
Evaluating Second-Order Phase Transitions with Diagrammatic Monte Carlo:
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Diagrammatic Monte Carlo—the technique for the numerically exact summation of all Feynman
diagrams to high orders—offers a unique unbiased probe of continuous phase transitions. Being formulated
directly in the thermodynamic limit, the diagrammatic series is bound to diverge and is not resummable at
the transition due to the nonanalyticity of physical observables. This enables the detection of the transition
with controlled error bars from an analysis of the series coefficients alone, avoiding the challenge of
evaluating physical observables near the transition. We demonstrate this technique by the example of the
Néel transition in the 3D Hubbard model. At half filling and higher temperatures, the method matches the
accuracy of state-of-the-art finite-size techniques, but surpasses it at low temperatures and allows us to map
the phase diagram in the doped regime, where finite-size techniques struggle from the fermion sign
problem. At low temperatures and sufficient doping, the transition to an incommensurate spin density wave
state is observed.
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The universal technique of Feynman diagrams [1]
has become a precise computational tool for quantum
many-body systems in and out of equilibrium. A wealth
of diagrammatic Monte Carlo (DiagMC) [2–4] techniques,
developed recently for diverse physical systems and types
of Feynman diagrammatic expansions [5–25] enables a
numerically exact summation of the series to very high
orders, allowing one to compute physical observables in
strongly correlated regimes with controlled accuracy. The
key advantage of the DiagMC approach is that Feynman
diagrams can be formulated immediately in the thermody-
namic limit (TDL), the cutoff of the expansion order being
the only parameter controlling the accuracy. This has
enabled, in particular, unbiased solutions to problems
where the correlations are intrinsically long ranged, such
as that of the metal-to-insulator crossover in the 2D
Hubbard model [17,22,26,27].
There is, however, an additional consequence, a feature

unavailable in finite-size techniques, that has so far
not been used or explored. At the points of continuous
(second-order) phase transitions, defined only in the TDL,
thermodynamic potentials and relevant susceptibilities are
nonanalytic functions of their variables due to the diverging
correlation length [28,29]. The nonanalyticity, in turn,
implies that perturbative—in the powers of the coupling
strength—expansions for these functions constructed in the
TDL must diverge beyond the phase transition. Moreover,
the character of this divergence is controlled by the
universality class of the transition.

Here we demonstrate that second-order phase transitions
can be reliably detected and characterized by the high-order
asymptotic behavior of the diagrammatic series expansion
evaluated by DiagMC. This approach to criticality does not
require reconstructing physical observables from the series,
while approaching the problem from the TDL leads to a
technique which is fundamentally different from and
complementary to the finite-size scaling approach of
quantum Monte Carlo calculations [30–32]. We illustrate
our approach by its application to the problem of the
antiferromagnetic (AFM, Néel) transition in the repulsive
3D Hubbard model, which is important in its own right.
The Hubbard model [33] is the simplest model for

correlated fermions, the main benchmark for controlled
numerical methods [34], and the paradigm for fundamental
many-body mechanisms, including unconventional
superconductivity and quantum magnetism [35,36]. Its
Hamiltonian is given by

H ¼ −t
X
hi;ji;σ

ĉ†i;σ ĉj;σ þ U
X
i

n̂i;↑n̂i;↓ − μ
X
i;σ

n̂i;σ; ð1Þ

where μ is the chemical potential, U the interaction
strength, t the hopping, ĉ†i;σ (ĉi;σ) create (annihilate) a

fermion with the spin σ on the site i, and n̂i;σ ¼ ĉ†i;σ ĉi;σ . Its
2D version is used as a conceptual model of high-Tc
superconducting cuprates, where the layered structure
makes the 2D physics dominant, but the weak coupling
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between the layers in 3D stabilizes long-range order. In
particular, the AFM state is part of the cuprates’ phase
diagram in a range of doping near half filling (the average
number of electrons per lattice site n ¼ 1). A number of
perovskite oxide compounds, such as titanates, vanadates,
and nickelates are also well described by the 3D Hubbard
model [37]. The 3D Hubbard model and its AFM physics
in particular, alongside its 2D counterpart, is therefore a
crucial baseline for understanding more realistic systems
[37,38]. Much of additional recent interest in the Hubbard
model has been spurred by the ability to simulate the model
with ultracold atoms in optical lattices (UCA) [39–48] and
the demonstration of the AFM state in a UCA system [46],
which provides an interface between theory and experiment
and allows the results of theoretical predictions to be
validated and the exploration of regimes which are chal-
lenging for theory.
However, predicting the phase diagram of the model has

