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We calculate the effective spatial dimension dIR of electron modes at critical points of 3D Anderson
models in various universality classes (O,U,S,AIII). The results are equal within errors, and suggest the
super-universal value dIR ¼ 2.665ð3Þ ≈ 8=3. The existence of such a unique marker may help identify
natural processes driven by Anderson localization, and provide new insight into the spatial geometry of
Anderson transitions. The recently introduced dIR is a measure-based dimension of Minkowski-Hausdorff
type, designed to characterize probability-induced effective subsets.
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Introduction.—Localization of quantum particles [1] is
an important effect influencing the transport properties of
mesoscopic systems. Following a 1-parameter scaling
theory [2], the transition from extended (metallic) to
localized (insulating) state takes place at a critical point.
In a prototypical Anderson model realization, this occurs
on a critical line in ðE;WÞ plane, where E is the Fermi
energy and W the strength of a random potential. After
years of theoretical and numerical investigation (see, e.g.,
[3]) it is generally accepted that these Anderson transitions
are universal. There are ten universality classes [4] with
distinct values of critical exponents ν and s describing the
approach to criticality from the localized and extended
sides, respectively. Given that these indices are coupled [5],
many numerical works evaluated ν and the value Wc of
disorder at the canonical critical point ð0;WcÞ, especially
for the 3D orthogonal class (see, e.g., [6–8]).
Among key attributes of a transition to localized state is

that it drastically reduces the volume effectively accessible
by a particle. Here we describe this effect in a meaningful
quantitative manner. Note that it is not the end point of the
Anderson transition that is interesting in this regard.
Indeed, the known feature of exponentially bounded wave
function (exponential localization) provides the relevant
information in that case. Rather, it is the intermediate step
toward localization, the critical state, that is of primary
interest here. Indeed, we will describe Anderson criticality
in terms of the particle’s propensity to occupy the volume
of space nominally available to it.
At the heart of such a description is the notion of

effective volume. Since ordinary volume is an important
physical attribute of a system, so is its effective counterpart
if it can be put on a similar conceptual footing. In other
words, if it can be interpreted as a geometric characteristic
expressing the amount of occupied space (its measure), and

is not too arbitrary so as to be uninformative. Such issues
have recently been successfully resolved [9–11]. Here
we will use these results, reviewed below, to work
with properly defined effective volumes of Anderson
eigenmodes.
A robust characteristic of a critical point needs to involve

thermodynamic (L → ∞) limit in order to capture its non-
analyticity. Thus, consider Anderson lattice system in D
dimensions so that its volume VðLÞ ∝ LD. The effective
volume VeffðL;EÞ ≤ VðLÞ occupied by electron at energy
E may scale differently, namely, VeffðL;EÞ ∝ LdIRðEÞ, for
L → ∞, where dIRðEÞ ≤ D. The effective dimension dIR,
first used in the context of QCD Dirac eigenmodes [11],
properly quantifies the property we seek. Note that, if
dIR < D, the particle occupies space of measure zero
relative to nominal space in L → ∞ limit (Veff=V → 0).
The value D − dIR gives the rate at which modes lose the
ability to fill the growing space.
Since dIR is a strictly infrared (IR) quantity [11], it is a

natural characteristic of criticality that transforms spatial
features. In that vein, dIR is expected to be universal in
Anderson transitions, even though it does not enter the
standard scaling theory [2]. However, in this Letter we
present evidence for something unexpected, namely, that
dIR is in fact super-universal: it expresses commonality
existing across the symmetry classes. More concretely, we
find that dIR ≈ 8=3 for classes O, U, S, and AIII, with errors
(couple parts per mill) comparable to their mutual
differences. The stark difference between the usual uni-
versality (via ν) and the proposed super-universality (via
dIR) can be seen from the comparison shown in Table I.
Effective volume and IR dimension.—Volume V ¼ aDN

of a hypercubic system with lattice constant a can be
thought of as determined by counting the lattice sites (N).
Its measurelike nature then stems from additivity of
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ordinary counting: the total is the sum of counts for parts.
Similarly, the effective volume Veff ½ψ � ¼ aDN ½ψ � occu-
pied by wave function ψ is determined by effective
counting (N ), which takes into account that ψ endows
lattice sites with probabilities, and hence varied relevance.
For Veff to be measurelike, the underlying effective
counting also has to be additive.
The effective number theory of Ref. [9] determines all

consistent additive schemes to count collections of objects
ðo1; o2;…; oNÞ with probabilities P ¼ ðp1; p2;…; pNÞ.
Each scheme is represented by function N ¼ N ½P� on
discrete probability distributions. A key result is the
existence of a scheme N ⋆ satisfying N ⋆½P� ≤ N ½P� for
all P and N . This minimal effective amount, specified by

