate a microscopic “agent-
based” approach that leads to the same conclusion. A
comparison of this predicted function to data from the
aforementioned experiment is presented in Fig. 2. Later on,
wewill discuss how to estimate μ so as to determine the rate
of relaxation back to the steady-state solution from a
perturbed initial condition.
At a fixed value of CTP, i.e., in a clonal population

originating from a single cell with some specific CTP and
before mutation has had a chance to act, the experiment
indicates that there is still significant phenotypic hetero-
geneity. This is inherent in the fact that CTP is a probability,
i.e., the chance to persist. We introduce a new fluctuating
variable s to capture this heterogeneity. In reality, we expect
that s is a projection of the phenotypic degrees of freedom
onto the one-dimensional axis related to succumbing to
drug-induced death. If s is less than zero, cells die quickly

with rate k. For a single cell, s changes stochastically as the
cell’s phenotype is buffeted by inherent fluctuations. The
value of CTP x sets the equilibrium point s0ðxÞ, about
which s fluctuates in the absence of the drug. Again opting
for the simplest approach that captures our conceptual idea,
we assume a modified Ornstein-Uhlenbeck (OU) process
for the stochastic dynamics of s,

∂PSðs; t; xÞ
∂t

¼ b
∂

∂s
f½s − s0ðxÞ�PSg þ σ2

∂
2PS

∂s2
− θð−sÞkPS;

ð3Þ
where PSðs; t; xÞ is the probability density of the surviving
cells of the fixed-x clone with instantaneous phenotype s.
The constant b represents the degree of selective pressure
favoring s0. σ2 controls the size of the fluctuations in s. k is
the death rate of cells with s < 0. Clearly, s0 < 0 for low
values of x, since then the typical cell does not survive
its exposure to the drug. Using the operational definition of
CTP, we can determine s0ðxÞ by the relationshipZ

∞

−∞
ds PSðs; τ; xÞ ¼ x; ð4Þ

where we start the population at t ¼ 0 at the drug-free
steady-state solution

PSðs; 0; xÞ ¼ Pss
S ðs; xÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2=b

p exp

�
−b½s − s0ðxÞ�2

2σ2

�
:

A comparison of s0ðxÞ with an approximation valid for
small τ and large k with kτ ≫ 1, namely,Z

0

−∞
ds Pss

S ðs; xÞ ¼ 1 − x ð5Þ

is presented in the Supplemental Material, Fig. S1 [17].
Population decay.—Given the model for the stochastic

dynamics of s, we can compute population decline over

FIG. 1. CTP versus number of cells for a three week clonal
expansion for two different persisting systems. Data show clearly
that high CTP correlates with low net growth rate. From [13],
courtesy of Nature Publishing Group.
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FIG. 2. Experimental data, courtesy of the Straussman group,
for the distribution of CTP, together with a fit to Pss

X ðxÞ versus x,
from Eq. (2), yielding ã1=3 ¼ 17, x̄ ¼ 0.06. Both distributions
have been normalized to PXð0Þ ¼ 1.
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time, both for individual fixed-x clones and for the
population as a whole. Since the units of s are arbitrary,
we are free to set σ2 ¼ b, so that Pss

S has unit variance. This
leaves us with two timescales for the s dynamics, a fast one
set by k and a slower one set by b. For a fixed x, the decay is
asymptotically a single exponential. There is a simple way
of showing this for the admittedly extreme case of s0 ¼ 0,
k → ∞. For this case, exactly half the cells die immediately
upon entering drug treatment and the model reduces to the
OU equation with an absorbing boundary at s ¼ 0. This
can be solved by the method of images, giving for positive s

PSðs; tÞ ¼
Z

∞

o
Gðs; s0; t; 0ÞPss

S ðs0Þds0; ð6Þ

where G is Green’s function for the OU equation with the
boundary condition Gðs; s0; t; 0Þ ¼ 0 at s ¼ 0,

Gðs; s0; t; 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1 − e−2btÞ

p
�
e
−ðs−s0e−btÞ2
ð1−e−2btÞ − e

−ðsþs0e−btÞ2
ð1−e−2btÞ

�
:

For large t one can expand in the object s0e−bt to obtain

PSðs; t → ∞Þ ∼ ce−btsPss
S ðsÞ; ð7Þ

with c ¼ R∞
0 2s0Pss

S ðs0Þ. Note the decay at rate b, the slow
timescale. Going to finite k would decrease this rate, as it
now takes additional time to die for cells entering the
nonsurviving zone. On the other hand, going to the more
relevant negative values of s0 increases the rate, as
attraction to the mean phenotype would accelerate the flux
toward negative s.
To address the asymptotic decay rate at general param-

eter values, we can turn to an eigenvalue approach.
Assuming that P ∼ e−λt leads to the following system:

−λPS ¼ b

�
∂

∂s
½ðs − s0ÞPS� þ

∂
2PS

∂s2

�
s > 0;

ðk − λÞPS ¼ b

�
∂

∂s
½ðs − s0ÞPS� þ

∂
2PS

∂s2

�
s < 0;

with continuity conditions on P and P0 across s ¼ 0.
Writing P≡ ψe−½ðs−s0Þ2=4� leads to a set of coupled para-
bolic cylinder equations for ψ, and one can easily derive the
eigenvalue condition