proven to be a challenge. In 2D, the development of the
(quasi-)AFM state, responsible for the metal-to-insulator
crossover [49–51], has only recently come within reach of
controlled methods [17,22,26,27]. This regime has become
a test bed for novel numerical approaches [34,52], while its
3D half filled counterpart has served for benchmarking
approximate methods for real materials [53]. In 3D,
unbiased simulations have been facilitated by the power-
law scaling of the correlation length near the Néel tran-
sition, in contrast to the exponential scaling in the T → 0
limit in 2D, and the Néel temperature TN at half filling has
been mapped out with controlled error bars [30–32,54].
Specifically, due to the absence of the fermion sign problem
[55] at half filling, simulations of sufficiently large systems
are feasible for finite-size methods, such as quantum
Monte Carlo (QMC) [30], dynamical cluster approximation
(DCA) [31], and determinant diagrammatic Monte Carlo
(DDMC) [32]. The critical point can be determined in a
controlled way as soon as the universal critical scaling of
relevant observables with the system size has been reached
(the so-called finite-size scaling). In the doped regime,
however, the sign problem leads to an additional exponen-
tial scaling of the computational time with the system size
and inverse temperature [56], precluding access to large
enough systems for a reliable extrapolation to the TDL,
while estimates can be obtained using neural networks [57].
Thus, little is known conclusively about the doped 3D
Hubbard model, while state-of-the-art field-theoretic cal-
culations by the dynamical vertex approximation (DΓA)
method [58] predict a transition between an AFM and an
incommensurate spin density wave (SDW) state at high
enough doping.
In this Letter, we use the new technique to map out the

AFM phase transition in the 3D Hubbard model at half
filling, where we validate it by benchmarking against the
established unbiased data, and equally in the doped regime,
for which no controlled results currently exist. We find for

T ¼ 0.05t that beyond ∼10% doping the Néel transition is
to an incommensurate SDW state, in qualitative agreement
with the DΓA findings [58]. Our controlled results for the
spin-spin correlation function illustrate the nature of under-
pinning correlations and are amenable to experimental
validation with UCA in optical lattices.
For an observable A, DiagMC stochastically sums—

without any approximations—all Feynman diagrams com-
prising the coefficients am of the perturbative expansion
A ¼ P

m amUm up to some truncation order m�, at which
the Monte Carlo error bars become impractically large.
Because of its formulation in the TDL, the DiagMC
approach circumvents the fundamental complexity of the
negative sign problem. Indeed, it was demonstrated [59,60]
that the calculation time generically scales only polyno-
mially with the inverse of the desired error bound, provided
the series converges. The series can sometimes diverge due
to singularities in the complex plane of U—which limit the
convergence radius and are quite typical [8,12,14,17,26]—
but as long as they are not on the real axis with ReU > 0
the series convergence properties can be improved by
altering the starting points of the perturbative expansions
[8,11,19,20,22,61], or more generally, a homotopy of the
effective action [60]. However, at a point Uc of a continu-
ous phase transition, the exact function AðUÞ (with other
variables fixed) exhibits a physical nonanalyticity with a
power-law singularity [28,29], AðUÞ ∝ ðUc −UÞ−γ (γ is
real) for U → Uc, and the series must diverge at least for
U > Uc. This fundamental failure of the DiagMC approach
generally allows one to detect the transition even when its
nature is unknown a priori. When the symmetry broken-
state is known, constructing the expansion about its mean-
field solution has been shown to enable DiagMC calcu-
lations across the transition [61]; here we argue that the
breakdown of the technique is a useful computational tool
in itself, similarly to how severity of the sign problem in
Quantum Monte Carlo can signal phase transitions [62].
The location of the singularity Uc¼UcðTÞ can be

identified from the ratios of adjacent coefficients, Uc ¼
limn→∞½an−1=an�, for a fixed temperature T. When the
exponent γ is known, the asymptotic form of the ratios
being those of the binomial expansion can be used to
improve the accuracy of locating the singularity,