N ⋆½P� ¼
XN

i¼1

n⋆ðNpiÞ; n⋆ðcÞ ¼ minfc; 1g ð1Þ

is inherent to each collection [14], and has absolute
meaning.
Effective dimension dIR is based on N ⋆ [9,11,15]. The

explicit definition for Anderson systems starts with eigen-
function ψ ¼ ψðxi; E;W; L; ζÞ at a particular realization ζ
of microscopic disorder with strength W. The associated
probabilities are pi ¼ ψþψðxiÞ, and dIRðE;WÞ arises via

hN ⋆iE;W;L ∝ LdIRðE;WÞ for L → ∞; ð2Þ
where h…i is the disorder average involving states from the
spectral vicinity of E. Here we will be interested in
dIRð0;WcÞ for models from O,U,S and AIII symmetry
classes. Their critical values Wc, listed in Table I, are
known to high accuracy.
Anderson models.—All models we study are defined

on L3 cubic lattice with each site r ¼ ðx; y; zÞ supporting
two quantum states. Disorder is introduced via random
energies ϵr chosen from a box distribution in the range
½−W=2;þW=2�. Hopping terms in the Hamiltonian only
connect the nearest neighbors. They are described by 2 × 2
matrices tr;ej , one for each r and direction specified by the
unit lattice vector ej (j ¼ x, y, z). The Hamiltonian is

H ¼
X

r

ϵrc
†
rσdiagcr þ

X

r;j

c†rtr;ejcr−ej þ H:c:; ð3Þ

where operators cr have two components and σdiag is
diagonal. In definitions of specific models below, σ0

denotes the identity matrix and σj the Pauli matrices.
Periodic boundary conditions are imposed in all cases.
Orthogonal (O): σdiag ¼ tr;ej ¼ σ0.
Unitary (U): σdiag ¼ tr;ex ¼ tr;ey ¼ σ0 and θ ¼ 1=4 [16]

in

tr;ez ¼ σ0 exp ð−i2πθxÞ: ð4Þ

Symplectic Ando (S): σdiag ¼ σ0 and θ ¼ π=6 [12] in

tr;ej ¼ expðiθσjÞ: ð5Þ

AIII (A): σdiag ¼ σz. We use tk ¼ 0.4 in tr;ez ¼ tkσ0, and
t1 ¼ t2 ¼ 0.5, t⊥ ¼ 0.6 [13] in

tr;ex ¼ t1σ0 þ it⊥σx; tr;ey ¼ t2σ0 þ it⊥σy: ð6Þ

We note that in O, U, and S models, all energy eigenvalues
are doubly degenerate, while in the chiral A model they
come in ð−E;EÞ pairs for each sample of disorder.
Technical details.—We use JADAMILU library [17] to

numerically diagonalize 1-particle Anderson Hamiltonians.
For each sample of disorder, we compute 10 distinct
eigenvalues closest to E ¼ 0 and all associated eigenstates.
This results in probing a very small vicinity of the band
center for all studied systems, e.g., jEj ⪅ 5 × 10−3 for O at
L ¼ 24 with L−3 size dependence. Hence, all computed
states are included in the estimate (simple average) of N ⋆
associated with a given sample. Disorder average is then
performed by accumulating 5 − 20 × 103 independent
samples. The sizes of studied systems range from L ¼ 8
to L ¼ 128 (O), 112 (U), and 72 (S) and (A).
As an intermediate step toward extracting the dimension

dIR, we define its finite-L counterpart from ratios of
effective volumes on systems with sizes L and L=s

dIRðL; sÞ≡ 1

ln s
ln

hN ⋆iL
hN ⋆iL=s

; s > 1: ð7Þ

Given the defining asymptotic behavior (2), we can then
use that dIR ¼ limL→∞dIRðL; sÞ, independently of s. The
latter can be adjusted to suit the available range of sizes and
statistics. We will use s ¼ 2which is also convenient due to
a large number of pairs ðL;L=2Þ accessible by the lattice
geometry. Note that, since the data at different L are
independent, the error Δ of dIRðL; sÞ can be estimated
via simple error propagation. In particular, ΔðL; sÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ðLÞ þ ϵ2ðL=sÞ

p
= ln s, where ϵ are relative errors ofN ⋆.