D0
λ=bð−s0Þ

Dλ=bð−s0Þ
¼ −

D0
ðλ−kÞ=bðs0Þ

Dðλ−kÞ=bðs0Þ
; ð8Þ

where D is the parabolic cylinder function [18]. The
resulting graph of λðs0Þ is shown in the Supplemental
Material, Fig. S2 [17]. One can verify that the resulting λ
agrees with the long-time decay rate obtained from
direct numerical solutions of the full equations, thereby

confirming that the decay always transitions to pure
exponential for long times.
In Fig. 3(a), we show the decay plots for different

specific values of the CTP. We see clearly the two time-
scales. This is reflected as well in the experimental data,
shown for comparison in Fig. 3(b). The values of the rates b
and k in the simulation were chosen to reproduce the ex-
perimental timescales, with b ¼ 0.03=day and k ¼ 1=day.
We show as well in Fig. 3 the decay for the entire
population obtained by averaging over the CTP distribution
given in Eq. (2). Since the CTP distribution is highly
peaked, the global decay follows rather closely that of a
typical CTP value. Note that the decay rate increases as
CTP is lowered, as already mentioned above. This feature is
also prominent in the experimental data in Fig. 3(b). Note
that the model has the same k for different clones and hence
all slopes start out the same. The first data point in Fig. 3(b)
is at day 7 and hence no information is available about the
validity of this assumption. Again, similar findings arise in
our agent-based formulation discussed in the Supplemental
Material [17].
Given the above, it is clear that the population structure

will evolve as clones with low CTP preferentially die off.
In Fig. 4, we show a sequence of population snapshots,
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FIG. 3. (a) The decay of the population of various fixed-x
clones, as well as for the entire population initially described by
the steady-state x distribution, Eq. (2). Here b ¼ 0.03=day and
k ¼ 1=day. (b) The experimental results for the decay of various
fixed-x clones (from Ref. [13], courtesy of Nature Publishing
Group).
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assuming that the rate of mutational change is much slower
than the rate of drug-induced selection. Finally, we note
that the relatively slow timescale for survivability evolution
will manifest itself in differences in measured properties of
individual cells grown into subclones. These variations are
relatively small and shorter lasting than the variations bet-
ween clones. The presence of this variation in the exper-
imental data ofRef. [13] does, however, lend general support
to our notion of phenotypic variation both between clones
and within the clonal population.
Clonal stability.—As discussed above, we have assumed

that the nonclonal wild-type population arises as the steady-
state of a mutation-selection process. This means that a
clonal population will eventually revert to the original
population from which it was drawn. Experimentally, this
appears to take a considerable amount of time. In the
experiments of Ref. [13], the CTP of individual clones
seemed relatively stable for 18 weeks of temporal evolution
in the absence of drug. In our model as given by Eq. (1), the
rate at which changes occur that act to push the distribution
back to its steady-state form is determined by the parameter
μ. Solving for short times, starting from a single clone, we
obtain

dhxi
dt

≃ −aVar½x� ≃ −ãμVar½x�; dVar½x�
dt

≃ 2μ; ð9Þ

which immediately yields hxi ¼ x0 − ãðμtÞ2. A compari-
son of this early-time prediction versus a full numerical
integration of the governing equation is presented in
Fig. 5, for a typical set of parameters. In order to compare
this to the aforementioned experimental result, we need
an estimate of μ. Given the above, evolving a clone for
T days in the absence of drug would allow an estimate
μ ∼ ðVar½x�=2TÞ. Based on the fact that there appears to be
no significant change in the behavior of a single clone even
after letting it evolve for 18 weeks means that ãð18μÞ2 is

still small compared to a significant change in CTP (say, by
an amount 0.1), which translates to

ãð18μÞ2 < 0.1: ð10Þ

Using the fit in Fig. 1 to determine ã and converting to
percentage for measuring CTP gives μ smaller than
2.5 × 10−4=week.
Discussion.—We have introduced a simple model to

integrate data concerning clonal variability of the proba-
bility of persisting and the correlated rate of dying for
cancer cells exposed to doses of targeted therapies. Our
approach makes semiquantitative sense of the data from a
recent experiment and offers new insights into the persist-
ence phenomenon. It should therefore prove useful in the
search for new approaches to prevent persistence from
transitioning to complete resistance, thereby defeating drug
efficacy. One conclusion that is already clear is that the
simplest strategies of presenting drug intermittently [19]
and thereby restoring drug sensitivity during the “holidays”
have not taken into account the fact that these protocols will
rapidly select for populations with higher persistence,
which is retained due to the CTP memory.
One key assumption of our model is that the population

distribution of the chance to persist, clearly peaked at low
percentages, is determined by a growth penalty for per-
sistence. This penalty is directly visible in Fig. 1, where
clones at smaller CTP tend to grow larger over a three week
period, but was much harder to detect in a 24 h growth
assay [13]. We feel that an assay lasting for a time
significantly shorter than the doubling time is likely to
be more subject to systematic bias. We do note that the data
at small CTP are rather noisy and hence one might imagine
an extension of our basic population equation that takes

FIG. 4. The density of survivors as a function of x for various
times, measured in days, starting from the steady-state x
distribution, given by Eq. (2). FIG. 5. hxðtÞi versus t for the case of an initial clone with

x ¼ 0.4. μ ¼ 2.5 × 10−4=week, a ¼ 1.25=week, and x̄ ¼ 0.06.
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into account this stochasticity. We also note that the claim
in [13] that there is no observed connection between some
type of quiescence manifesting itself as a slower growth
rate and the phenomenon of persistence, as indeed had been
suggested in earlier work [20], is premature.
This Letter does not address the prospect of persister

cells regaining growth, presumably by adapting their
physiology to deal with the drug-induced stress. It is, of
course, an interesting question to consider the extent to
which a cell’s survival value might influence its ability to
transition back to growth. Given recent progress [7] in
identifying phenotypic changes (especially related to cell
metabolism) that correlate with the ability to resume
cycling, this could be investigated in future experiments
and in extensions of the current model.
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