Uc ¼ lim
m→∞

�
m − 1þ γ

m

�
rm; rm ¼ am−1

am
; ð2Þ

given a limited number m� of the series coefficients. It is
possible [63] to further reduce the systematic error of
determiningUc to a part that decays exponentially withm�,
which, following the argument of Ref. [59], implies that the
computational time of obtaining Uc scales only polyno-
mially with the required accuracy. We find thatm� currently
accessible by state-of-the-art DiagMC algorithms is high
enough that the rhs of Eq. (2) reaches a plateau with
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acceptable error bars, allowing a controlled determination
of Uc.
A natural choice of the observable for this problem is the

spin structure factor [64]

SðqÞ ¼ 1

N

X
xi;xj

eiqðxi−xjÞhSziSzji; ð3Þ

where Szi ¼ ðn̂i;↑ − n̂i;↓Þ=2 is the spin projection operator at
the lattice site xi and N → ∞ is the total number of lattice
sites. On the one hand, SðqÞ can be measured in situ with
UCA in optical lattices [46,65,66] and thus is useful for
benchmarking and calibrating experiments on the Hubbard
model. On the other hand, SðqÞ at q ¼ π≡ ðπ; π; πÞ
diverges at the AFM Néel transition and shares its critical
index with the divergent static AFM susceptibility χðω ¼
0; πÞ since SðqÞ ¼ P

ω χðω;qÞ, with χðω ¼ 0;qÞ being the
dominant part. Specifically, SðπÞ ∝ ðT − TNÞ−γ , where γ ¼
1.396ð9Þ is the critical index of the 3D Heisenberg
universality class [67]. Since TNðU; μÞ is a smooth func-
tion, forU → Uc we have SðπÞ ∝ ðUc − UÞ−γ , and thusUc
can be determined by Eq. (2) from the series coefficients am
for SðqÞ ¼ P

m amUm [68].
We employ the CDet algorithm [12], adapted to the

magnetic structure factor SðqÞ [17], to compute am up a
maximum expansion order m� ∼ 8. Figure 1(a) illustrates
the application of Eq. (2) by showing the dependence of the
ratios rm ¼ ½am−1=am� on the diagram order m for
T ¼ 0.25t, n ¼ 1.0, and q ¼ π. The comparison of rm
with its counterpart ½mUc=ðm − 1þ γÞ� for the function
ðU −UcÞ−γ suggests that we have reached the asymptotic
regime with Uc ≈ 5.0 beyond m ∼ 5. This justifies the use
of the adjusted ratios r̃m ¼ ðm − 1þ γÞrm=m in Eq. (2) to
identify Uc as the location of the plateau of r̃m at large m.
Figure 1(b) demonstrates this protocol, where the error bars
are judged by the overlap between the error bars of r̃m for
m ≥ 6. In Fig. 1(c), we show the behavior of the adjusted
ratio r̃m at higher temperatures (T ¼ 0.5 at n ¼ 1 in this
example), where there is no Néel order at any U: the ratios
do not converge to a plateau since the singularities closest
to the origin in the complex plane of U are not on the real
axis. For some parameters at larger doping we also observe
a singularity at or near U < 0, likely due to a transition to a
superconducting state in the attractive Hubbard model [12].
This singularity, however, can straightforwardly be elim-
inated by a simple conformal map of the series

P
m amUm

[14], or, equivalently, by a homotopy of the effective action
[60], so that the resulting coefficients am display only the
physical singularity at Uc in Eq. (2).
We first use the protocol of Fig. 1(b) to evaluateUcðTÞ of

the Néel transition at half filling. Figure 2 benchmarks our
data against the established controlled results of QMC [30],
DCA [31], and DDMC [32], as well as the Hartree-Fock
approximation [30], and those of advanced approximate
methods: DΓA [69] and dual fermions (DF) [70]. The curve