Sample computation.—In order to describe and test our
numerical procedure of extracting dIR, we first perform an
illustrative calculation in the context of O class. In
particular, we will evaluate dIRðE ¼ 0;W ¼ 10Þ, which
is deeply in the extended phase (see Table I).
To that end, we have generated ensembles for lattice

sizes between L ¼ 16 and L ¼ 72. From the set of

TABLE I. Critical parameters of 3D orthogonal (O), unitary
(U), symplectic (S) and AIII (A) symmetry classes. Their
meaning is discussed in the text.

Model Ref Wc ν dIR (here)

O [8] 16.543(2) 1.572(5) 2.664(2)
U [7] 18.375(17) 1.43(6) 2.665(3)
S [12] 19.099(9) 1.360(6) 2.662(4)
A [13] 11.223(20) 1.071(4) 2.668(4)
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computed lattices, seven distinct pairs ðL=2; LÞ can be
formed. We have calculated dIRðLÞ for each of them using
the relation (7) with the result shown in Fig. 1 (top) as a
function of 1=L. A striking feature of the obtained behavior
is a clean linear approach to the infinite volume limit.
However, a direct linear fit cannot be used to obtain the
extrapolated dimension and its error. Indeed, some pairs of
points in this graph are correlated since their data input
involves a common lattice. Oneway to proceed is to select a
suitable subset of mutually independent pairs to obtain a
valid estimate.
In order to exactly mimic the procedure that will be used

to analyze critical points, we proceed as follows. We only
allow systems of sizes at least Lmin ¼ 20 to participate in
the analysis and, given this cut, determine the maximal
numberK of independent pairs ðL=2; LÞ that can be formed
from the available data. If there is only one maximal
combination, the associated linear fit determines our final
estimate and its error. If there are multiple combinations,
we quote the average dIR over such determinations and the
average error. The ensuing variability of the participating
estimates characterizes the robustness of the method.
Applying the above to our W ¼ 10 data (Fig. 1, top)

yields K ¼ 5 and a unique combination of pairs marked in
blue. Note that the smallest pair is formed by lattices
(20,40) so that we are dealing with the range 1=L ≤ 0.025.
The associated fit (shown) returns the expected value dIR ¼
3 with the accuracy of couple parts in ten thousand. Note
that, in this case, the resulting fit works extremely well even
outside the fitting range implied by the size cut.
Following the same strategy at the critical point, we plot

in Fig. 1 (bottom) the dimensions dIRðLÞ for available pairs

of sizes. We collected data for 29 lattices satisfying the size
cut, producing K ¼ 11 with 128 distinct combinations.
One of them is visualized by blue points and the corre-
sponding linear fit. The result is close to dIR ¼ 8=3 (dashed
line) and error about one part per mill.
The results.—We will now apply the above strategy to

the computation of dIR at known critical points ð0;WcÞ of
Anderson models from four universality classes shown in
Table I. Empirically chosen overall size cut Lmin ¼ 20 will
be imposed in the analysis since it ensures good scaling
properties for all models considered.
The grand summary of all utilized data is shown in

Fig. 2. The feature immediately standing out is that
dimensions for O and U classes become essentially equal
in the statistical sense for 1=L ⪅ 0.02, approaching together
the value dIR ≈ 8=3 in the infinite-volume limit. At the
same time, S and A dimensions tend to a very similar value
in more disconnected manner.
The data in Fig. 2 leads to KO ¼ 11½128�, KU ¼ 7½8�,

KA ¼ 7½1�, and KA ¼ 7½1�, where the subscript refers to a
symmetry class and the bracket specifies the number of
distinct maximal pair combinations. The corresponding
final estimates of dIR are given in Table I. They are also
shown graphically in the inset of Fig. 2. In order to
represent these final answers faithfully, the straight lines
for O and U in Fig. 2 are the averages from fits over all
maximal combinations. The standard deviation in the
associated population of (correlated) estimates is smaller
than the statistical error by about a factor of two in both
cases. This confirms the robustness of the method used to
obtain the extrapolated dIR.
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FIG. 1. Sample computation of dIR for O system in the metallic
regime (top) and at the critical point (bottom). Values at finite L
are obtained from Eq. (7) with s ¼ 2. The horizontal dashed line
in the bottom plot shows dIR ¼ 8=3.
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FIG. 2. Dimension dIR vs 1=L for L ≥ 40, obtained from
Eq. (7) with s ¼ 2. The inset shows infinite-volume extrapolation
for each class. The shaded area marks the band with deviation less
than 2 parts per mill from dIR ¼ 8=3.
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The discussion.—The properties of Anderson critical
points, as expressed by the index ν, are known to vary by as
much as tens of percents (Table I). This is to be contrasted
with our results for the effective spatial dimensions dIR
which differ at the level of couple parts per mill at most. In
fact, the remaining statistical and mild systematic (entering
via Lmin) uncertainties open the possibility that dIR may be
strictly super-universal, taking the value of approximately
8=3 at Anderson transitions.
The relevance of critical dIR is that it describes the