TNðUÞ is known [30–32] to be nonmonotonic, with a broad
maximum around U ∼ 6–8t, where TN ≈ 0.33t, due to the
different mechanisms of the Néel transition in the U=t ≪ 1
(Slater [71]) and U=t ≫ 1 (Mott-Heisenberg) limits.
Thus the UcðTÞ dependence is non-single-valued, and

FIG. 1. Demonstration of our method for locating the critical
point Uc based on Eq. (2). (a) Ratio of consecutive series
coefficients rm vs order m for SðπÞ of the 3D Hubbard model
at T ¼ 0.25t; n ¼ 1.0 (orange) approaches the asymptote
½mUc=ðm − 1þ γÞ� with Uc ¼ 5.0t (blue), expected from the
critical scaling SðπÞ ∝ ðUc − UÞ−γ . (b) [Same data as (a)] in
practice, the adjusted ratio r̃m ¼ ½ðm − 1þ γÞ=m�rm is used to
obtain Uc from the location of the plateau at large orders and the
blue lines are the upper and lower error bounds we put on Uc.
(c) Adjusted ratio for a temperature (T ¼ 0.5t) where there is no
phase transition at any U and hence no plateau.

FIG. 2. A comparison of our DiagMC results for the Néel
temperature TNðUÞ (in t ¼ 1 units) at half filling with those of
state-of-the-art controlled and approximate methods (see text).
Each point obtained with ∼7000 CPU hours.
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our technique, when applied to the Hamiltonian [Eq. (1)],
can only capture the Slater-like branch closest to the U ¼ 0
starting point of the diagrammatic expansion. It should be
possible to detect the other branch with our technique
applied to an equivalent Hamiltonian or effective action
transformed by a suitable homotopy [60] that modifies the
trajectory of the model on its way from U ¼ 0 to U ¼ Uc.
Nonetheless, in the present form our method is efficient
at locating the transition in the most correlated regime
around the broad maximum (around TN ¼ 0.325t at U ¼
6.30ð15Þt in our calculation), where our results agree with
those of the finite-size scaling approaches with similar error
bars, down to temperatures T < 0.2t where no other
controlled data are available. At T ≳ 0.33t, the AFM
structure factor does not display a transition at any U, also
in consistency with the previous studies. Curiously, the DF
data [70] follow the TNðUÞ curve within error bars for all
temperatures down to T ¼ 0.05, where our accuracy
deteriorates (generally at all densities) due to larger error
bars of am and the plateau in Eq. (2) appearing at larger m.
The absence of the sign problem in our approach gives it

a significant advantage in the doped case, allowing a
controlled identification of the critical point with no

reduction in the precision. The AFM phase diagram has
previously been studied by the second-order perturbation
theory (with an additional local approximation) [72] and
more recently using the state-of-the-art DΓA approxima-
tion [58]. Both studies demonstrate a gradual reduction of
TN with doping at fixed U and that at sufficiently large
doping beyond 5%–15% (depending on U) the Néel
transition is to an incommensurate SDW state with SðqÞ
diverging for q ¼ qSDW ≡ ðπ; π; qz < πÞ instead of π. The
TNðnÞ line was shown to reach 0 at 10%–20% doping at a
magnetic quantum critical point (QCP). Reference [58]
further reveals a peculiar scenario of criticality of the Néel
transition in the doped system, essentially driven by
features of the Fermi surface (FS): As the FS is deformed
by doping and the ordering with the AFM nesting vector π
transitions to that with the incommensurate qSDW connect-
ing the Kohn points, the critical indices of the para-
magnetic-to-SDW transition remain those of the 3D
Heisenberg universality class. However, as TN continues
to drop with further doping and the system enters the
quantum critical regime, the critical indices cross over to
those of the QCP controlled by the Kohn anomaly, with
γ ¼ 0.5 in particular.
Figure 3 presents our results for the dependence ofUc on