geometry of space associated with Anderson transition in
the same way as Minkowski or Hausdorff dimensions
describe the geometry of subsets in Euclidean space: it is a
dimension based on measurable physical volumes. Its
meaning can be illustrated by a fictional inquiry about
the properties of space addressed to Anderson E ¼ 0
electrons. The response of O electrons may read “Our
probing means are limited but this is what we can say. If
space is sprinkled with disorder of strength W < Wc, then
doubling the lengths in all directions gives us 23 times more
volume to effectively spread into when these lengths are
large. Hence, we see space as three dimensional. But when
disorder of strengthW > Wc is used, this factor approaches
unity (20) for large lengths, and the space acts zero
dimensional. Most interestingly, for W ¼ Wc, our effective
volume grows by a factor close to 28=3 and we have no
choice but to tell you that the dimension of space we
experience in this case is about 8=3.”
Super-universality of dIR conveys that the response from

U, S, and A electrons, and possibly others, will be identical
to the one above. In other words, that the most basic
characteristic of spatial geometry involved in an Anderson
transition, dimension through which it proceeds, is insen-
sitive to the symmetries involved. Rather, it is entirely
determined by the defining attribute of these transitions as
changes from diffusive to nondiffusive dynamical regimes
of quantum particles subject to spatial disorder. The
proposed super-universal status could make dIR a generic
fingerprint of the Anderson phenomenon.
Our reasoning is made possible by the effective number

theory [9,10] which gives the effective volume based on
Eq. (1) its measurelike character and reveals its absolute
meaning. Conversely, the growing evidence that the asso-
ciated dIR leads to productive results (see also [11])
confirms the usefulness of the underlying ideas. In fact,
the mathematical basis for dIR is yet more solid. Indeed,
upon formalizing the notion of measure-based dimension
for probability-induced effective subsets it can be shown
that dIR is the only dimension of this type [15].
Spatial properties of Anderson transitions have tradi-

tionally been analyzed using the IPR-based dimensions Dq
(see, e.g., [18–21] or reviews [4,22]). Since these dimen-
sions are not measure based and their rationale is different,
the information provided by dIR is complementary to the
one accumulated in such studies. Combining inputs from

both approaches will eventually result in a more complete
spatial picture of Anderson criticality.
Important conclusion derived from IPR-based studies is

that the critical space structure of Anderson transition is
much more complex than a scale invariant fractal. The
question then arises what this means for the measure-based
approach. The answer is built into standard notions of
dimension such as Hausdorff, Minkowski or topological, as
well as into dIR. In particular, for dimensional composites,
all these concepts select out the maximal dimension present
in the structure.
The relevance of N ⋆-defined effective volumes and dIR

is generic: they characterize the geometry of space in which
a physical process occurs. In the context of Anderson
localization, we expect a direct connection to the effect of
anomalous critical diffusion [23]. Indeed, this is believed to
arise due to the process being restricted to a subvolume of
the sample effectively occupied by the critical electron [24].
Hence, the measure-based approach is appropriate for its
physics. Elementary scaling arguments suggest that the
diffusion exponent does not depend on symmetries [23],
which would conform to the suggestion that the effect
descends from super-universal geometry of the subvolume.
Among motivations leading to dIR was a need for such a

characteristic in studies of Dirac modes in quantum
chromodynamics (QCD). One recent novelty in that area
is a power singularity of mode density at eigenvalue
λIR ¼ 0, appearing in thermal QCD at certain temperature.
Its existence sparked the proposal for a new scale-invariant
phase of strongly interacting matter [25]. The vicinity of λIR
was shown to have certain properties normally associated
with localization [11,26], suggesting that it can be viewed
as a critical point of Anderson type. In addition, there is a
known Anderson-like point λA in the bulk of the spectrum
[27–29]. These developments raise interesting questions
about the degree of similarity between such QCD features,
arising from complicated gauge dynamics, and pure
Anderson transitions. The results presented here and further
studies of dIR in both contexts will likely help to resolve
such questions.
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