density n (for several temperatures). The values of n are
obtained by a controlled extrapolation of DiagMC data to
infinite order at Uc following Ref. [14] and using the Dlog-
Padé [73] method, enabled by the convergence of the
perturbative expansion for n at Uc. As expected from
Refs. [58,72], Uc rises (at fixed T) with doping, which
can be attributed to a stronger interaction being required in
the doped system to suppress the double occupancy in the
Slater AFM mechanism. This qualitative behavior is
observed, e.g., in ðLa1−xBaxÞ2CuO4 [74], where doping
decreases the Néel temperature TN . The UcðnÞ curve for a
fixed T ends naturally at the density n� where the function
TNðUÞjn¼n� reaches its maximum, so that there is no Néel
transition for n < n� at any U. Since this maximum is
typically broad (cf. Fig. 2), the error bars of Uc generally
grow on approach to n�. At T ¼ 0.05t, and n≲ 0.93, we
observe that SðqSDWÞ diverges before, i.e., at a smaller U
value, than SðπÞ beyond the error bars, indicating that the

FIG. 3. The critical value of interaction Uc of the Néel
transition at fixed temperatures T as a function density n (in t ¼
1 units). Inset: data at T ¼ 0.05, where the purple points indicate
the transition to an incommensurate SDW state.

FIG. 4. Evaluation of SðqÞ at T ¼ 0.05t at several densities n and coupling U (t ¼ 1) on approach to the Néel transition in the inset of
Fig. 3. The peak of SðqÞ moves from π to qSDW with doping, indicating a shift to dominant incommensurate SDW correlations.
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Néel transition is to an incommensurate SDW. Large error
bars at low T prevent reliable estimates of the critical
index γ, which appears roughly consistent with the 3D
Heisenberg criticality in this regime [58]. The QCP regime
at n ∼ 0.8 and TN < 0.05t, predicted by DΓA [58], remains
challenging and deserves a separate study.
Figure 4 illustrates the development of magnetic corre-

lations on approach to the transition line at T ¼ 0.05t (inset
of Fig. 3): SðqÞ, obtained by the same controlled extrapo-
lation as for n [14,73], is shown along the high-symmetry
path through the Brillouin zone for several n and increasing
values of U. As expected, a sharp peak at the AFM wave
vector π develops at half filling. This peak is broadened by
small doping ∼10%, at which a second peak at qSDW starts
developing with increasing U. The SDW peak surpasses
the AFM one already for U > 2t at n ≈ 0.91. At larger
doping ∼10%–15%, SðqÞ still starts with a single AFM
peak at U ¼ 0, albeit further broadened to cover qSDW, but
increasing U leads to the build up of SDW correlations
directly, without a noticeable AFM-to-SDW crossover.
These results resemble the crossover to incommensurate
magnetic correlations observed in the 2D Hubbard model
[22] and provide controlled benchmarks for UCA experi-
ments showing a regime where profitable experiments
observing changes in the dominant spin correlations could
be carried out.
In summary, the breakdown of diagrammatic expansions

is a practical tool of detecting and characterizing second-
order phase transitions at temperatures where the series
coefficients am at high (m� ≳ 8) orders can be computed
with sufficient accuracy. Its formulation directly in the TDL
circumvents the fermion sign problem of finite-size meth-
ods and enables access to new regimes. It is complementary
to and substantially simpler in practice than the technique
of detecting the transition through DiagMC evaluation of
the eigenvalues of relevant vertex functions [6,7], which,
however, seems unavoidable whenever the transition
happens at very low temperatures (relative to the Fermi
energy) [6,75,76]. The critical point of the expected phase
separation line in the 2D Hubbard model [77–82], magnet-
ism in the anisotropic 3D Hubbard model, or superfluidity
in the resonantly interacting Fermi gas [5] are some
examples of potential applications. The singularity analy-
sis can in principle be used for detecting first-order
transitions as well, but is likely less practical than the
direct evaluation of the free energy for both phases [61]
since the metastability below a first-order transition man-
ifests itself in an essential singularity, typically revealed at
high orders. Perturbative expansions in U about the free
Fermi gas are generally thought to be applicable at weak-
to-moderate coupling; our results evidence that, when
powered by DiagMC, they are a precise tool at least until
the nearest phase transition.
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